文章编号:1001-3555(2016)01-0037-09

表面酸性对 Ni/SiO₂ -Al₂O₃ 催化剂催化 1,4-丁炔二醇 高压加氢性能的影响

郭江渊,李海涛*,张智隆,王志鹏,杨国峰,赵永祥* (山西大学 化学化工学院 精细化学品教育部工程研究中心,山西太原 030006)

摘要:通过浸渍法分别在 Al(OH)₃和 Al₂O₃中引入 SiO₂,经焙烧后制备具有不同表面酸性质的 SiO₂-Al₂O₃载体,以上述 SiO₂-Al₂O₃及 Al₂O₃为载体,采用等体积浸渍法制备 Ni 负载量为 15%的 Ni/SiO₂-Al₂O₃催化剂(分别为 Ni/SA-1和 Ni/SA-2)与 Ni/Al₂O₃.采用 N₂物理吸附、Py-FTIR、NH₃-TPD、XRD、H₂-TPR 和 H₂-TPD 手段对催化剂进 行表征,考察了表面酸性质对催化剂催化 1,4-丁炔二醇高压加氢性能的影响.结果表明,SiO₂引入方式会影响 Ni/Al₂O₃催化剂表面酸性质及活性组分 Ni 在载体表面的分散行为.在 Al(OH)₃中引入 SiO₂时,Ni/SA-1 催化剂 不仅活性组分具有高分散度,而且表面具有丰富的 L 酸位点,L 酸位点与 Ni 活性中心协同作用有效提高了催化剂 的高压加氢性能.而在 Al₂O₃中直接引入 SiO₂时,SiO₂覆盖了 Al₂O₃表面的 L 酸位点,催化剂活性组分分散度较 低,表现出低的加氢活性.

关键字: SiO2 引入方式;酸性;羰基吸附活化;加氢

中图分类号: 0643.3 文献标志码: A

1,4-丁二醇(1,4-butanediol,简称 BDO)是一种 重要的基础有机化工原料,向下游延伸可制备 γ-丁 内酯(GBL)、四氢呋喃(THF)、聚四亚甲基乙二醇 醚(PTMEG)、聚对苯二甲酸丁二醇酯(PBT)、2-吡 咯烷酮和 N-甲基吡咯烷酮等一系列高附加值化学 品,它们广泛应用于工程塑料、纺织、农药、医药 和化妆品等领域^[1-4].以煤基初级化学品甲醛、乙 炔为原料的炔醛法工艺合成 BDO,是经济效益最显 著的一条生产线路,世界上 80% 的 BDO 采用该工 艺生产.该法以甲醛、乙炔为原料合成 1,4-丁炔二 醇,后经低压、高压两段加氢制备 BDO.高压加氢 是控制产品收率与品质的重要过程,其主要目的在 于将 1,4-丁炔二醇低压加氢中产生的副产物如丁 烯二醇、羟基丁醛等副产物加氢转化为目标产物, 提高 BDO 的收率与产品质量^[5-6].

高压加氢通常采用 Ni 基催化剂,专利文献中 曾报道了采用 Al₂O₃、SiO₂、活性炭、硅藻土等为载

体的负载型 Ni 基催化剂以及使用 Mo、Cu、Cr 等改 性的 Raney-Ni 催化剂体系, 工业中应用最为广泛的 是 Ni/Al₂O₃ 催化剂及含 Al 的 Raney-Ni 催化 剂^[7-10]. 前期工作中, 我们开展了合成 BDO 高压加 氢催化剂产业化开发,对 Ni/Al,O,催化剂结构、织 构参数与其催化性能间构效关系进行了探讨. 研究 发现,催化剂孔结构是影响催化剂反应性能的重要 因素,当 Al₂O₃ 具有较多大孔(>18 nm)和小孔(<4 nm)时,有利于活性位的暴露和副产物的脱除,使 催化剂表现出高的稳定性[11-12].而对于加氢反应 过程,活性组分存在状态是影响催化剂反应性能的 首要因素,研究发现通过在 Al₂O₃ 表面适量引入 C, 既可以保证 Ni 具有较高分散度,同时可降低金属-载体间的相互作用,提高催化剂的还原性能,避免 高温还原导致活性组分 Ni 迁移聚集, 使催化剂表 现出高的加氢活性[13-14].基于上述认识,本课题组 开发了具有特定孔道结构(孔容为0.93 mL/g)与孔

收稿日期: 2015-11-26;修回日期: 2015-12-20.

基金项目:山西省煤基重点科技攻关项目(MH2014-06);山西省自然科学基金项目(2013011010-5);高等学校博士学科点专项科研基金项 目(20131401120005)(Supported by the Key Coal Technologies R&D Program of Shanxi Province (MH2014-06), the Natural Science Foundation of Shanxi Province (2013011010-5) and the Specialized Research Fundation for the Doctoral Program of Higher Education (20131401120005)).

