Vol. 19, No. 1 Jan., 2003

# 研究简报

# 配位聚合物{[CoL][Fe<sup>II</sup>Fe<sup>II</sup>(ox)<sub>3</sub>・1.5H<sub>2</sub>O]}<sub>∞</sub> 的合成、波谱表征和磁学性质

陈友存\* 刘光祥 周 宏 徐 衡 (安庆师范学院化学系,安庆 246011)

| 关键词: | 草酸根桥联  | 配位聚合物   | 合成 | 波谱表征 | 磁学性质 |
|------|--------|---------|----|------|------|
| 分类号: | 0611.4 | 0614.81 |    |      |      |

二维层状结构的配位聚合物 [Cation] [Fe<sup>I</sup>Fe<sup>II</sup> (ox)<sub>3</sub>]。(其中 Cation = 季胺盐、季膦盐)是一类重要 的分子磁体<sup>[1-3]</sup>,由于它们有许多优点,特别是磁性 可调性,即通过改变填充在阴离子层间的阳离子就 能获得分子基铁磁体、亚铁磁体以及倾斜的反铁磁 体<sup>[6]</sup>,引起人们极大注意。但是这类分子基磁体的磁 有序临界温度( $T_c$ )低<sup>[7]</sup>,常见阳离子也仅限于有 机阳离子和 [FeCp<sub>2</sub>\*]\*、[CoCp<sub>2</sub>\*]\*等金属茂阳离 子<sup>[7.8]</sup>。根据分子场理论,提高  $T_c$ 的有效途径之一是 增强分子间的协同作用。基于这种思想,我们合成 和表征了金属配合物阳离子 CoL\*(其中 L = 水杨醛 和等摩尔的二乙撑三胺缩合的 Schiff 碱)。由于配体 L 上的活泼 H 原子有可能与草酸根上的 O 原子形 成氢键,增加了结构单元间协同作用,利用配位化学 中有多种键所起的作用,分子具有丰富的空间结构, 通过分子设计达到提高其  $T_c$  值的目的。本文合成和 表征了 CoL<sup>+</sup>金属配合物阳离子与 [Fe<sup>II</sup>Fe<sup>II</sup> (ox)<sub>3</sub>]<sup>-</sup> 阴离子形成的双金属二维层状配位聚合物 (Scheme 1) [CoL] [Fe<sup>II</sup>Fe<sup>II</sup> (ox)<sub>3</sub>] · 1. 5H<sub>2</sub>O, 并对其磁性进行 了研究。

# 1 实验部分

#### 1.1 仪器和试剂

所有新化合物的C、H、N元素分析使用 Perkin-Elmer 240型元素分析仪测定。红外光谱使用 Nicolet FT-IR AVATAR 360光谱仪测定,样品与KBr 磨均后压片,测量范围为400~4000cm<sup>-1</sup>。Mössbauer 谱在美国Austin公司的S-600型谱仪上进行,在室 温下采用等加速模式。放射源为20mCi的<sup>57</sup>Co/Pd 源,同质异能位移相对于  $\alpha$ -Fe标定。变温磁化率使





Scheme 1 Synthetic routes of complex cation and layer coordination polymer

收稿日期:2002-08-16。收修改稿日期:2002-10-14。

国家自然科学基金资助项目(No. 20171001)、安徽省科技厅"十五"攻关项目(No. 01012038)和安徽省教育厅基金资助项目 (No. 2001kj162)。

\* 通讯联系人。E-mail: huaxue@ aqtc. edu. cn

第一作者:陈友存,男,54岁,教授;研究方向:功能配合物。

用 SQUID MPMS-7 磁强计测量。所用试剂均为分析 纯,使用前未做进一步纯化。

#### 1.2 原料的制备

K<sub>3</sub>[Fe(ox)<sub>3</sub>]・3H<sub>2</sub>O 按照文献<sup>[9]</sup>中的方法制备。

1.3 CoL(ClO<sub>4</sub>)・3H<sub>2</sub>O(1)的合成

在 100 mL 的圆底烧瓶中,加 40mL 甲醇溶解 366mg Co(ClO<sub>4</sub>)<sub>2</sub>·6H<sub>2</sub>O,边搅拌边逐滴加入 103mg 二乙撑三胺,加热回流 20min 后,滴加 20mL 含 122mg 水杨醛的甲醇溶液。混合溶液回流近 30min 后就有橙黄色微晶生成。继续回流 40min,冷却后过 滤。依次用少量甲醇、无水乙醚洗涤微晶状沉淀,真 空干燥后,得产物 344mg(产率 82%)。元素分析结 果: C, 31.51%; H, 5.31%; N, 10.01%。按分子式 C<sub>11</sub>H<sub>22</sub>N<sub>3</sub>O<sub>8</sub>ClCo 计算的理论值: C, 31.55%; H, 5.30%; N, 10.04%。

1.4 配位聚合物{[CoL][Fe<sup>□</sup>Fe<sup>□</sup>(ox)<sub>3</sub>]・1.5H<sub>2</sub>O}<sub>∞</sub>
 (2)的合成

