Vol. 21, No. 2 Apr. 2007

文章编号: 1001-3555(2007)02-0122-06

Ni/Al₂O₃催化剂上甲烷三重整制合成气

姜洪涛1,2,李会泉1*,张 懿1

(1. 中国科学院过程工程研究所 绿色过程与工程实验室, 北京 100080; 2. 中国科学院研究生院 北京 100049)

摘 要:制备了负载于大孔容、高比表面的 γ -Al₂O₃载体上的 Ni 基催化剂. 采用固定床流动反应装置,考察了催化剂焙烧温度、反应条件(反应温度、压力、空速以及反应原料气组成)对甲烷三重整反应(TRM)制合成气的催化性能的影响. 结果表明,650 ℃焙烧的催化剂具有较好的稳定性. 在常压、850 ℃、10 080 h $^{-1}$ 、 $n(CH_4)/n(CO_2)/n(H_2O)/n(O_2) = 1/0.48/0.54/0.1$ 的条件下, CH_4 转化率达到 95.4%, CO_2 转化率达到 84.6%,在此条件下连续运行 9 h 未见活性下降. TRM 反应适宜于在高温、低压下进行,原料组成的变化不会影响 CH_4 转化率,但会影响 CO_2 转化率和产物合成气的 $n(H_2)/n(CO)$ 比.

关 键 词: 甲烷; 三重整; 合成气; Ni/Al₂O₃催化剂 中国分类号: TE64; O643.32 文献标识码: A

甲烷三重整反应是指二氧化碳重整甲烷 (CDR)、水蒸汽重整甲烷(SRM)和甲烷部分氧化 (POM)三个反应在同一个反应器内耦合进行的反 应,即同步利用三个反应来制合成气的反应[1].热 力学分析表明,通过甲烷三重整反应可以生产 n (H₂)/n(CO)比为1.0~2.0之间的合成气,适合于 下游化工利用. 甲烷三重整反应与单独的 CDR、 SRM 和 POM 反应相比^[2~4], 具有很大程度的优势, 如可以实现反应部分自供热,缓解过程积炭等. 三 重整反应中用于重整 CH4的原料中同时含有 CO,、 O,和 H,O 这三种组分,因此,利用三重整反应,可 以使含 CO2废气中的 CO2不经分离而直接原位利 用. 如化石燃料电厂中的烟气同时含有 CO_2 、 O_2 和 水蒸汽这三种成分,如果以电厂烟气和天然气为原 料,通过甲烷三重整反应制合成气,则既可以利用 烟气的余热,又可以将烟气中的二氧化碳不经分离 而直接加以利用,从而实现二氧化碳的减排与利用 有机的结合在一起[5]. 再如, 煤层气中含有一定的 CO₂, 如果辅以空气和少量水蒸汽, 利用三重整反 应制合成气,则可以使煤矿瓦斯得以有效利用[6].

我们以大孔容、高比表面 γ -Al₂O₃为载体,采用浸渍法制备了 Ni/Al₂O₃催化剂,并对其催化性能进行了评价,考察了焙烧温度对催化剂稳定性的影

响以及温度、压力、空速、原料组成等反应条件对 催化剂性能的影响.

1 实验部分

1.1 催化剂制备

在前期工作中 $^{[7-9]}$,我们采用 H_2O_2 沉淀铝酸 钠溶液法制备了大孔容、高比表面积 γ - Al_2O_3 . 本文采用所获的 γ - Al_2O_3 为载体,制备了 Ni/Al_2O_3 催化剂. 将制备好的载体在一定浓度的硝酸镍溶液中浸渍后,110 °C 干燥 12 h,一定的温度下焙烧 4h 即可制得 Ni/Al_2O_3 催化剂.

1.2 催化剂评价

催化剂活性考察在固定床流动反应装置上进行. 采用不锈钢反应器(内径 10 mm),催化剂装量为 1 g. 催化剂在常压、 H_2/Ar 混合气流中程序升温还原后,用 Ar 吹扫 10 min,然后引入一定配比的原料气在指定条件下进行反应. 原料水经平流泵计量后直接进入反应器,在反应器石英砂段充分汽化. 反应尾气经冷凝除水后,用 SHIMADZU-GC-14B 气相色谱仪在线分析,Ar 作载气,色谱柱为 TDX-01 碳分子筛,柱长 2.5 m,柱温 $85 \, ^{\circ}$,热导检测.

