首页 | 官方网站   微博 | 高级检索  
     


Application of artificial neural network for comparison and modeling of the ultrasonic and stirrer assisted removal of anionic dye using activated carbon supported with nanostructure material
Authors:Abdol Mohammad Ghaedi  Parisa Karami  Mehrorang Ghaedi  Azam Vafaei  Ebrahim Alipanahpour Dil  Fatemeh Mehrabi
Affiliation:1. Department of Chemistry, Gachsaran Branch, Islamic Azad University, Gachsaran, Iran;2. Chemistry Department, Yasouj University, Yasouj, Iran
Abstract:In this study, a green approach has been described for the synthesis of copper sulfide nanoparticles loaded on activated carbon (CuS‐NP‐AC) and usability of it for the removal of sunset yellow (SY) dye by ultrasound‐assisted and stirrer has been compared. In addition, the artificial neural network (ANN) model has been employed for a forecasting removal percentage of SY dye using the results obtained. This material was characterized using scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The impact of variables, including initial dye concentration (mg/L), pH, adsorbent dosage (g), sonication time (min) and temperature (°C) on SY removal was studied. Fitting the experimental equilibrium data of different isotherm models such as Langmuir, Freundlich, Temkin and Dubinin–Radushkevich models display the suitability and applicability of the Langmuir model. Analysis of experimental adsorption data of different kinetic models including pseudo‐first and second order, Elovich and intraparticle diffusion models indicate the applicability of the second‐order equation model. The adsorbent (0.005 g) is applicable for successful removal of SY dye (> 98%) in short time (9 min) under ultrasound condition. A three layer ANN models with 8 and 6 neurons at hidden layer was selected as optimal models using stirrer and ultrasonic, respectively. These models displayed a good agreement between forecasted data and experimental data with the determination coefficient (R2) of 0.9948 and 0.9907 and mean squared error (MSE) of 0.0001 and 0.0002 for training set using stirrer and ultrasonic, respectively.
Keywords:artificial neural network  copper sulfide nanoparticles  sunset yellow (SY)  ultrasonic
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号