作者简介:郭江渊(1991-), 女, 硕士研究生(Guo Jiang-yuan(1991-), Female, Master).

* 通讯联系人, E-mail: htli@sxu.edu.cn, 13603536381; E-mail: yxzhao@sxu.edu.cn, 0351-7011587.

径分布(>100 nm 的孔占 93% 以上)的 Al₂O₃ 载体, 并通过活性组分引入方式的创新获得了高负载、高 分散的催化剂,成功应用于国内炔醛法合成 BDO 工业装置^[15-16].

近年来的研究表明,载体也是影响催化剂加氢 性能的重要因素,其不仅通过改变活性组分的分散 度、电子组态、几何构型来影响催化剂的加氢性 能[17-20],在许多特定的反应中,载体甚至直接参与 官能团的吸附活化,从而显著改变催化剂的活性和 选择性, 尤其是在C = O双键的加氢过程中. 在醛 类物质如巴豆醛、糠醛、柠檬醛等的选择性加氢 中,研究者发现可还原载体(如TiO2、CeO2等)会 失去电子产生一些缺电子的 Lewis 酸位, 有利 于C=O双键中O原子吸附,促进活性中心对不 饱和键加氢的选择性^[21-24].可以推测,在合成 BDO 高压反应过程中, Ni/γ-Al₂O₃催化剂中以L酸为主 的 Al₂O₃ 载体表面酸性质的变化,可能显著影响催 化剂的加氢性能, 通过对载体表面酸性质的精细调 控将有望进一步提高催化剂的加氢性能,进而开发 出新一代合成 BDO 的加氢催化剂, 但关于高压加 氢中催化剂表面酸性质与加氢性能间关联的相关研 究未见报道.

我们通过在 Al₂O₃ 载体中引入 SiO₂,并负载活 性组分 Ni 后得到具有不同表面酸性质的 Ni/γ-Al₂O₃ 催化剂,结合催化剂的表征及评价结果,研 究 Ni/γ-Al₂O₃ 催化剂的表面酸性质与合成 BDO 高 压加氢性能间的内在关系,为制备新型高性能合成 BDO 高压加氢催化剂提供理论指导.

1 实验部分

1.1 催化剂的制备

载体的制备: 以Al(OH)₃(比表面积 290 m²/g, 孔容 0. 62 cm³/g)为铝源,正硅酸乙酯的乙醇溶液 为浸渍液,采用等体积浸渍法,经 120 ℃干燥、500 ℃焙烧,制备硅含量为 7%的 SiO₂-Al₂O₃ 载体,标 记为 SA-1;将 Al(OH)₃ 经 500 ℃焙烧得到 γ -Al₂O₃ 载体;将上述 γ -Al₂O₃ 载体浸渍正硅酸乙酯的乙醇 溶液,干燥焙烧得到硅含量为 7%的 SiO₂-Al₂O₃ 载 体,标记为 SA-2.

催化剂的制备:以硝酸镍水溶液为浸渍液,该 γ-Al₂O₃和SiO₂-Al₂O₃为载体,采用等体积浸渍法, 浸渍后的样品经120℃干燥、500℃焙烧、550℃ H₂还原,得到Ni负载量15%的催化剂,标记为

1.2 催化剂性能评价

催化剂加氢评价使用大连第四仪表厂的 FYX-1 型高压釜.催化剂用量 0.3g(粒径 0.45~0.28 mm),反应原料 40 mL,压力 4 MPa,温度 150 ℃, 转速 400 r/min,反应时间 3 h.反应原料为经低压 预加氢后的 1,4-丁二醇粗液.采用国标 GB 6324.5-86^[25]法测定评价物料中不饱和化合物的羰基值, 加氢后反应液羰基值越小,表明催化剂的活性 越高.

1.3 催化剂的表征

 N_2 物理吸附表征使用 Micrometritics ASAP 2020 型自动物理吸附仪,样品 90 ℃下真空脱气预 处理 10 h, -196 ℃下 N_2 的吸附测定,由 BET 方程 计算比表面积.

Py-FTIR 表征使用大连化物所真空吸附原位红 外表征系统. 将 20 mg 样品压成的自支撑片置于原 位反应池中, 120 ℃真空预处理 90 min, 室温下吸 附吡啶, 100 ℃真空处理 30 min, 降至室温后采用 Bruker Tensor 27 傅立叶红外光谱仪记录谱图. 光谱 仪扫描范围 600 ~4 000 cm⁻¹, 分辨率 4 cm⁻¹, 扫描 次数 32.