1.3 催化剂的表征

催化剂中 Ni 含量采用 ICP-OES (PerkinElmer

收稿日期: 2006-10-19; 修回日期: 2007-01-17.

基金项目: 国家自然科学基金重点项目(20436050)资助项目.

作者简介: 姜洪涛, 男, 生于1976年.

* E-mail: hqli@ home. ipe. ac. cn.

Optima-5300DV)测定. 在 PANalytical-X`pert Pro X 射线衍射仪上测定样品的 XRD(Cu/Kα 辐射, 40 kV, 30 mA). 在 Quantachrome-ASIMP 型全自动比表面分析仪上测定样品的比表面积和孔容. 样品的 H₂-TPR 图谱测定和化学吸附、脉冲再氧化实验在 CHEMBET3000 型化学吸附仪上进行.

2 结果与讨论

2.1 不同温度焙烧的催化剂物理性质

2.1.1 XRD 分析 图 1 所 示 为 新 鲜 催 化 剂 的

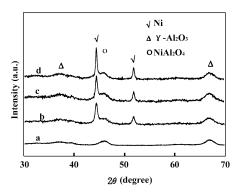


图 1 不同温度焙烧催化剂的 XRD 图谱

Fig. 1 XRD patterns of catalysts calcined at different temperature (a) γ -Al₂O₃; (b) 450 °C; (c) 650 °C; (d) 850 °C

XRD 图. γ -Al₂O₃、Ni 和 NiAl₂O₄尖晶石的衍射峰十分接近,以至于彼此之间相互重叠,因此,很难从 XRD 图上加以区分. 由图 1 可以看出,650 ℃以上 焙烧的催化剂经还原后,其 XRD 衍射峰中含有 NiAl₂O₄(2 θ = 66. 43°为 γ -Al₂O₃,2 θ = 65. 52°为 NiAl₂O₄)尖晶石的衍射峰. 这是金属与载体的强相 互作用造成的,这种强相互作用有助于提高金属的分散度. 但相互作用越强,催化剂越难还原,同时 过高的焙烧温度还会引起催化剂的烧结,使比表面 降低,孔结构发生变化.

2.1.2 催化剂的还原性 图 2 给出了不同温度下 焙烧的催化剂的 H_2 -TPR 图谱,表 1 列出了催化剂 的还原峰面积. 由图 2 及表 1 可以看出,NiO/Al₂O₃-650 和 NiO/Al₂O₃-850 的 H_2 -TPR 图谱中出现两个还原峰 T_L 和 T_H . 张玉红等 $^{[10]}$ 将负载于 γ -Al₂O₃上的 Ni 基催化剂中 NiO 的状态归属于三种类型:自由的 NiO、分散的 NiO 和固定的 NiO. 根据文献 [10],本文将还原峰归属于:a 曲线的峰归属于自由 NiO 和分散 NiO 的还原峰(两个峰合并成一个峰),b、c 曲线上的两个峰分别归属于分散的和固定的 NiO 的还原峰。由图 2 及表 1 可以看出,随着焙烧温度的升高,高温峰的出现位置向高温区移动,NiO/Al₂O₃-650 和 NiO/Al₂O₃-850 的还 原峰 面

表1催化剂的比表面、孔容和 TPR 还原特性

Table 1 Surface area and TPR reduction feature of catalysts calcined at different temperature

Calcined temperature	Ni loading	S_{BET}	$ m V_{P}^{\ b}$	L		Н			
(%)	(%)	(m^2/g)	(ml/g)	Max tem.	Area	Ratio	Max tem.	Area	Ratio
450	8.1	365	2.32	378	5 205	100	-	-	-
650	8.3	352	2.29	461	828	22.0	763	2 928	78.0
850	7.9	206	1.51	544	1 233	31.2	893	2 719	68.8

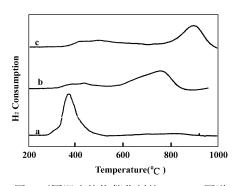


图 2 不同温度焙烧催化剂的 H₂-TPR 图谱 Fig. 2 H₂-TPR profiles of catalysts calcined at different temperature

(a) 450 °C; (b) 650 °C; (c) 850 °C

积(~4000)小于 NiO/Al₂O₃-450 的还原峰面积(>

5 000). 这表明,随着焙烧温度的升高, NiO 与载体的相互作用增强,使得催化剂更加难以还原.

