首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The magnetic properties of a substituted Nd0.95Dy0.05Fe3(BO3)4 ferroborate single crystal with competing Nd-Fe and Dy-Fe exchange interactions are studied experimentally and theoretically. A spontaneous spin-reorientation transition is detected near T = 4.3 K, and anomalies are observed in the low-temperature magnetization curves along trigonal axis c and in basal plane ab. The measured properties and the detected effects are interpreted in terms of a general theoretical approach, which is based on the molecular field approximation and crystal field calculations for a rare-earth ion. The experimental temperature dependences of the initial magnetic susceptibility in the range 2–300 K, the anomalies in the magnetization curves for Bc and Bc in fields up to 1.5 T, and the field and temperature dependences of magnetization in fields up to 9 T are described. The effect of small substitution in the rare-earth subsystem on the magnetic properties is analyzed. The crystal field parameters and the parameters of the R-Fe and Fe-Fe exchange interactions are determined from the experimental data.  相似文献   

2.
The magnetostriction and thermal expansion of rare-earth aluminoborate HoAl3(BO3)4 have been studied theoretically. The calculated field and temperature dependences of the multipole moments of the Ho3+ ion in HoAl3(BO3)4 made it possible to describe the known experimental data and to predict possible anomalies of thermal expansion. It has been shown that, for the direction of the field Bc, the nonmonotonic character of magnetostriction along the axis a is determined by the multipole moments, the main of which is β J O 4 0 〉. For Ba and Bb, the maximum moments are β J O 4 2 〉and α J O 2 2 〉; their variation with the field and temperature explain well the form of magnetostriction. It has been established that the greater value of magnetostriction Δa/a for Bb than for Ba and the greater value of magnetostriction for the field in the basal plane than for Bc are caused by greater variations in the field of actual multipole moments.  相似文献   

3.
The magnetic properties of trigonal antiferromagnet SmFe3(BO3)4 are studied experimentally and theoretically. The measured characteristics are considered in terms of a theoretical approach based on the molecular field approximation and a crystal field model for a rare-earth ion. The temperature dependences of the initial magnetic susceptibility and the field and temperature dependences of magnetization in fields up to 5 T are described, and the anomaly in the magnetization curve for Bc near 1 T, which points to a first-order phase transition, is analyzed.  相似文献   

4.
The magnetic properties of a ferroborate single crystal of substituted composition Sm0.7H0.3Fe3(BO3)4 with competing Sm-Fe and Ho-Fe exchange interactions are studied. The measured properties and effects are interpreted in terms of a general theoretical approach based on the molecular field approximation and calculations using the crystal field model for a rare-earth ion. The experimental temperature dependences of the initial magnetic susceptibility in the temperature range 2?C300 K, the anomalies in the magnetization curves for B ?? c and B ?? c in fields lower than 1.2 T, and the field and temperature dependences of magnetization in fields lower than 9 T are described. The crystal field parameters and the parameters of the R-Fe and Fe-Fe exchange interactions are determined during the interpretation of the experimental data.  相似文献   

5.
The magnetic and magnetodielectric properties of Ho0.5Nd0.5Fe3(BO3)4 ferroborate with the competing Ho–Fe and Nd–Fe exchange couplings have been experimentally and theoretically investigated. Step anomalies in the magnetization curves at the spin-reorientation transition induced by the magnetic field Bc have been found. The spontaneous spin-reorientation transition temperature TSR ≈ 8 K has been refined. The measured magnetic properties and observed features are interpreted using a single theoretical approach based on the molecular field approximation and calculations within the crystal field model of the rare-earth ion. Interpretation of the experimental data includes determination of the crystal field parameters for Ho3+ and Nd3+ ions in Ho0.5Nd0.5Fe3(BO3)4 and parameters of the Ho–Fe and Nd–Fe exchange couplings.  相似文献   

6.
The 55Mn nuclear magnetic resonance spectrum of noncollinear 12-sublattice antiferromagnet Mn3Al2Ge3O12 has been studied in the frequency range of 200–640 MHz in the external magnetic field H ‖ [001] at T = 1.2 K. Three absorption lines have been observed in fields less than the field of the reorientation transition H c at the polarization hH of the rf field. Two lines have been observed at H > H c and hH. The spectral parameters indicate that the magnetic structure of manganese garnet differs slightly from the exchange triangular 120-degree structure. The anisotropy of the spin reduction and (or) weak antiferromagnetism that are allowed by the crystal symmetry lead to the difference of ≈3% in the magnetization of sublattices in the field H < H c. When the spin plane rotates from the orientation perpendicular to the C 3 axis to the orientation perpendicular to the C 4 axis, all magnetic moments of the electronic subsystem decrease by ≈2% from the average value in the zero field.  相似文献   