NH₃ 程序升温脱附(NH₃-TPD)采用天津 先权化学吸附仪及操作,将一定量(粒径 0.45 ~ 0.28 mm)的样品置于石英管中,通入 He 载气 (30 mL/min)吹扫至基线平稳,100 ℃吸附 NH₃, 以 10 ℃/min 速率程序升温至 700 ℃,检测 NH₃ 脱 附量.

H₂ 程序升温还原(H₂-TPR)也使用天津先权化 学吸附仪, 通入 N₂-H₂ 混合气, 以 10 ℃/min 速率 程序升温至 700 ℃, 使用 TCD 检测耗氢量.

XRD 测试采用 Bruker D8 Advance 型 X 射线衍 射仪,使用 Cu 靶, Kα 辐射,管电压 40 kV,管电流 40 mA,扫描范围 10°~80°,扫描速率 6°/min. 采 用 Ni(200)晶面衍射峰的半高宽,利用 Scherrer 公 式计算 Ni 晶粒尺寸.

 H_2 -TPD 表征使用 Micrometritics AutochemII 2920 型化学吸附仪.取0.1g样品置于U型石英管 中, H_2 气氛下550℃还原1h,高纯Ar条件下560 ℃吹扫1h后降至120℃,之后吸附 H_2 1h.以Ar 为载气进行程序升温脱附,升温速率为10℃/min, 载气流速20 mL/min.

2 结果与讨论

2.1 载体及催化剂的 N₂ 物理吸附表征

各载体及催化剂的 N₂ 吸附-脱附等温曲线示于 图 1,可以看出,所有载体及催化剂均表现出 IV 型 吸附等温曲线,且具有 H1 型迟滞环,表明所有样 品均为介孔结构.载体 N₂ 吸附-脱附等温曲线相 似,说明无论以何种方式引入 SiO₂,其孔道结构未 发生明显改变.表1给出了3种载体及催化剂的织 构参数.由表中数据可以看出,与Al₂O₃相比,SA-1和SA-2载体的比表面积、孔容和孔径均有不同程度的减小,说明SiO₂的引入会部分堵塞Al₂O₃孔道结构.对比SA-1和SA-2两种载体可以发现,SA-1具有更高的比表面,这归因于在Al(OH)₃中引入SiO₂,在一定程度上抑制了焙烧过程中Al₂O₃颗粒的聚集长大^[26],表现出高的比表面积.与载体相比,引入活性组分后3种催化剂的比表面、孔容进一步减小,表明NiO物种对孔道也有堵塞作用.

Fig. 1 N_2 adsorption-desorption isotherms of supports and catalysts

(1) Al_2O_3 ; (2) SA-1; (3) SA-2; (4) Ni/Al_2O_3 ; (5) Ni/SA-1; (6) Ni/SA-2

表1载体及催化剂的织构参数

Table 1	Textural	properties	of	supports ^a	and	catalysts
---------	----------	------------	----	-----------------------	-----	-----------

Samples	$A_{\rm BET}$ /(m ² · g ⁻¹)	V_{total} /(cm ³ · g ⁻¹)	Pore Size /nm	Acid amount $/(\text{mmol} \cdot \text{g}^{-1})$	Average Ni Crystalline Size/nm	H_2 consumption /(cm ³ · g ⁻¹ $)$
Ni/Al ₂ O ₃	206(274)	0.67(0.88)	13.1(12.8)	0.31(0.49)	14.1	2.6
Ni/SA-1	175(269)	0.49(0.72)	11.3(12.2)	0.41(0.65)	16.6	2.6
Ni/SA-2	154(249)	0.45(0.76)	11.8(10.8)	0.26(0.38)	24.5	1.8

a. supports parameters shown in parentheses

2.2 载体及催化剂的酸性表征

图 2(a)是不同载体的 Py-IR 图,可以看出 3 种 载体在 1 615、1 577 和 1 450 cm⁻¹ 处都呈现出明显 的吡啶分子与 L 酸中心络合成键(PYL)的特征吸收 峰^[27];SA-1 和 SA-2 载体在 1 641 和 1 542 cm⁻¹ 处 都出现较弱的吡啶分子与 B 酸中心形成的 PYH⁺特 征吸收峰.表明 3 种载体的酸性中心均以 L 酸为 主,而含 SiO₂ 的 SA-1 和 SA-2 载体中出现少量 B 酸 中心. 由图 2(b)的 NH₃-TPD 图可知,所有载体均 在 100~450 °C 间出现宽化的 NH₃ 脱附峰,峰形相 似,峰顶温度均出现在 250 °C 左右,说明 SiO₂ 的引 入对载体的酸强度分布影响不大,3 种载体均以弱 酸和中强酸为主.计算得到的 3 种载体的总酸量示 于表 1,对比载体的总酸量发现,不同 SiO₂ 引入方 式对载体表面酸量的影响表现出较大差异.与 Al₂O₃ 相比, SA-2 的酸量减小,而 SA-1 的酸量则明 显增加.

