首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 362 毫秒
1.
Tunneling differential conductivity (or resistivity) is a sensitive tool to experimentally test the non-Fermi liquid behavior of strongly correlated Fermi systems. In the case of common metals the Landau–Fermi liquid theory demonstrates that the differential conductivity is a symmetric function of bias voltage V. This is because the particle–hole symmetry is conserved in the Landau–Fermi liquid state. When a strongly correlated Fermi system turns out to be near the topological fermion condensation quantum phase transition, its Landau–Fermi liquid properties disappear so that the particle–hole symmetry breaks making the differential tunneling conductivity to be asymmetric function of V. This asymmetry can be observed when a strongly correlated metal is in its normal, superconducting or pseudogap states. We show that the asymmetric part of the dynamic conductance does not depend on temperature provided that the metal is in its superconducting or pseudogap states. In normal state, the asymmetric part diminishes at rising temperatures. Under the application of magnetic field the metal transits to the Landau–Fermi liquid state and the differential tunneling conductivity becomes a symmetric function of V. These findings are in good agreement with recent experimental observations.  相似文献   

2.
The contributions of long-wavelength spin fluctuations to the specific heat of Fermi liquids is consistently calculated on the basis of the Landau theory of Fermi liquids. More satisfactory estimations of the Landau parameter F1a for liquid 3He are obtained.  相似文献   

3.
The model of dense neutron matter has been considered, where the topological rearrangement of the ground state of the system of Landau quasiparticles, which is associated with the appearance of the second sheet of the Fermi surface, occurs through two different scenarios. The rearrangement scenario depends on the relation between the wave vector q c of critical spin-isospin fluctuations and the Fermi momentum p F. Rearrangement at q c < p F occurs continuously with vanishing of the topological rigidity, whereas rearrangement at q c > p F occurs with the stepwise appearance of a bubble with a radius of about 0.5p F in the filled Fermi sphere.  相似文献   

4.
The appearance of the fermion condensation, which can be compared to the Bose-Einstein condensation, in different Fermi liquids is considered; its properties are discussed; and a large amount of experimental evidence in favor of the existence of the fermion condensate (FC) is presented. We show that the appearance of FC is a signature of the fermion condensation quantum phase transition (FCQPT), which separates the regions of normal and strongly correlated liquids. Beyond the FCQPT point, the quasiparticle system is divided into two subsystems, one containing normal quasiparticles and the other, FC, localized at the Fermi level. In the superconducting state, the quasiparticle dispersion in systems with FC can be represented by two straight lines, characterized by effective masses M FC * and M L * and intersecting near the binding energy E0, which is of the order of the superconducting gap. The same quasiparticle picture and the energy scale E0 persist in the normal state. We demonstrate that fermion systems with FC have features of a “quantum protectorate” and show that strongly correlated systems with FC, which exhibit large deviations from the Landau Fermi liquid behavior, can be driven into the Landau Fermi liquid by applying a small magnetic field B at low temperatures. Thus, the essence of strongly correlated electron liquids can be controlled by weak magnetic fields. A reentrance into the strongly correlated regime is observed if the magnetic field B decreases to zero, while the effective mass M* diverges as \(M^ * \propto {1 \mathord{\left/ {\vphantom {1 {\sqrt B }}} \right. \kern-\nulldelimiterspace} {\sqrt B }}\). The regime is restored at some temperature \(T^ * \propto \sqrt B \). The behavior of Fermi systems that approach FCQPT from the disordered phase is considered. This behavior can be viewed as a highly correlated one, because the effective mass is large and strongly depends on the density. We expect that FCQPT takes place in trapped Fermi gases and in low-density neutron matter, leading to stabilization of the matter by lowering its ground-state energy. When the system recedes from FCQPT, the effective mass becomes density independent and the system is suited perfectly to be conventional Landau Fermi liquid.  相似文献   