7.
In the space-charge-limited current regime at T = 4.2 K, the magnetoresistance of PbSnTe:In/(111)BaF2 films has been studied at various mutual orientation of the magnetic field B (up to 4 T), electric field E (up to ~103 V/cm), and normal to the surface n. At Bn, the reduction of the current reaches a factor of ~105, whereas at BE, the current increases by a factor of ~103. The angular dependences of the magnetoresistance have been studied at the “rotation” of B in three different planes. The angular dependences of the magnetoresistance for the plane corresponding to the orientation BE exhibit local maxima near the orientations Bn, at which charge carriers are deflected by the magnetic field to one of the boundaries of the film. At the deviation to the free surface, the half-width of maxima is several degrees. At the deviation to the interface with the substrate, the half-width of maxima is about an order of magnitude larger and their amplitude is one or two orders of magnitude smaller. Possible mechanisms of giant positive and negative magnetoresistance, as well as the effect of the boundaries of the film on the angular dependences of the magnetoresistance, have been discussed.  相似文献   

8.
The dependences of the resistance of the layered quasi-one-dimensional semiconductor TiS3 on the direction and magnitude of the magnetic field B have been measured. The anisotropy and angular dependences of the magnetoresistance indicate the two-dimensional character of the conductivity at T < 100 K. Below T0 ≈ 50 K, the magnetoresistance for the directions of the field in the plane of the layers (ab plane) increases sharply, whereas the transverse magnetoresistance (Bc) becomes negative. The results confirm the possibility of an electron phase transition to a collective state at T0. The negative magnetoresistance (at Bc) below T0 is explained by the magnetic-field-induced suppression of two-dimensional weak localization. The positive magnetoresistance (at Bab) is explained by the effect of the magnetic field on the spectrum of electronic states.  相似文献   

9.
Resonant relaxation of the dislocation structure under the action of crossed magnetic fields, i.e., constant magnetic field of the Earth (B Earth) and alternating radio-frequency field ( $\tilde B$ ), has been experimentally studied in a series of dielectric (NaCl) crystals with various compositions of impurities under variations in the frequency, direction of the pumping field $\tilde B$ , and orientation of the samples in the Earth’s magnetic field. The frequency dependence of the dislocation path length l(ν) exhibits peaks with various heights (l max) and resonant frequencies (νres). The maximum resonant effect has been observed for dislocations with the direction L orthogonal to the plane of crossed magnetic fields in a configuration of mutually perpendicular vectors {L, $\tilde B$ , B Earth} belonging, together with sample edges {a, b, c}, to the 〈100〉 system. Variation of the concentration C of calcium impurity in crystals of the NaClCa series only influenced the resonant peak height as $l_{\max } \propto 1/\sqrt C $ . Rotation of the magnetic field $\tilde B$ in the (b, c) plane from direction $\tilde B$ B Earth to $\tilde B$ B Earth also did not influence the frequency of the resonance but changed its amplitude. Depending on the crystal type, this influence changed from rather insignificant (in crystals of the NaClLOMO series) to complete suppression of the effect for $\tilde B$ B Earth (in the NaClNik series). The resonant frequency νres is sensitive to orientation of the sample with respect to B Earth. Upon rotation of the crystal by the angle θ = ∠(c, B Earth) about the aB Earth edge, the initial peak for dislocations La at the crystal orientation θ = 0 and the frequency ν res 0 is replaced by a pair of peaks at frequencies ν1, 2 ≈ ν res 0 cosθ1, 2, where θ1 = 90° ? θ and θ2 = θ. Previously, these peaks were observed separately in NaClNik crystals for $\tilde B$ c and $\tilde B$ b. In the present study, these peaks have been observed simultaneously for both orientations of $\tilde B$ in NaClLOMO and NaClCa crystals, where the resonance is not completely suppressed for $\tilde B$ B Earth.  相似文献   

10.
Magnetoelectric interactions have been investigated in a single crystal of gadolinium iron borate GdFe3(BO3)4, whose macroscopic symmetry is characterized by the crystal class 32. Using the results of this study, the interplay of magnetic and electric orderings occurring in the system has been experimentally revealed and theoretically substantiated. The electric polarization and magnetostriction of this material that arise in spin-reorientation transitions induced by a magnetic field have been investigated experimentally. For Hc and Hc, H-T phase diagrams have been constructed, and a strict correlation between the changes in the magnetoelectric and magnetoelastic properties in the observed phase transitions has been ascertained. A mechanism of specific noncollinear antiferroelectric ordering at the structural phase transition point was proposed to interpret the magnetoelectric behavior of the system within the framework of the symmetry approach in the entire temperature range. This ordering provides the conservation of the crystal class of the system when the temperature decreases to the antiferroelectric ordering point. The expressions that have been obtained for the magnetoelectric and magnetoelastic energy describe reasonably well the behavior of gadolinium iron borate observed experimentally.  相似文献   