在 N<sub>2</sub> 气氛下, 492mg K<sub>3</sub>[Fe(ox)<sub>3</sub>] · 3H<sub>2</sub>O, 278 mg FeSO<sub>4</sub> · 7H<sub>2</sub>O 溶解在 30mL 水和甲醇(体积比为 1:1) 混合溶剂中, 室温下搅拌 0.5h 后, 逐滴加人 30mL 含 419mg 配合物 1 的甲醇溶液, 立即有黄褐 色沉淀生成。滴加完毕,反应溶液过滤,用甲醇洗涤 沉淀,真空干燥后,得产物 567mg(产率 85%)。元素 分析结果: C, 30.52%; H, 2.90%; N, 6.27%; 按化 学式 C<sub>17</sub>H<sub>19</sub>N<sub>3</sub>O<sub>14.5</sub>Fe<sub>2</sub>Co 计算的理论值: C, 30.57%; H, 2.87%; N, 6.29%。

### 2 结果与讨论

#### 2.1 配合物 1、2 的合成

在热的甲醇中, 摩尔比为 1:1:1 的 Co(ClO<sub>4</sub>)<sub>2</sub> • 6H<sub>2</sub>O、二乙撑三胺和水杨醛一起回流即得到 1 产率 高于 80% 。1 中的 C、H 和 N 元素分析值与按分子式 CoL(ClO<sub>4</sub>)<sub>2</sub> • 3H<sub>2</sub>O 的计算值一致。 在 N<sub>2</sub> 气氛下, 水和甲醇混合溶剂中, 摩尔比为 1:1:1 的 K<sub>3</sub>[Fe(ox)<sub>3</sub>] · 3H<sub>2</sub>O、FeSO<sub>4</sub> · 7H<sub>2</sub>O 和 1 一 锅反应得到高产率的 2。2 中的 C、H 和 N 元素分析 结果 与按化学式 C<sub>17</sub>H<sub>19</sub>N<sub>3</sub>O<sub>14.5</sub>Fe<sub>2</sub>Co 计算的结果一 致, 表明在配位聚合物 2 中, 平衡阳离子 [CoL]<sup>+</sup>、 Fe<sup>2+</sup>与 Fe<sup>3+</sup>的摩尔比是 1:1:1, 即, 配位聚合物 2 可 用结构简式[CoL][Fe<sup>II</sup>Fe<sup>III</sup>(ox)<sub>3</sub>] · 1.5H<sub>2</sub>O 表示。

### 2.2 配合物 1、2 的 IR 光谱表征

配合物 1、2 的 IR 光谱图分别示于图 1 和图 2、 一些特征官能团的 IR 振动频率归纳在表 1 中。

表1中的结果清楚地呈现了苯环上的 $\nu_{C-H}$ 、烷 烃上亚甲基的 $\nu_{C-H}$ 、Schiff碱的 $\nu_{C-N}$ 特征峰、因而证





| 表 1   | 配 | 合物 1、2  | 2 的特 | 寺征官肖     | も すいしん しんしん しんしん しんしん しんしん しんしん しんしん しんしん | IR 振  | 动频  | 率 | 110, 11 | IJ |
|-------|---|---------|------|----------|-------------------------------------------|-------|-----|---|---------|----|
| Table | 1 | Charact | er V | ibrating | g Freq                                    | uency | for | 1 | and     | 2  |

|                     | 1                  | 2                   |                                     |
|---------------------|--------------------|---------------------|-------------------------------------|
| IR/cm <sup>-1</sup> | attribute          | IR/cm <sup>-1</sup> | attribute                           |
| 3431, 3253(m)       | VN-H, VO-H         | 3350(m)             | ν <sub>N-H</sub> , ν <sub>O-H</sub> |
| 3017(w)             | $ u_{\text{C-H}}$  | 3010(m)             | ν <sub>C-H</sub>                    |
| 2865(w)             | $\nu_{\text{C-H}}$ | 2875(m)             | ν <sub>C-H</sub>                    |
| 1631(s)             | $\nu_{\rm C} = N$  | 1629(s)             | $\nu_{\rm C=0}$                     |
| 1601 ~ 1449(m)      | $\nu_{c-c}$        | 1611 ~ 1445(m)      | $\nu_{c\cdot c}$                    |
| 1145, 1120, 1089(s) | $\nu_{CI=0}$       | 819(m)              | <b>δ</b> c-0                        |

· 105 ·

#### 第1期

明了配合物 1 中含二乙撑三胺和水杨醛形成的 Schiff 碱。在 1100~1140 cm<sup>-1</sup> 的强吸收带归属为 ClO<sub>4</sub><sup>-</sup>的特征吸收带 ( $\nu_{Cl=0}$ )。水杨醛的酚羟基配位 时将失去质子,根据电荷平衡,在配合物 1 中,水杨 醛和 ClO<sub>4</sub><sup>-</sup>的摩尔比只能是 1:1。综上所述, Schiff 碱 L 是由 1:1 摩尔比的二乙撑三胺和水杨醛缩合而 成,而在配合物 1 中的 L 与 Co<sup>2+</sup>的摩尔比也应是 1: 1。