5.
The dispersion of plasma waves in systems of various dimensions is investigated up to the end point of the spectrum. In 2D and 3D systems, the plasmon spectrum still ends (due to Landau damping) within the applicability range of the quasi-classical approximation, i.e., for ?k ? p F (?k is the plasmon momentum and p F is the electron Fermi momentum). In 1D systems, the results are qualitatively different, since the Landau damping is concentrated in a region where the quantum effects cannot be ignored. This peculiarity of 1D systems gives rise to undamped branches of acoustic plasmons with a phase velocity lower than the electron Fermi velocity in multicomponent 1D plasmas.  相似文献   

6.
It has been shown that the magnetic-field-induced transition from a non-Fermi-liquid state to a Fermi liquid state in the Tl2Ba2CuO6 + x high-temperature superconductor is similar to a transition observed in heavy fermion metals. This behavior is explained in the theory of the Fermi condensate quantum-phase transition implying the existence of Landau quasiparticles. The Fermi condensate quantum-phase transition can be considered as a universal cause of the strongly correlated behavior observed in various metals and liquids such as high-temperature superconductors, heavy fermion metals, and two-dimensional Fermi systems.  相似文献   

7.
We show that a strongly correlated Fermi system with a fermion condensate which exhibits strong deviations from Landau–Fermi liquid behavior is driven into the Landau–Fermi liquid by applying a small magnetic field B at temperature T=0. This field-induced Landau–Fermi liquid behavior provides constancy of the Kadowaki–Woods ratio. A re-entrance into the strongly correlated regime is observed if the magnetic field B decreases to zero; the effective mass M* then diverges as \(M^* \propto {1 \mathord{\left/ {\vphantom {1 {\sqrt B }}} \right. \kern-\nulldelimiterspace} {\sqrt B }}\). At finite temperatures, the strongly correlated regime is restored at some temperature \(T^* \propto \sqrt B \). This behavior is of a general form and takes place in both three-dimensional and two-dimensional strongly correlated systems. We demonstrate that the observed \({1 \mathord{\left/ {\vphantom {1 {\sqrt B }}} \right. \kern-\nulldelimiterspace} {\sqrt B }}\) divergence of the effective mass and other specific features of heavy-fermion metals are accounted for by our consideration.  相似文献   

8.
V. A. Khodel 《JETP Letters》2008,86(11):721-726
Two different scenarios of the quantum critical point (QCP), a zero-temperature instability of the Landau state related to the divergence of the effective mass, are investigated. Flaws of the standard scenario of the QCP, where this divergence is attributed to the occurrence of some second-order phase transition, are demonstrated. Salient features of a different topological scenario of the QCP, associated with the emergence of bifurcation points in the equation ∈(p) = μ that ordinarily determines the Fermi momentum, are analyzed. The topological scenario of the QCP is applied to three-dimensional (3D) Fermi liquids with an attractive current-current interaction.  相似文献   

9.
The magnetoresistance components ??xx and ??xy are measured in two p-Si/SiGe/Si quantum wells that have an anisotropic g-factor in a tilted magnetic field as a function of the temperature, field, and tilt angle. Activation energy measurements demonstrate the existence of a ferromagnetic-paramagnetic (F-P) transition for the sample with the hole density p = 2 × 1011 cm?2. This transition is due to the crossing of the 0?? and 1?? Landau levels. However, in another sample with p = 7.2 × 1010 cm?2, the 0?? and 1?? Landau levels coincide for angles ?? = 0?C70°. Only for ?? > 70° do the levels start to diverge which, in turn, results in the energy gap opening.  相似文献   