由表 1 可以看出, 三种催化剂样品 Ni 含量基本相同, 随着焙烧温度的升高, 催化剂的比表面呈下降的趋势. 当焙烧温度超过 650 ℃时, 催化剂的比表面下降得很快.

2.1.3 催化剂的化学吸附和脉冲再氧化结果 通过催化剂的 H_2 化学吸附和 O_2 脉冲再氧化来测定催化剂中 N_i 的还原度及分散度. 金属分散度的计算是假设 H_2 的化学吸附量对应于样品表面上被还原的 N_i 原子数(按化学计量 $H/N_{is}=1$),脉冲再氧化中 O_2 的消耗量对应于样品中被还原的 N_i 原子总量(按化学计量 $N_i^0+1/2O_2=N_iO$).

表 2 给出了 H_2 的化学吸附和 O_2 脉冲再氧化实 验结果. 由表 2 可以看出, Ni/Al_2O_3 -450 的还原度 表 2 H_2 的化学吸附和 O_2 脉冲再氧化实验结果

Calcined	$\mathrm{H_2}$	O_2	Ni loading	NiO	Meta	Average	Active	
temperature	consumption	consumption	Ü	reducibility	dispersion	crystallite	surface	
(%)	$(\mu mol/g)$	$(\mu mol/g)$	(µmol/g)	(%)	(%)	size (nm)	area(m ² /g)	
450	47.8	627.1	1 380.1	90.9	7.6	13.1	3.6	
650	67.2	583.4	1 414.2	82.5	11.5	8.7	5.3	
850	39.9	556.8	1 346.1	82.7	7.2	14.0	3.1	

最高,但 Ni 的分散度低. 这说明,过低的焙烧温度导致金属与载体的相互作用不强,使得 NiO 易于被还原,但还原后分散性不好. Ni/Al₂O₃-650 和 Ni/Al₂O₃-850 的还原度相近,但前者分散度大于后者. 当焙烧温度达到 850℃时,催化剂的比表面积急剧下降,加剧了相邻 Ni 原子的团聚,导致 Ni 的分散度降低. Ni/Al₂O₃-650 与其它两个催化剂相比,具有较高的金属分散度和较小的金属粒子平均尺寸. 根据催化剂上暴露的活性金属的面积计算[11]得知,

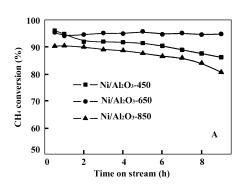


图 3-A 反应时间对甲烷转化率的影响

Fig. 3-A Time-on-stream profiles for CH_4 conversions in the tri-reforming at 850 °C under 0.1 MPa with space velocity of 10 080 h $^{-1}$ and feed composition

of $n(CH_4)/n(CO_2)/n(H_2O)/n(O_2) = 1/0.48/0.54/0.1$ 失引起. 在甲烷三重整反应中,活性中心的损失主要是由催化剂表面积炭覆盖 Ni 粒子表面而引起^[4]. 由表 2 可以看出,Ni/Al₂O₃-450 和 Ni/Al₂O₃-850 两种催化剂的金属 Ni 的平均粒径分别为 13.1 nm 和 14.0 nm,大于 Ni/Al₂O₃-650 的平均粒径(8.7 nm). 粒径较大的 Ni 粒子在反应中加剧了催化剂表面积炭,进而引起催化剂活性下降. 对于 Ni/Al₂O₃-650 催化剂,由于金属与载体相作用适宜,金属分散度较高,Ni 粒径较小,从而使其在反应进行的 50 h 内表现出了较好的稳定性. 因此,适宜的焙烧温度选择为 650 ℃,所以反应条件对催化剂的性能影响考

 Ni/Al_2O_3 -650 具有较高的活性比表面积,较高的活性比表面积有助于促进 CH_4 的转化 $[^{12}]$.

2.2 催化剂的稳定性

图 3-A 所示为反应时间对不同温度焙烧的催化剂性上甲烷转化率的影响,图 3-B 为 Ni/Al_2O_3 -650的稳定性. 由图 3-A 可以看出, Ni/Al_2O_3 -450和 Ni/Al_2O_3 -850的稳定性均不如 Ni/Al_2O_3 -650. 对于 Ni 基催化剂,其活性降低主要是由于活性中心的损

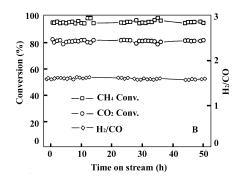


图 3-B Ni/Al₂O₃-650 催化剂的稳定性 Fig. 3-B Catalytic stability of Ni/Al₂O₃-

650 in the tri-reforming reaction condition: see Fig. 3-A

察在 Ni/Al₂O₃-650 催化剂上进行.