Al₂O₃ 中 L 酸中心来源于不饱和配位的 Al³⁺, 当在 Al₂O₃ 表面引入 SiO₂ 时,暴露的 SiO₂ 层仅有 少量形成 Al-O-Si-OH 结构,表现为 B 酸中心,大部 分 SiO₂ 以多层或聚集形式存在于 Al₂O₃ 表面,几乎 没有酸性,且会覆盖一部分 L 酸位点,导致 SA-2 的 酸量减小.而在 Al(OH)₃ 中引入 SiO₂ 后,由于 Al(OH)₃ 表面发达的 Al-OH,促使载体体相内形成 分散的 Al-O-Si 结构,使不饱和配位的 Al 增多^[28], 故 SA-1 酸量明显增多.暴露的 Al-O-Si 结构中 Si-OH 的存在使其产生部分 B 酸中心.

负载活性组分后,各催化剂的 Py-IR 图及 NH₃-TPD 图示于图 3,由图 3(a)显示,各催化剂仅存在 L 酸中心,来自载体表面不饱和配位的 Al³⁺.图 3 (b)的 NH₃-TPD 结果表明 3 种催化剂的酸强度分布 仍以弱酸和中强酸为主,酸量变化与载体变化规律 一致(示于表 1),即 Ni/SA-1> Ni/Al₂O₃> Ni/SA-2. 这说明催化剂的表面酸性质变化主要是由载体中 SiO₂ 引入方式不同引起的.

图 3 催化剂的 Py-IR 图和 NH₃-TPD 图 Fig. 3 Py-FTIR spectra and NH₃-TPD profiles of catalysts (1) Ni/Al₂O₃; (2) Ni/SA-1; (3) Ni/SA-2

2.3 H₂-TPR 表征

不同催化剂的 H₂-TPR 图及分峰拟合结果示于 图 4 及表 2. 由图 4 可以看出 3 种催化剂的还原耗 氢峰均由 3 个彼此相连的还原峰组成,表明催化剂 中 NiO 物种以 3 种形态存在. Ni/Al₂O₃ 催化剂 3 个 还原峰的峰顶温度分别为 370、450 和 560 ℃,370 ℃低温还原峰 I 对应载体表面体相 NiO 的还原,而 450 和 560℃的还原峰 II 与 III 分别对应与 Al₂O₃ 具 有中强及强相互作用 NiO 物种的还原.表 2 的分峰 拟合结果显示,该催化剂中还原峰 I、II 和 III 对应 的 NiO 物种分别占到总体 NiO 的 26.4%、13.1% 和 60.5%,说明 Ni/Al₂O₃ 催化剂中 NiO 主要以与载

(1) Ni/Al_2O_3 ; (2) Ni/SA-1; (3) Ni/SA-2

体具有强相互作用的形态存在. Ni/SA-13个还原 峰峰顶温度与 Ni/Al₂O₃ 一致,但各峰的面积比例 明显变化.峰Ⅱ的峰面积比例由 Ni/Al₂O₃的 13.1%增加至 24.3%,而峰Ⅲ的峰面积比例则减小 为48.4%,表明 Ni/SA-1样品中与载体具有中强相 互作用的 NiO 物种明显增加,而与载体有强相互作 用的 NiO 物种有所减少. Ni/SA-2 3 个还原峰的峰 顶温度分别为 370、450 和 520 ℃,与 Ni/Al₂O₃和 Ni/SA-1 催化剂相比,峰 I 占的比例稍有增加,峰 Ⅱ比例增加至 34.3%,而峰 Ⅲ则下降至 35.1%, 同时峰Ⅲ的峰顶温度明显向低温区迁移.表明 Ni/SA-2 催化剂中与载体具有中强相互作用的 NiO 物种进一步增加,而与载体有强相互作用的 NiO 物 种减少.

表 2 催化剂的 H ₂ -TPR 图分峰拟合结果	
ble 2 Fitting results of H TPR profiles of estal	X 76

Samples	Ι		П		Ш	
	Peak temperature ∕℃	Peak area ratio/%	Peak temperature ∕℃	Peak area ratio/%	Peak temperature ∕℃	Peak area ratio/%
Ni/Al ₂ O ₃	370	26.4	450	13.1	560	60.5
Ni/SA-1	370	27.3	450	24.3	560	48.4
Ni/SA-2	370	30.6	450	34.3	520	35.1

对于 Ni/Al₂O₃ 催化剂而言, NiO 往往进入 Al₂O₃ 载体表面的四面体和八面体空穴^[29-30],即与 不饱和配位的 Al³⁺作用,从而使 NiO 和 Al₂O₃ 间表 现出强的相互作用. 而 SA-1 载体中形成大量的 Al-O-Si 结构,表面暴露的 Al³⁺化学环境发生变化,使 NiO 与载体间相互作用减弱,这是造成 TPR 中与载 体有中强相互作用的 NiO 物种增加,强相互作用的 NiO 物种减少的主要原因. 与 Ni/SA-1 相比, Ni/ SA-2 是在 Al₂O₃ 载体上直接引入 SiO₂,催化剂表面 部分四面体和八面体空位被 SiO₂ 占据,基于 NiO 与 SiO₂ 间较弱的相互作用,使 NiO 与载体间明显 减弱, TPR 表现出有强相互作用的 NiO 物种增加.