10.
The effect of the quantization of the electron energy levels in a strong transverse magnetic field H on the low-temperature thermoelectric power (TEP) S of a high-purity isotropic semiconductor (n - type gallium arsenide GaAs) is investigated theoretically. The “electron-diffusion” (Se) and “phonon-drag” (Sp) components of S( = Se + Sp) are calculated in the extreme quantum limit, when all the electrons in the conduction band are concentrated in the lowest Landau level. The transition to nondegeneracy, which takes place when the bottom of the lowest Landau level is driven through the Fermi level, has a large effect on the variations of Se and Sp with magnetic field. The results are illustrated with numerical calculations for n - type GaAs at 4.2 K with 1.2 × 1016 cm-3 electrons.  相似文献   

11.
The excitation of small density oscillations (zero sound) and isospin oscillations (isospin sound) in cold asymmetric nuclear matter (in the ground state ?0n> ?0p, ?0 = ?0n+?0p = 0.17 nucleons/fm3) is investigated within the framework of the Landau theory of normal Fermi liquids. There is only one undamped mode of excitation, which consists predominantly of isospin oscillations, with some admixture of density oscillations. The phase velocity of this undamped wave depends very weakly on the neutron excess and is close to that of a pure isospin wave (isospin sound) in symmetric nuclear matter of the same density. At the neutron excess corresponding to that existing in heavy nuclei the amplitude of the density oscillations constitutes about 30 % of the amplitude of the neutron excess density oscillations. Calculation with a suitably parametrized charge dependent quasiparticle interaction in asymmetric nuclear matter shows that for (?0n??0p)/?0 > 0.63 both zero sound and isospin sound are strongly damped.  相似文献   

12.
Giant quantum attenuation of longitudinal sound waves in Bi has been measured at temperatures down to 8 mK for the case that the electron (n = 0, s = + 1) and hole (n = 1, s = ? 1) Landau levels cross simultaneously Fermi level at a field of about 90 kOe. The temperature and frequency dependences of the peak attenuation due to these two levels are expressed by αpTων with μ ? 1 and ν ? 1 at T > 1 K. When T ? 1 K the value of μ decreases by decreasing temperature and below 0.1 K, αp takes almost constant value. At T ? 0.5 K, ν becomes larger than 1 and maximum value of ν observed is 2 at T ~ 0.05 K. These features of the attenuation peak at very low temperatures are consistent with what are expected in the fluctuation region of the gas-liquid type transition of the electron-hole system.  相似文献   

13.
The electronic structure and room temperature ferromagnetism of wurtzite Cu–Gd co-doped GaN nanowires have been investigated by means of the first-principles calculations within the density functional theory, including the on-site Coulomb energy U. The magnetic coupling between Gd atoms in the Gd-doped GaN nanowire is paramagnetic instead of ferromagnetic (FM) as in the bulk structure. After replacing Ga with Cu atom we find a stable FM coupling between Gd magnetic moments in this p-type system. pd coupling between Cu-3d and N-2p states pushes N-2p states up to Fermi level due to the existence of hole states introduced by Cu dopants. While the pd coupling between host N-2p and Gd-5d states near Fermi level stabilizes a FM phase of Gd magnetic moments. Furthermore, we get a FM state above room temperature by increasing the holes concentration.  相似文献   

14.
The field and temperature dependences of the magnetization of the semimagnetic semiconductor HgSe:Fe have been studied experimentally. The spin splitting of the Landau levels in the de Haas-van Alphen quantum oscillations has been recorded in the iron impurity concentration interval of 7 × 1018 cm?3 < N Fe < 2 × 1019 cm?3. The effective area of the extreme cross section of the Fermi surface has been determined from the obtained dependences of the oscillation period on the iron concentration, and the concentration of the collectivized electrons under conditions of the stabilization of the Fermi level on the iron donor level has been estimated. The critical impurity concentration at which the sharp increase in the Curie-Weiss temperature occurs owing to the spontaneous spin polarization of the system of hybridized electron states in iron-doped mercury selenide has been determined.  相似文献   

