首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 22 毫秒
1.
We consider a tapping dynamics, analogous to that in experiments on granular media, on spin glasses and ferromagnets on random thin graphs. Between taps, zero temperature single spin flip dynamics takes the system to a metastable state. Tapping corresponds to flipping simultaneously any spin with probability p. This dynamics leads to a stationary regime with a steady state energy E(p). We analytically solve this dynamics for the one-dimensional ferromagnet and +/-J spin glass. Numerical simulations for spin glasses and ferromagnets of higher connectivity are carried out; in particular, we find a novel first order transition for the ferromagnetic systems.  相似文献   

2.
We present a new set of electrical field effect measurements on granular aluminium insulating thin films. We have explored how the conductance relaxations induced by gate voltage changes depend on the age of the system, namely the time elapsed since its quench at low temperature. A clear age dependence of the relaxations is seen, qualitatively similar to ageing effects seen in other well studied glassy systems such as spin glasses or polymers. We explain how our results differ from the previous ones obtained with different protocols in indium oxide and granular aluminium thin films. Our experimental findings bring new information on the dynamics of the system and put new constraints on the theoretical models that may explain slow conductance relaxations in disordered insulators.  相似文献   

3.
We perform an accurate test of ultrametricity in the aging dynamics of the three-dimensional Edwards-Anderson spin glass. Our method consists in considering the evolution in parallel of two identical systems constrained to have fixed overlap. This turns out to be a particularly efficient way to study the geometrical relations between configurations at distant large times. Our findings strongly hint towards dynamical ultrametricity in spin glasses, while this is absent in simpler aging systems with domain growth dynamics. A recently developed theory of linear response in glassy systems allows us to infer that dynamical ultrametricity implies the same property at the level of equilibrium states.  相似文献   

4.
We show that the generating functional describing the slow dynamics of spin-glass systems is invariant under reparametrizations of the time. This result is general and applies for both infinite and short-range models. It follows simply from the assumption that a separation between short time scales and long time scales exists in the system, and from the constraints of causality and unitarity. Global-time reparametrization invariance suggests that the low action excitations in a spin-glass may be smoothly spatially varying time reparametrizations. These Goldstone modes may provide the basis for an analytic dynamical theory of short-range spin glasses.  相似文献   

5.
The relaxation behavior of complex-disordered systems, such as spin glasses, polymers, colloidal suspensions, structural glasses,and granular media, has not been clarified. Theoretical studies show that relaxation in these systems has a topological origin. In this paper, we focus on the rotational stretched exponential relaxation behavior in complex-disordered systems and introduce a simple phase space model to understand the mechanism of the non-exponential relaxation of these systems. By employing the Monte Carlo simulation method to the model, we obtain the rotational relaxation function as a function of temperature. We show that the relaxation function has a stretched exponential form under the critical temperature while it obeys the Debye law above the critical temperature.  相似文献   

6.
In the free-energy landscape picture of glassy systems, their slow dynamics is due to a complicated free-energy landscape with many local minima. We show that for a colloidal glassy material multiple paths can be taken through the free-energy landscape. The evolution of the nonergodicity parameter shows two distinct master curves that we identify as gels and glasses. We show that for a range of colloid concentrations, the transition to nonergodicity can occur in either direction (gel or glass), accompanied by "hesitations" between the two. Thus, colloidal gels and glasses are merely global free-energy minima in the same free-energy landscape, and the paths leading to these minima can be complicated.  相似文献   

7.
We study the dynamics of macroscopic observables such as the magnetization and the energy per degree of freedom in Ising spin models on random graphs of finite connectivity, with random bonds and/or heterogeneous degree distributions. To do so, we generalize existing versions of dynamical replica theory and cavity field techniques to systems with strongly disordered and locally treelike interactions. We illustrate our results via application to, e.g., +/-J spin glasses on random graphs and of the overlap in finite connectivity Sourlas codes. All results are tested against Monte Carlo simulations.  相似文献   

8.
Dynamical connectivity graphs, which describe dynamical transition rates between local energy minima of a system, can be displayed against the background of a disconnectivity graph which represents the energy landscape of the system. The resulting supergraph describes both dynamics and statics of the system in a unified coarse-grained sense. We give examples of the supergraphs for several two-dimensional spin and protein-related systems. We demonstrate that disordered ferromagnets have supergraphs akin to those of model proteins whereas spin glasses behave like random sequences of amino acids that fold badly.  相似文献   