2.4 催化剂 XRD 表征

还原后催化剂的 XRD 图示于图 5, 所有催化剂 在 2θ = 37°、46°和 66. 5°均出现弥散的 γ -Al₂O₃ 特 征衍射峰, 2θ = 44. 5°、51. 7°和 76. 4°处出现金 属 Ni 的特征衍射峰. Ni/Al₂O₃ 和 Ni/SA-1 样品中

(1) Ni/Al_2O_3 ; (2) Ni/SA-1; (3) Ni/SA-2

金属 Ni 的特征衍射峰强度较弱, Ni/SA-2 中金属 Ni 的特征衍射峰峰形锐化, 表明 Ni/Al₂O₃ 和 Ni/SA-1 催化剂的活性组分经还原后处于高度分散状态, 而

Ni/SA-2 中金属 Ni 晶型较为完整. 经计算 Ni/ Al₂O₃、Ni/SA-1和 Ni/SA-23种催化剂的 Ni 晶粒尺 寸分别为 14.1、16.6和 24.5 nm(示于表 2.1). 结 合前面的 TPR 表征, Ni/Al₂O₃和 Ni/SA-1 样品中 NiO 与载体间具有较强相互作用,还原过程中起到 了抑制 Ni 迁移聚集的作用,从而使活性组分保持 高分散状态. 而 Ni/SA-2 样品中 NiO 与载体间相互 作用相对较弱,造成还原过程中 Ni 物种迁移聚集, 呈现出较大的晶粒尺寸.

2.5 H₂-TPD 表征

还原后催化剂的 H₂-TPD 谱图如图 6 所示,所 有催化剂在 110~500 ℃间表现出宽化的氢脱附峰,

图 6 还原后催化剂的 H₂-TPD 图 Fig. 6 H₂-TPD profiles of catalysts after reduction (1) Ni/Al₂O₃; (2) Ni/SA-1; (3) Ni/SA-2

该氢气脱附峰可归属为金属 Ni 表面暴露的活性位 点吸附 H₂ 的脱附. 计算得到的各催化剂表面 H₂ 脱 附量列于表 1 中. Ni/Al₂O₃ 与 Ni/SA-1 的 H₂ 脱附 量均为 2.6 cm³/g, 明显高于 Ni/SA-2 催化剂的 1.8 cm³/g. 当金属负载量相同时,金属的晶粒尺寸越 小,金属的活性比表面越大,提供的活化吸附氢位 点越多^[31]. Ni/Al₂O₃ 与 Ni/SA-1 催化剂高的 H₂ 脱 附量与 Ni/SA-2 低的 H₂ 脱附量分别对应高分散的 Ni 物种与聚集态的 Ni 物种,这与前面的 XRD、 TPR 表征结果一致.

2.6 催化剂活性评价

图 7 催化剂的活性评价结果显示,加氢后产物 的羰基值均明显下降,Ni/Al₂O₃ 催化剂的产物羰基 值由原料液的 17.49 mg(KOH) · g⁻¹ 降低为 5.57 mg(KOH) · g⁻¹,而 Ni/SA-2 催化剂的羰基值为

(4) Raw materials

Reaction conditions:0.3 g catalyst, 40 mL raw materials, 400 r/min, P=4 MPa. T=150 $^\circ\!\mathrm{C}$, t=3 h

9.08 mg(KOH) ·g⁻¹,其加氢活性明显低于 Ni/ Al₂O₃ 催化剂.结合前面的 XRD、H₂-TPD 表征结果 推测:这是由于在 Al₂O₃ 表面引入 SiO₂,使 Ni 分散 度降低,晶粒尺寸增加,表面吸附活化 H 位点较少 所引起的.然而,对 Ni/SA-1 而言,反应后产物的 羰基值由原料液的 17.49 mg(KOH) ·g⁻¹ 降低为 2.64 mg(KOH) ·g⁻¹,加氢活性明显高于 Ni/Al₂O₃. 由前面的 XRD、TPR 和 H₂-TPD 表征可知,两种催 化剂上 Ni 物种具有相似的分散度及表面活化 H 位 点数,Ni/SA-1 催化剂高压加氢活性更高显然不能 用传统意义上的活性组分分散度越高,加氢活性越 高来解释.推测在 BDO 高压加氢的反应中活性组 分 Ni 吸附活化 H₂ 的能力不是影响加氢活性的唯一 因素.