11.
The magnetic properties of LiCu2O2 single-crystal samples without twinning are investigated using electron spin resonance and nuclear magnetic resonance spectroscopy. The experimental results obtained are described in terms of the model of a planar spiral antiferromagnet for the orientation of the magnetic field Hb or Hc and the model of a collinear spin-modulated antiferromagnet for the orientation of the static magnetic field Ha.  相似文献   

12.
The microhardness of LiIO3 crystals is found to decrease after action of a constant magnetic field B. The maximum change in the microhardness is observed within an hour after the magnetic treatment. Then, the microhardness demonstrates a gradual relaxation return to the initial value. The change in the microhardness is dependent on the orientation of magnetic inductance vector with respect to the polar axis. The effect is pronounced at B ⊥ [0001] and is absent at B ‖ [0001]. The sensitivity of the microhardness of LiIO3 to a constant magnetic field has a threshold character: the effect appears at the magnetic induction higher than 1 T, increases quickly, and reaches the saturation even at 1.3 T. The reversibility of the magnetically induced decrease in the microhardness has been justified: the effect is exactly reproduced during repeated tests after two weeks. The study of the crystals doped with chromium shows that the increase in the Cr concentration enhances the magnetoplastic effect in LiIO3, i.e., favors the softening of the material after the magnetic treatment.  相似文献   

13.
The unmodulated and wavelength-modulated reflectivity spectra of CuGaS2 crystals for the polarization Ec, kc at 77 and 8 K have been studied. The states n=1, 2, and 3 of A excitons and n=1 and 2 of B and C excitons are established. The luminescence spectra from the surface at kc and kc are obtained. The fine structure of the reflectivity spectra of excitons are analyzed with due regard for the normal and oblique incidence of light onto the crystal surface. The main parameters of the A, B, and C excitonic series are determined such as the energies of the longitudinal and transverse excitons Γ4 (E ‖ c) for states n=1 and 2, the longitudinal and the transverse mass of excitons in CuGaS 2, and the effective masses of electrons (m c1*) and holes (m v1*, m v2*, m v3*). It is shown that the mass m v1* in the upper valence band at kc equals (0.7–0.8)m 0 and at kc, 1.87m 0.  相似文献   

14.
The domain structure of an antiferromagnet whose magnetic-symmetry group contains a center of antisymmetry is studied theoretically. The magnetoelectric effect and weak ferromagnetism are shown to coexist in a domain wall. It is established that when the inhomogeneous magnetic moment interacts with a sufficiently strong magnetic field HC 3, a multidomain state with an odd number of 180° domain walls becomes energetically favorable. The critical field for the transition from a single-domain state to a multidomain state is found. It is shown that domain reversal occurs when the magnetic field H is reversed.  相似文献   

15.
Resonant dislocation motions in NaCl(Ca) crystals under the simultaneous action of the Earth’s magnetic field B Earth (~66 μT) and a pulsed pump field $\tilde B$ of sufficient amplitude $\tilde B_m $ and certain duration τ have been detected and studied. The measured dislocation path peaks l(τ) have a maximum at τ = τ r ≈ 0.53 μs. The resonance criterion has been found to be the ordinary EPR condition in which the g-factor is close to 2 and the optimum inverse pulse duration τ r ?1 is used instead of the harmonic pump field frequency ν r . The largest peak l(τ) height is reached at mutually orthogonal dislocation (L) and magnetic field (B Earth and $\tilde B$ ) orientations. Pulsed field rotation to the position $\tilde B$ B Earth significantly decreases but does not “kill” the effect. For dislocations parallel to the Earth’s field (LB Earth), the resonance almost disappears even at $\tilde B$ B Earth. In the optimum geometry of experiments, as the pump field amplitude $\tilde B_m $ decreases from 17.6 to 10 μT, the path peak height l r = l r ) decreases only by 7.5%, remaining at the level of l r ~ 102 μm, and at a $\tilde B_m $ further fall-off to 4 μT, it rapidly decreases to background values. In this case, the relative density of mobile dislocations similarly decreases from ~90 to 40%. Possible physical mechanisms of the observed effect have been discussed.  相似文献   

16.
A theory of thermodynamic properties of a spin density wave (SDW) in a quasi-two-dimensional system (with a preset impurity concentration x) is constructed. We choose an anisotropic dispersion relation for the electron energy and assume that external magnetic field H has an arbitrary direction relative to magnetic moment M Q . The system of equations defining order parameters M Q z , M Q σ , M z , and M σ is constructed and transformed with allowance for the Umklapp processes. Special cases when HM Q and HM Q (H Z H σ = 0) are considered in detail as well as cases of weak fields H of arbitrary direction. The condition for the transition of the system to the commensurate and incommensurate states of the SDW is analyzed. The concentration dependence of magnetic transition temperature T M is calculated, and the components of the order parameter for the incommensurate phase are determined. The phase diagram (T,~x) is constructed. The effect of the magnetic field on magnetic transition temperature T M is analyzed for H Z H σ = 0, and longitudinal magnetic susceptibility χ‖ is calculated; this quantity demonstrates the temperature dependence corresponding to a system with a gap for x < x c and to a gapless state for x > x c . In the immediate vicinity of the critical impurity concentration (xx c ), the temperature dependence of the magnetic susceptibility acquires a local maximum. The effect of anisotropy of the electron energy spectrum on the investigated physical quantities is also analyzed.  相似文献   