9.
Recent neutron scattering measurements on spin glasses show that the dynamics of the spin systems can be best described in terms of wide spectral distribution of relaxation times evolving continuously with decreasing temperature but which is devoid of any critical behaviour, either speeding up or slowing down, at any finite temperature including the spin glass “freezing temperature Tsg”. It is argued that the latter temperature itself is dependent on the time constant of measurement for all spin glasses in general; the observed variation with frequency being less pronounced in some systems than others owing to some special characteristics of their spin dynamics such as, for example, the presence of parallel channels of rapid relaxation provided by the Korringa coupling in metallic spin glasses. The neutron scattering measurements presented here enable us to propose plausible forms for the density of relaxation times of the spin system and to show that the logarithmic frequency dependence of the freezing temperature observed in low frequency ac susceptibility measurements follows naturally from a uniform density of relaxation times at these frequencies.  相似文献   

10.
We introduce a set of theoretical ideas that form the basis for an analytical framework capable of describing nonequilibrium dynamics in glassy systems. We test the resulting scenario by comparing its predictions with numerical simulations of short-range spin glasses. Local fluctuations and responses are shown to be connected by a generalized local out-of-equilibrium fluctuation-dissipation relation. Scaling relationships are uncovered for the slow evolution of heterogeneities at all time scales.  相似文献   

11.
The magnetic phase transition in materials with exchange disorder (amorphous ferromagnets, spin glasses) is discussed. In the critical temperature range the behavior of amorphous ferromagnetic transition metal-metalloid glasses is found to be similar to the one derived for a three-dimensional homogeneous Heisenberg ferromagnet. The most prominent difference between disordered and homogeneous materials is manifested in a large temperature range of deviations from the mean field behavior beyond the critical region, as observed experimentally for the temperature dependence of the linear susceptibility of amorphous ferromagnets and of the nonlinear susceptibility of spin glasses. A molecular field theory with correlations in space and time is developed, which relates the deviations from the mean field behavior to the interplay between the temperature dependent thermal correlations in the spin system and the spatial fluctuations of the material. Application to dynamical processes (kinetic critical slowing down) is discussed.  相似文献   

12.
The Glauber dynamics of disordered spin models with multi-spin interactions on sparse random graphs (Bethe lattices) is investigated. Such models undergo a dynamical glass transition upon decreasing the temperature or increasing the degree of constrainedness. Our analysis is based upon a detailed study of large scale rearrangements which control the slow dynamics of the system close to the dynamical transition. Particular attention is devoted to the neighborhood of a zero temperature tricritical point. Both the approach and several key results are conjectured to be valid in a considerably more general context. PACS Numbers:75.50.Lk (Spin glasses), 64.70.Pf (Glass transitions), 89.20.Ff (Computer science  相似文献   

13.
We report on aging, rejuvenation and memory effects in the ferromagnetic phase of pure terbium. We have applied an experimental method specifically for investigating slow dynamics of spin glasses, because these effects cannot be interpreted as conventional diffusion after-effects. Results show that relaxation times of the magnetic response are widely distributed, and isothermal aging shifted the distribution towards longer durations. If the sample was heated/cooled after such isothermal aging, the relaxation times shortened as if aging was starting anew; the behavior resembles that in spin glasses. Uniform magnetization experiments indicate that, unlike rejuvenation in spin glasses, ferromagnetic correlations are not returned to disorder by thermal perturbations. In contrast with memory effects in spin glasses, the effects of isothermal aging cannot be recovered once these disappear, even if the system is returned to its initial temperature. The observed results can be explained as collective pinning of the domain walls for which the potential is given by a rugged temperature-sensitive energy landscape.  相似文献   

14.
We numerically address the issue of how the ground-state topology is reflected in the finite temperature dynamics of the +/-J Edwards-Anderson spin glass model. In this system a careful study of the ground-state configurations allows us to classify spins into two sets: solidary and nonsolidary spins. We show that these sets quantitatively account for the dynamical heterogeneities found in the mean flipping time distribution at finite low temperatures. The results highlight the relevance of taking into account the ground-state topology in the analysis of the finite temperature dynamics of spin glasses.  相似文献   