前已述及,高压加氢的原料液中包括多种不饱 和羰基化合物,催化剂对不饱和化合物中 C = O 的吸附活化能力也直接影响加氢效果.许多研究认 为负载型催化剂的载体具有一定缺陷位或酸碱中心 时会影响催化剂羰基加氢性能.例如载体被部分还 原形成缺电子的 L 酸位有利于羰基中 O 原子吸附; 载体能与活性组分形成合金使活性组分带有部分负 电荷,从而有利于羰基中 C 原子吸附^[32-34]. Py-IR 和 NH₃-TPD 表征结果表明:与 Ni/Al₂O₃ 相比, Ni/ SA-1 催化剂较大的酸量提供了更多的 L 酸酸性位 点^[26],可促进羰基氧的活化吸附,L酸中心与活性 组分 Ni 协同促进羰基加氢,这可能是 Ni/SA-1 具 有更高加氢活性的原因.对于 Ni/SA-2 而言,引入 SiO₂ 覆盖部分 Al₂O₃ 表面的酸性位点,减少了催化 剂表面 C = O 的吸附活化位点,也是造成 Ni/SA-2 催化剂加氢活性低的另一个原因.

3 结论

在炔醛法合成 BDO 高压加氢反应过程中,不 仅催化剂的活性组分 Ni 存在状态对其加氢性能有 较大影响,催化剂的表面酸性质也同样影响高压加 氢反应活性.在 Al(OH)₃中引入 SiO₂ 制备的载体 可以使活性组分 Ni 保持高分散的同时,提供丰富 的 L 酸位点,L 酸位点通过接受羰基氧的孤对电 子,促进 C = O 在催化剂表面的活化吸附,L 酸中 心与吸附活化 H 的 Ni 活性中心协同作用使 Ni/SA-1 催化剂表现出高的催化加氢性能.

参考文献:

- [1] Bai Geng-xin(白庚辛). 1,4-Butynediol, tetrahydrofuran and their derivatuves(1,4-丁二醇、四氢呋喃及其工业 衍生物)[M]. Beijing: Chemical Industry Press (北京 化学工业出版社), 2013, 10.
- [2] Li H T, Zhao Y X, Gao C G, et al. Study on deactivation of Ni/Al₂O₃ catalyst for liquid phase hydrogenation of crude 1,4-butanediol aqueous solution [J]. Chem Eng. J, 2012, 181(1): 501-507.
- [3] Kang Li-na(亢丽娜), Guo Jiang-yuan(郭江渊), Zhang Hong-xi(张鸿喜), et al. Activity and stability of Ni/SiO₂-Al₂O₃ catalyst in the aqueous phase hydrogenation system(Ni/SiO₂-Al₂O₃ 催化剂在水相加氢体系中的活 性及稳定性研究)[J]. J Mol Catal(China)(分子催化), 2014, 28(2): 119-125.
- [4] Xu Ya-lin(徐亚琳), Li Hai-tao(李海涛), Zhang Jianping(张建平), et al. Effect of hydrothermal treatment under H₂atmosphere on the structure and performance of Ni/γ-Al₂O₃ Catalyst(临氢水热处理对 Ni/γ-Al₂O₃ 催化 剂结构和性能的影响) [J]. J Mol Catal(China)(分 子催化), 2010, 24(2): 112-116.
- [5] Li H T, Xu Y L, Gao C G, et al. Structural and textural evolution of Ni/γ-Al₂O₃ catalyst under hydrothermal conditions [J]. Catal Today, 2010, 158(3): 475-480.
- [6] Ren Xiao-jun(任晓军), HuYan(胡燕), Zhang Xiaolin(章小林), et al. Study of Ni/Al₂O₃ catalyst for the second stage hydrogenation on 1,4-butynediol(1,4-丁炔)

二醇二段加氢 Ni/Al₂O₃ 催化剂的研究) [J]. Chem Eng Des Commun (化工设计通讯), 2014, **40**(2): 84-88.

- [7] Wetherill F, US [P], 3, 449, 445, 1969.
- [8] Hoffmann K, Chaudeur N, Fritz P, et al. CN [P]. (中 国专利) 1172792, 1998.
- [9] Hort E, US [P], 2, 967, 893, 1961.
- [10] a. Turner F, US [P], 2, 948, 678, 1960.
 b. Zhao Yuan-yuan (赵媛媛), Duan Zhen-wei (段振伟), Qi Sheng-jie (祁胜杰), et al. Synthesis and performance of hydro-desulfurization (HDS) catalyst Ni/Al₂O₃ with Ni-Al hydrotalcite-like compounds as precursors(Ni-Al 类水滑石的制备及其 Ni/Al₂O₃ 加氢脱硫研究) [J]. J Mol Catal (China) (分子催化), 2014, 28(5): 418-426.

c. Shi Guo-jun(石国军), Jin Kai(金 凯), Su Li-jun (苏丽君), *et al.* Synthesis of Ni/SiO₂ catalysts and their performances in glycerol hydrogenolysis to 1,2-pro-panediol(Ni/SiO₂ 催化剂的合成及其甘油氢解制 1,2-丙二醇性能) [J]. *J Mol Catal*(*China*)(分子催化), 2015, **29**(5): 403-413.