2.3 反应条件对催化剂性能的影响

2.3.1 反应温度对催化剂性能的影响 图 4 所示为反应温度对催化剂性能的影响。由图 4 可以看出,随着反应温度的升高, CH_4 和 CO_2 的转化率先是急剧升高,然后趋于平缓。TRM 反应从总体上来说是强吸热反应,当温度低于 800 $^{\circ}$ C 时,重整反应速率很慢,所以表现出来的 CH_4 和 CO_2 转化率较低。升高温度对反应有利,但温度过高会增加过程能耗,而且使甲烷裂解积炭加剧。 $n(H_2)/n(CO)$ 比能反映在有 O_2 和 H_2O 存在的情况下, CO_2 的转化能

力. $n(H_2)/n(CO)$ 比越低, 说明 CO_2 转化能

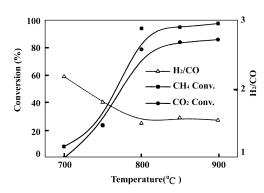


图 4 反应温度对催化剂性能的影响

Fig. 4 Effect of temperature on the reaction performance under 0.1 MPa with space velocity of 10 080 h $^{-1}$ and feed composition of

 $n(CH_4)/n(CO_2)/n(H_2O)/n(O_2) = 1/0.48/0.54/0.1$

力越高. 随着温度的升高,产物合成气的 H₂/CO 比 先是逐渐降低,然后趋于平缓.这可能是两种因素 引起的, 一是在温度低于800 ℃范围内逐渐升高 时, POM 反应(放热)占主导地位, CDR 和 SRM 反 应(均为强吸热)速率极慢, 所以转化的甲烷大部分 是通过 POM 转化掉的(通过 POM 生成合成气的 n(H₂)/n(CO)比理论值为 2.0). 当温度在 > 800 ℃ 范围内继续升高时,三重整反应中的三个主反应同 时发生,只要原料的组成不发生变化, $n(H_2)/n$ (CO)比基本不会在较大的范围内波动. 另一个原 因有可能是当反应温度在低于800℃范围内逐渐升 高时, 重整反应所生成的 H,由于发生式(1)所示的 反应而消耗掉,因此产物中 H₂的量减少、CO 的量 增加, 所以使 $n(H_s)/n(CO)$ 比呈下降趋势. 随着 反应温度的升高, POM、CDR 和 SRM 反应速率也 加快, 当温度达到 800 ℃以上时, TRM 反应和反应 (1)的反应速率达到了一个动态平衡, 使 $n(H_2)/n$ (CO)比基本保持不变.

$$H_2 + CO_2 = CO + H_2O$$
 (1)
2.3.2 反应压力对催化剂性能的影响 图 5 所示

为反应压力对催化剂性能的影响. 由图 5 可以看出,随着反应压力的升高, CH_4 和 CO_2 的转化率呈下降的趋势. TRM 所发生的三个主反应均是分子数增多的反应,因此升高压力对反应不利. 产物 n $(H_2)/n(CO)$ 比没有发生太大的变化,这主要是因为原料的组成没有变化,而反应压力的升高对三个主反应的抑制程度是一样的,结果导致产物的 n $(H_2)/n(CO)$ 比没有发生太大的变化.

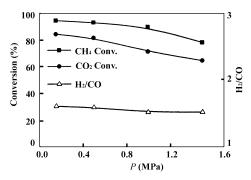


图 5 反应压力对催化剂性能的影响

Fig. 5 Effect of operating pressure on the reaction performance at 850 $^{\circ}\text{C}$ with space velocity of 10 080 h^{-1} and feed composition of

 $n(\text{CH}_4)/n(\text{CO}_2)/n(\text{H}_2\text{O})/n(\text{O}_2) = 1/0.48/0.54/0.1$