17.
The experimental and theoretical investigations of microwave losses (ML) in HTSC thin films are carried out. It is shown theoretically that ML in the maximum of the magnetic componentB 1 are essentially larger than those in the maximum of the electric componentE 1. This is because eddy currents make much more substantial contribution to ML as compared to conventional conductivity currents. The consequence of this is the angular dependence of ML with respect to theB 1 field direction which was experimentally observed. The angular dependences of ML with respect to theB 0 field direction for both low and highB 0 values were also investigated. The majority of experimental data can be well explained within the mixed model which predicts the existence of a critical state in inter- and intragranular Josephson medium.  相似文献   

18.
In samples of semiconductor alloys n-Bi0.93Sb0.07 with different electron concentrations (n 1 = 8 × 1015 cm?3, n 2 = 1.2 × 1017 cm?3, and n 3 = 1.9 × 1018 cm?3), dependences of the electrical resistivity on magnetic fields up to 45 T parallel to the current and the bisector axis (HC 1j) have been measured at temperatures of 1.5, 4.5, and 10 K. The obtained dependences ρ22(H) demonstrate quantum oscillations of the resistivity (Shubnikov-de Haas effect), and, in high magnetic fields, there is a resistivity maximum far away from other maxima. On assumption that this maximum is related to the spin-split Landau level N = 0? for electrons of the main ellipsoid, the spin-splitting parameters are calculated for electrons of the main ellipsoid: γ1 = 0.87, γ2 = 0.8, and γ3 = 0.73. Using these values, the oscillation maxima can be reliably related to the numbers of split Landau levels for electrons of the main and secondary ellipsoids. The dependences of the resistivity ρ11 and the Hall coefficient R 31.2 on magnetic field have been measured in a transverse magnetic field at HC 1 and jC 2 on the sample with the electron concentration n 4 = 1.4 × 1017 cm?3. Using similar analysis, the spin-splitting parameter is found to be γ4 = 0.85, which is close to the value of γ2 = 0.8 obtained for the sample with close electron concentration (n 2 = 1.2 × 1017 cm?3) during the measurements in a longitudinal magnetic field. The quantum oscillation maxima of Hall coefficient R 31.2 are shifted to the range of high magnetic fields as compared to the quantum oscillation maxima of resistivity ρ11.  相似文献   

19.
The transmission spectra of HoFe3(BO3) multiferroic single crystals are studied by optical Fourier-transform spectroscopy at temperatures of 1.7–423 K in polarized light in the spectral range 500–10 000 cm–1 with a resolution up to 0.1 cm–1. A new first-order structural phase transition close to the second-order transition is recorded at Tc = 360 K by the appearance of a new phonon mode at 976 cm–1. The reasons for considerable differences in Tc for different samples of holmium ferroborate are discussed. By temperature variations in the spectra of the f–f transitions in the Ho3+ ion, we studied two magnetic phase transitions, namely, magnetic ordering into an easy-plane structure as a second-order phase transition at TN = 39 K and spin reorientation from the ab plane to the c axis as a first-order phase transition at TSR = 4.7 ± 0.2 K. It is shown that erbium impurity in a concentration of 1 at % decreases the spin-reorientation transition temperature to TSR = 4.0 K.  相似文献   

20.
A new integral relationship between the fluctuations b(r, t) of a magnetic field and its mean B 0(r, t) is derived for the steady-state magnetic field in a turbulent medium. This formula provides the estimate 〈b?curlb〉=?B 0?curlB 0. Simultaneously, the coefficient of amplification of the mean magnetic field α effect) is obtained: α=(η+β)B 0? curlB 0/B 0 2 . The formula for α allows for a decrease in this coefficient owing to the back action of the magnetic field on the turbulent velocity field. It is shown that the Zel’dovich’s estimate 〈 b 2〉?β/η B 0 2 for two-dimensional turbulence holds for magnetic fields at the instant the fluctuations 〈a 2〉 of the vector potential, rather than 〈b 2〉, reach a maximum. Here, η and β are the ohmic (molecular) and turbulent diffusion coefficients, respectively. This estimate is refined with allowance made for the fact that the condition for diffusion approximation itself relates the β, b, and B 0 quantities to each other.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号