- [11] Liang Xu(梁旭), Li Hai-tao(李海涛), Zhang Yin(张因), et al. Influence of pore structure of carrier on catalytic performance of Ni/γ-Al₂O₃ catalyst for secondary hydrogenation of butynediol(载体孔结构对丁炔二醇二段加氢 Ni /γ-Al₂O₃ 催化剂加氢性能的影响)[J]. J Mol Catal(China)(分子催化), 2009, 23(3): 209-214.
- [12] Leyva C, Ancheyta J, Travert A, et al. Activity and surface properties of NiMo/SiO₂-Al₂O₃ catalysts for hydroprocessing of heavy oils [J]. Appl Catals A: Gen, 2012, 425/426(21): 1-12.
- [13] Li Hai-tao(李海涛), Zhang Hong-xi(张鸿喜), Chen Hao-ran(陈昊然), et al. Effect of carbon modification on Ni/Al₂O₃ catalyst for hydrogenation of maleic anhydride to butyrolactone(炭改性对 Ni/Al₂O₃ 催化剂顺 酐加氢合成 γ-丁内酯反应性能的影响)[J]. J Mol Catal(China)(分子催化), 2010, 24(5): 411-416.
- [14] Li Hai-tao(李海涛), Chen Hao-ran(陈昊然), Zhang Yin(张因), et al. Preparation and characterization of carbon-covered alumina supported Ni catalyst and its catalytic performance for hydrogenation(炭包覆氧化铝负 载镍催化剂的制备和表征及其催化加氢性能)[J]. Chin J Catal (催化学报), 2011, 32(1): 111-117.
- [15] Zhao Yong-xiang(赵永祥), Li Hai-tao(李海涛), Yang Xue-ying(杨雪英), et al. CN [P].(中国专利) 101306368B, 2010.

- [16] Zhao Yong-xiang(赵永祥), Liang Xu(梁旭), Yang Xue-ying(杨雪英), et al. CN [P].(中国专利) 101322949B, 2010.
- [17] Phongsawat W, Netiworaruksa B, Suriye K, et al. Influence of preparation method on the catalytic performances of Re₂O₇/SiO₂-Al₂O₃ catalysts in the metathesis of ethylene and 2-pentene [J]. J Ind and Eng Chem, 2014, 20 (1): 145–152.
- [18] Liu N, Ding SH L, Cui Y M, et al. Optimizing activity of tungsten oxides for 1-butene metathesis by depositing silica on γ-alumina support [J]. Chem Eng Res Des, 2013, 9(3): 573-580.
- [19] Sun X Y, Zhang X J, Zhang Y, et al. Reversible promotional effect of SiO₂ modification to Co/Al₂O₃ catalyst for Fischer-Tropsch synthesis [J]. Appl Catals A: Gen, 2010, **377**(1): 134-139.
- [20] Guo S, Shi L. Synthesis of succinic anhydride from maleic anhydride on Ni/diatomite catalysts [J]. Catal Today, 2013, 212(2): 137-141.
- [21] Cheng Ping(程 萍), Xie Guan-qun(谢冠群), Luo Meng-fei(罗孟飞). Catalysts for vapor-phase selective hydrogenation of crotonaldehyde to crotyl alcoho(巴豆醛 气相选择性加氢催化剂)[J]. Prog Chem (化学进 展), 2012, 24(1): 17-30.
- [22] Bachiller-Baeza B, Rodríguez-Ramos I, Guerrero-Ruiz A, et al. Influence of Mg and Ce addition to ruthenium based catalysts used in the selective hydrogenation of α, β-unsaturated aldehydes[J]. Appl Catal A: Gen, 2001, 205(1/2): 227-237.
- [23] Zhou Ya-ming(周亚明), Shen Wei(沈伟), Xu Hualong(徐华龙), et al. Furfuryl alcohol from furfural by hydrogenat ion under atmospheric pressure(糠醛常压气 相催化加氢制糠醇)[J]. Petrochem Techno (石油化 工), 1997, 26(1): 4-7.
- [24] Vannice M A, Sen B. Metal-support effects on the intramolecular selectivity of crotonaldehyde hydrogenation over platinum [J]. J Catal, 1989, 115(1): 65–78.
- [25] Organic chemical products for industrial use-determination of content of carbonyl compounds present-Volumetric method(有机化工产品中羰基化合物含量的测定-容量 法). GB[S], 6324.5-86.
- [26] Sato S, Takahashi R, Sodesawa T, et al. Structural and catalytic properties of silica-coated alumina [J]. Bull Chem Soc Jpn, 2006, 79(4): 649655.
- [27] Crépeau G, Montouillout V, Vimont A, et al. Nature, structure and strength of the acidic sites of amorphous silica alumina: an IR and NMR study [J]. J Phys Chem

B, 2006, **110**(31): 15172–15185.