2.3.3 空速对催化剂性能的影响 图 6 所示为

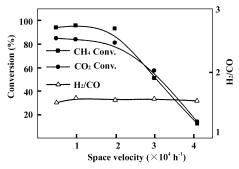


图 6 空速对催化剂性能的影响 Fig. 6 Effect of space velocity on the reaction performance at 850 °C under 0.1 MPa with feed composition of

 $n(CH_4)/n(CO_2)/n(H_2O)/n(O_2)=1/0.48/0.54/0.1$ 反应空速对催化剂性能的影响. 由图 6 可以看出,空速在 2×10^4 h⁻¹范围内, CH_4 和 CO_2 的转化率基本不随空速的增加而出现明显的变化. 而当空速在 2×10^4 h⁻¹以上继续增加时, CH_4 和 CO_2 的转化率出现明显的降低. POM 反应是快速反应,而 CDR 和 SRM 反应相对来说是慢速反应. 当空速在 2×10^4 h⁻¹范围内逐渐增加时,三个主反应所受的影响均不大,所以 CH_4 和 CO_2 转化率以及 $n(H_2)/n(CO)$ 比没有发生较大的波动,而当空速在 2×10^4 h⁻¹范围以上继续增加时,虽然反应速率较快的 POM 反应所受影响相对较小,但是 CDR 和 SRM 所受影响却明显的表现出来,因此,出现转化率下降的现象. CDR 和 SRM 两反应的级数相近^[2],这两个反应的反应速率受空速的影响程度相近,加之反应速

率较快的 POM 反应受空速影响较小, 所以, 总体上

表现出来产物的 $n(H_2)/n(CO)$ 比并没有随空速的增加而发生太大的变化.

2.3.4 原料组成对催化剂性能的影响 图 7 和图 8 所示为不同的原料组成对催化剂性能和产物的影

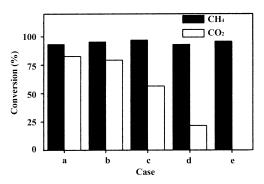


图 7 原料组成对催化剂性能的影响

Fig. 7 Effect of gas compositions on the reaction performance at 850 °C under 0.1 MPa with space velocity of 10 080 h $^{-1}$ ($CH_4/CO_2/H_2O/O_2$ =) Case a 1/0.9/0/0.1; Case b 1/0.45/0.45/0.1; Case c 1/0.4/0.4/0.2;

Case d 1/0.35/0.35/0.3; Case e 1/0/0.8/0.2

OD 2 P

图 8 原料组成对 H₂/CO 比的影响

Fig. 8 Effect of gas compositions on $\rm H_2/CO$ ratio at 850 °C under 1 atm with space velocity of 10 080 h $^{-1}$ Legends; see Fig. 7

响. 由图 7 和图 8 可以看出,在不同的原料组成下, CH_4 转化率没有发生较大变化,但 CO_2 转化率和产物的 $n(H_2)/n(CO)$ 比却随原料组成的变化而受到了较大的影响. 当原料中 $n(H_2O)/n(CO_2)$ 比例固定为 1、且 $n(H_2O+CO_2+O_2)/n(CH_4)=1$ 时,随着进料中 CO_2 含量的降低,产物合成气的 $n(H_2)/n(CO)$ 比逐渐升高. 这就是三重整的优点之一,即可能通过改变原料组成来调节产物的 $n(H_2)/n(CO)$ 比. 同 时,随着进料中 O_2 含量的升高, CO_2 的转化率逐渐降低。 CO_2 的转化率逐渐降低归结于两个因素:一方面是 O_2 与 CH_4 的部分氧化反应是快速反应,而 CO_2 与 CH_4 的重整反应是慢速反应;另一

方面 O_2 与 CH_4 (见式(2))发生完全氧化反应生成 CO_2 以及 O_2 与甲烷裂解产生的活泼炭物种或 CO 岐 化产生的活泼炭物种发生反应(见式(3))生成 CO_2 ,从而使得产物中 CO_2 含量升高,引起 CO_2 的总体表观转化率降低.

$$CH_4 + O_2 = CO_2 + 2H_2O$$
 $\triangle H = -880 \text{ kJ/mol}$ (2)
 $C + O_2 = CO_2$ $\triangle H = -393.7 \text{ kJ/mol}$ (3)

3 结 论

3.1 在大孔容、高比表面积 Al_2O_3 载体上负载了 Ni,并将其应用于甲烷三重整反应,反应结果表明,650℃下焙烧的催化剂具有良好的活性和稳定性. 在 850℃、0.1 MPa、10 080 h^{-1} 、 $n(CH_4)$: $n(CO_2)$: $n(H_2O)$: $n(O_2)$ = 1: 0.48: 0.54: 0.1 的条件下, CH_4 转化率达到 95.4%, CO_2 转化率达到 84.6%,在此条件下连续运行 50 h 未见活性下降.