15.
The magnetic properties of strongly correlated Fermi systems are studied within the framework of the fermioncondensation model—phase transition associated with the rearrangement of the Landau quasiparticle distribution, resulting in the appearance of a plateau at T=0 exactly in the Fermi surface of the single-particle excitation spectrum. It is shown that the Curie-Weiss term ~T?1 appears in the expression for the spin susceptibility χac(T) of the system after the transition point at finite temperatures. The behavior of χac(T, H) as a function of temperature and static magnetic field H in the region where the critical fermion-condensation temperature T f is close to zero is discussed. The results are compared with the available experimental data.  相似文献   

16.
By using the Bloch eigenmode matching approach, we numerically study the evolution of individual quantum Hall edge states with respect to disorder. As demonstrated by the two-parameter renormalization group flow of the Hall and Thouless conductances, quantum Hall edge states with high Chern number n are completely different from that of the n = 1 case. Two categories of individual edge modes are evaluated in a quantum Hall system with high Chern number. Edge states from the lowest Landau level have similar eigenfunctions that are well localized at the system edge and independent of the Fermi energy. On the other hand, at fixed Fermi energy, the edge state from higher Landau levels exhibit larger expansion, which results in less stable quantum Hall states at high Fermi energies. By presenting the local current density distribution, the effect of disorder on eigenmode-resolved edge states is distinctly demonstrated.  相似文献   

17.
The equation of state (EOS) of a Fermi superfluid is investigated in the BCS-BEC crossover at zero temperature. We discuss the EOS based on Monte Carlo (MC) data and asymptotic expansions and the EOS derived from the extended BCS (EBCS) mean-field theory. Then we introduce a time-dependent density functional, based on the bulk EOS and Landau’s superfluid hydrodynamics with a von Weizsäcker-type correction, to study the free expansion of the Fermi superfluid. We calculate the aspect ratio and the released energy of the expanding Fermi cloud showing that MC EOS and EBCS EOS are both compatible with the available experimental data of 6Li atoms. We find that the released energy satisfies and approximate analytical formula that is quite accurate in the BEC regime. For an anisotropic droplet, our numerical simulations show an initially faster reversal of anisotropy in the BCS regime, later suppressed by the BEC fluid.  相似文献   

18.
The superfluid transitions temperature is calculated from the microscopic theory of a Fermi liquid in terms of the Landau parameters and one unknown scale factor. Determining the latter from the observed transition in 3He leads to an estimate that the superfluid transition in 3He4He mixtures may be presently observable.  相似文献   

19.
The impact of long-range spin-spin correlations on the structure of a flat portion in single-particle spectra ξ(p), which emerges beyond the point where the Landau state loses its stability, is studied. We supplement the well-known Nozieres model of a Fermi system with limited scalar long-range forces by a similar long-range spin-dependent term and calculate the spectra versus its strength g. It is found that Nozieres' results hold as long as g>0. However, with g changing its sign, the spontaneous magnetization is shown to arise at any nonzero g. The increase in the strength |g| is demonstrated to result in shrinkage of the domain in momentum space, occupied by the flat portion of ξ(p), and, eventually, in its vanishing.  相似文献   

20.
The mm-wave spectroscopy with high temporal resolution is used to measure the energy relaxation times τe of 2D electrons in GaAs/AlGaAs heterostructures in magnetic fields B=0–4 T under quasi-equilibrium conditions at T=4.2 K. With increasing B, a considerable increase in τe from 0.9 to 25 ns is observed. For high B and low values of the filling factor ν, the energy relaxation rate τ e ?1 oscillates. The depth of these oscillations and the positions of maxima depend on the filling factor ν. For ν>5, the relaxation rate τ e ?1 is maximum when the Fermi level lies in the region of the localized states between the Landau levels. For lower values of ν, the relaxation rate is maximum at half-integer values of τ e ?1 when the Fermi level is coincident with the Landau level. The characteristic features of the dependence τ e ?1 (B) are explained by different contributions of the intralevel and interlevel electron-phonon transitions to the process of the energy relaxation of 2D electrons.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号