15.
The electronic states, charge dynamics, and spin dynamics in the antiferromagnetic metallic phase of iron-arsenide superconductors are investigated by mean-field calculations for a five-band Hubbard model. Taking into account the difference of observed magnetic moments between LaFeAsO (1111 system) and BaFe2As2 (122 system), we investigate the effect of the magnitude of the moments on band dispersion, optical conductivity, and dynamical spin susceptibility. We clarify how the magnitude affects on these quantities and predict different behaviors between the 1111 and 122 systems in the antiferromagnetic metallic phase.  相似文献   

16.
T. C. Lubensky 《Pramana》2005,64(5):727-742
This paper reviews the derivation of equations for slow dynamical processes in a variety of systems, including rotating rigid rotors, crystalline solids, isotropic and nematic elastomers, gels in an isotropic fluid background, and nematic liquid crystals. It presents a recent derivation of the Leslie-Ericksen equations for the dynamics of nematic liquid crystals that clarifies the nature of the nonhydrodynamic modes in these equations. As a final example of the phenomenological approach to slow dynamical processes, it discusses the dynamics of a driven nonequilibrium system: a two-dimensional gas of chiral ‘rattlebacks’ on a vibrating substrate.  相似文献   

17.
《Physica A》2005,351(1):14-21
We show the existence of intermittent dynamics in one of the simplest model of a glassy system: the two-state model, which has been used [Physica A 329 (2003) 357] to explain the origin of the violation of the fluctuation–dissipation theorem. The dynamics is analyzed through a Langevin equation for the evolution of the state of the system through its energy landscape. The results obtained concerning the violation factor and the non-Gaussian nature of the fluctuations are in good qualitative agreement with experiments measuring the effective temperature and the voltage fluctuations in gels and in polymer glasses. The method proposed can be useful to study the dynamics of other slow relaxation systems in which non-Gaussian fluctuations have been observed.  相似文献   

18.
Dynamical instabilities in fluid mechanics are responsible for a variety of important common phenomena, such as waves on the sea surface or Taylor vortices in Couette flow. In granular media dynamical instabilities have just begun to be discovered. Here we show by means of molecular dynamics simulation the existence of a new dynamical instability of a granular mixture under oscillating horizontal shear, which leads to the formation of a striped pattern where the components are segregated. We investigate the properties of such a Kelvin-Helmholtz-like instability and show how it is connected to pattern formation in granular flow and segregation.  相似文献   

19.
The present paper develops a Statistical Mechanics approach to the inherent states of glassy systems and granular materials by following the original ideas proposed by Edwards for granular media. We consider three lattice models (a diluted spin glass, a system of hard spheres under gravity and a hard-spheres binary mixture under gravity) introduced to describe glassy and granular systems. They are evolved using a “tap dynamics” analogous to that of experiments on granular media. We show that the asymptotic states reached in such a dynamics are not dependent on the particular sample history and are characterized by a few thermodynamical parameters. We assume that under stationarity these systems are distributed in their inherent states satisfying the principle of maximum entropy. This leads to a generalized Gibbs distribution characterized by new “thermodynamical” parameters, called “configurational temperatures” (related to Edwards compactivity for granular materials). Finally, we show by Monte Carlo calculations that the average of macroscopic quantities over the tap dynamics and over such distribution indeed coincide. In particular, in the diluted spin glass and in the system of hard spheres under gravity, the asymptotic states reached by the system are found to be described by a single “configurational temperature”. Whereas in the hard-spheres binary mixture under gravity the asymptotic states reached by the system are found to be described by two thermodynamic parameters, coinciding with the two configurational temperatures which characterize the distribution among the inherent states when the principle of maximum entropy is satisfied under the constraint that the energies of the two species are independently fixed. Received 19 March 2002 and Received in final form 14 June 2002  相似文献   

20.
We study numerically the Kawasaki dynamics of the 2D Ising model. At large time we recover the coarsening growth as l(c)(t) proportional t(1/3). At shorter time however, the system enters a metastable glassy regime that displays an extremely slow growth and nontrivial violations of the fluctuation-dissipation theorem similar to those observed in spin glasses: this is one of the simplest systems in which such violations occur. We also consider Potts models, where a similar behavior is observed, and the model of Shore and Sethna where the domain growth is also slow, but where violations of the fluctuation-dissipation theorem are trivial. We finally comment on these violations in the context of activated coarsening, and on similarities and differences with the glass transition phenomenology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号