3.2 反应条件会影响催化剂的性能, TRM 反应适宜在高温、低压下反应,原料组成的变化不会影响 CH_4 的转化率,但会影响 CO_2 的转化率和产物的 $n(H_2)/n(CO)$ 比, CO_2 的转化率随原料中 O_2 的含量升高而下降,产物的 $n(H_2)/n(CO)$ 比随原料中 CO_2 含量的降低而升高.

参考文献:

- [1] Song C S. Chem. Innovation [J], 2001, 31(1): 21 ~ 26
- [2] Dong Xin-fa (董新法), Ji Tao (姬 涛), Lin Weiming(林维明). J. Mol. Catal. (分子催化) [J], 2004, **18**(4); 261~265
- [3] Li Ning (李 宁), Luo Lai-tao (罗来涛). *J. Mol. Catal.* (分子催化) [J], 2005, **19**(5): 366~370
- [4] Xu Zhan-lin (徐占林), Bi Ying-li (毕颖丽), Zhen Kai-ji (甄开吉). *Prog. In Chem.* (化学进展) [J], 2000, **12**(2): 121~130
- [5] Song C S, W Pan. Catal. Today[J], 2004, 98: 463 ~
- [6] Xu Dongyan, Li Wenzhao, Ge Qingjie, et al. Fuel Processing Technology[J], 2005, 86(9): 995 ~1 006
- [7] Cai Weiquan, Li Huiquan, Zhang Yi. *Materials Chemistry and Physics*[J], 2006, **96**(1): 136 ~ 139
- [8] Cai Wei-quan (蔡卫权), Li Hui-quan (李会泉), Zhang Yi (张 懿). J. Chem. Ind. Eng. (化工学报) [J], 2004, **1 155**(12): 1 976~1 981
- [9] Cai Wei-quan (蔡卫权), Li Hui-quan (李会泉), Zhang Yi (张 懿). Acta Phys. -Chim. Sin. (物理化

学学报)[J], 2004, **20**(7): 717~721

- [10] Zhang Yu-hong (张玉红), Xiong Guo-xing (熊国兴), Sheng Shi-shan (盛世善), et al. Acta Phys. -Chim. Sin. (物理化学学报) [J], 1999, **15**(8): 735~741
- [11] Smith J S, Thrower P A, Vannice M A. J. Catal. [J], 1981, **68**: 270 ~ 285
- [12] Joelmir A C D, José M A. Journal of Power Sources.
 [J], 2004, 130: 106 ~ 110

Tri-reforming of Methane to Syngas over Ni/ Al₂ O₃

JIANG Hong-tao^{1, 2}, LI Hui-quan^{1*}, ZHANG Yi¹

- (1. Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100080, China;
 - 2. Graduate University of Chinese Academy of Science, Beijing 100049, China)

Abstact: Ni was dispersed on γ -Al₂O₃ with large pore volume and high specific surface area by using wet impregnation method. The catalytic performances of Ni/Al₂O₃ in tri-reforming of methane to syngas (TRM) under different reaction conditions such as temperature, pressure and space velocity, and the feedstock composition were studied in a fix-bed reactor. The effect of calcination temperature on stability of catalysts was also investigated. The results showed that catalyst calcined at 650 °C exhibited higher stability than catalysts calcined at other temperatures. 95.4% of CH₄ conversion and 84.6% of CO₂ conversion were achieved at 850 °C under atmospheric pressure and with feed composition of $n(\text{CH}_4)/n(\text{CO}_2)/n(\text{H}_2\text{O})/n(\text{O}_2) = 1/0$. 48/0. 54/0. 1 and space velocity of 10 080 h⁻¹. High temperature and low pressure are favorable to TRM reaction. Feed compositions affect only on CO₂ conversion and $n(\text{H}_2)/n(\text{CO})$ ratio of syngas, whereas not on CH₄ conversion.

Key words: Methane; Tri-reforming; Syngas; Ni/Al₂O₃ catalyst