- [28] Liang Xu(梁旭), Liu Yan-xia(刘艳侠), Zhao Yongxiang(赵永祥), et al. Preparation and characterization of silicon doped alumina and nickel catalytic materials supported on it(硅掺杂氧化铝及其载镍催化材料的制 备与表征)[J]. Nat Gas Chem Ind(天然气化工(C₁ 化学与化工)), 2015, **40**(1): 44-47,55.
- [29] Ren Shi-biao(任世彪), Qiu Jin-heng(邱金恒), Wang Chun-yan(王春燕), et al. Influence of nickel salt precursors on the hydrogenation activity of Ni/γ-Al₂O₃ catalyst(镍盐前体对 Ni/γ-Al₂O₃催化剂催化加氢活性的 影响)[J]. Chin J Catal (催化学报), 2007, 28 (7): 651-656.
- [30] Cai Xiao-hai(蔡小海), Liu Ying-jun(刘英骏), Liu Zhi-wei(刘智巍), et al. An EXAFS study on support effect of NiO dispersion state(NiO 的单层分散态及其载 体效应) [J]. Acta Phys -Chim Sin (物理化学学报), 1994, 10(1): 15-18.
- [31] Yao N, Chen J X, Zhang J X, et al. Influence of support calcination temperature on properties of Ni/TiO₂ for catalytic hydrogenation of o-chloronitrobenzene to o-chloroaniline [J]. Catal Commun, 2008, 9(6): 1510-1516.
- [32] Silvestre-Albero J, Coloma F, Sepúlveda-Escribano A, et al. Effect of the presence of chlorine in bimetallic PtZn/ CeO₂ catalysts for the vapor-phase hydrogenation of crotonaldehyde[J]. Appl Catal A: Gen, 2006, 304(1): 159-167.
- [33] Campo B, Volpe M, Ivanova S, et al. Selective hydrogenation of crotonaldehyde on Au/HSA-CeO₂ catalysts
 [J]. J Catal, 2006, 242(1): 162–171.
- [34] Wang X X, Zheng H Y, Liu X J, et al. Effects of NaCl on Pt/ZrO₂ catalysts for selective hydrogenation of crotonaldehyde[J]. Appl Catal A: Gen, 2010, 388(1): 134– 140.

Effect of Surface Acidity on Ni/SiO₂ -Al₂ O₃ Catalyst Performance for 1, 4-butynediol Hydrogenation

GUO Jiang-yuan, LI Hai-tao * , ZHANG Zhi-long, WANG Zhi-peng,

YANG Guo-feng, ZHAO Yong-xiang*

(Engineering Research Center of Ministry of Education for Fine Chemicals, School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, China)

Abstract: Al_2O_3 supports with different surface acidity were prepared by introducing SiO₂ into Al(OH)₃ and Al₂O₃ via impregnation method, respectively. Also, the Ni/Al₂O₃, Ni/SA-1 and Ni/SA-2 catalysts with 15% Ni loadings were prepared by equal volume impregnation method. All the catalysts were characterized by N₂ adsorption-desorption, pyridine-insitu fourier transform infrared (Py-FTIR), NH₃-temperature programmed desorption (NH₃-TPD), X-ray diffraction (XRD), H₂-temperature programmed reduction (H₂-TPR) and H₂-temperature programmed desorption (H₂-TPD), etc. The effect of surface acidity on the catalytic performance of catalyst for the hydrogenation of 1,4-butynediol was investigated. The results show that SiO₂ introduction way has great impacts on the dispersion of active component Ni and catalyst surface acidity. Ni/SA-1 catalyst, using Al₂O₃ support prepared by introducing SiO₂ into Al(OH)₃ and then calcination, showed high dispersion of active component and rich Lewis acid sites on the surface. The synergy of Lewis acid sites and Ni active sites made the catalyst show excellent activity in the hydrogenation for BDO synthesis. However, when the SiO₂ was directly introduced onto the Al₂O₃ surface, the Ni/SA-2 catalyst showed low dispersion of active component, few Lewis acid sites, and poor hydrogenation activity. **Key words**: SiO₂ introduction way; acidity; adsorption and activation of carbonyls; hydrogenation