结构简式为 [cation] \* [M<sup>•</sup>IM<sup>II</sup> (ox)<sub>3</sub>] <sup>-</sup>的配合物,具有层状堆积结构,即[M<sup>•</sup>IM<sup>II</sup> (ox)<sub>3</sub>] <sup>-</sup>形成蜂巢状阴离子层,一阶阳离子 [cation] \* 填充在阴离子层间<sup>[4]</sup>。此外,在草酸根配位的配合物中,草酸根的  $\nu_{as}$  (C=O) 谱带和  $\delta$ (C=O) 谱带的位置与其配位模式密切相关,因此,红外光谱技术是研究草酸根的配位模式的有力手段。草酸根单螯合配位模式的  $\nu_{as}$ (C=O) 谱带 $\delta$ (C=O) 谱带分别在 1700、800cm<sup>-1</sup> 左右有吸收<sup>[11]</sup>;若草酸根作为四齿配体,即桥联配位模式与过渡金属离子配位,那么相应的 $\nu_{as}$ (C=O) 谱带 红移,而 $\delta$ (C=O) 谱带蓝移<sup>[12]</sup>。在 2 的红外光谱图中, $\nu_{as}$ (C=O)  $\delta$ (C=O) 分别在 1626 和 814cm<sup>-1</sup>。上述结果表明, 2 中的草酸根都是桥式配位的,即草酸根与 Fe<sup>3+</sup>、Fe<sup>2+</sup>形成了二维层状配位聚合物。

2.3 配位聚合物 2 的 Mössbauer 谱

<sup>57</sup>Fe 的 Mössbauer 谱是研究 Fe 的价态和自旋态 的最有效的方法之一<sup>[12]</sup>。为了确定二维层状配位聚 合物 2 中含有 Fe<sup>3+</sup>、Fe<sup>2+</sup>,我们测定了 2 的室温 Mössbauer 谱,相应结果示于图 3。显然,配合物 2 中 含有两种不同状态的铁离子。应用 Origin(Version 5.0)软件,对 2 中重迭的峰进行分峰拟合,分别得到 两组峰,即,(I)  $\delta$  = 0.44mm · s<sup>-1</sup>,  $\Delta E_0$  = 0.94mm · s<sup>-1</sup>;(II)  $\delta$  = 1.65mm · s<sup>-1</sup>,  $\Delta E_0$  = 2.45 mm · s<sup>-1</sup>。较小



Fig. 3 Mössbauer spectra of complex 2

的同质异能位移 (和较小的四极矩分裂  $\Delta E_{0}$  的双峰 是高自旋 Fe<sup>3+</sup>离子的 Mössbauer 谱特征,较大的同 质异能位移  $\delta$  和较大的四极矩分裂  $\Delta E_{0}$  的双峰是 高自旋 Fe<sup>2+</sup>离子的 Mössbauer 谱特征<sup>[12]</sup>。

#### 2.4 配合物 2 的磁学性质

我们测定了配合物 2 在 5~95K 温度范围内的 变温磁化率,相应的  $\chi_m$ - T 和  $\chi_m$  T- T 曲线分别见图 4。在 95K 时,配合物的  $\chi_m T$  值为 0.008emu·K· mol<sup>-1</sup>,远小于每个 Co<sup>II</sup>Fe<sup>II</sup>Fe<sup>III</sup>单元的理论值(假定每 个 Co<sup>II</sup>、Fe<sup>II</sup>和 Fe<sup>III</sup>离子的 S 值分别为 3/2、2 和 5/2, 这些离子间没有磁交换作用,那么相应于每个 Co<sup>II</sup> Fe<sup>II</sup>Fe<sup>III</sup>单元的  $\chi_m T$  应为 7.25emu·K·mol<sup>-1</sup>);随着 样品温度的降低, $\chi_m T$  值逐渐减小,这些结果都显示 了该配合物中比邻的自旋载体之间存在反铁磁交换 作用。当样品温度降至大约 10K 时, $\chi_m T$ - T 曲线出 现了转折点,该转折点对应于  $\chi_m$ - T 曲线中的最低 点。为了进一步研究该配合物在低温区的磁性,我们 进一步测量了变磁场下的磁化强度 (测量场从 - 50kOe 到 50kOe,测量温度为 5K),相应的 M-H 曲 线示于图 5。插图中的磁滞环表明该配合物在低温



图 5 M-H 曲线(测量场 - 5kOe 到 5kOe), 插图中显示 磁滞环

Fig. 5 Plot of M versus H between 50kOe and - 50kOe for complex 2, inset showing low field expanded part (hysteresis loop)

· 106 ·

时可能存在铁磁有序,但是外磁场达到 50kOe 时, 该配合物也没有达到磁饱和。低温铁磁有序可能是 亚铁磁或自旋倾斜造成的<sup>[13]</sup>。

## 3 结 论

我们合成了一种新的钴 Schiff 碱配合物 1, 元素 分析和红外光谱测定结果表明 Schiff 碱 L 是由 1:1 的水杨醛和二乙撑三胺缩合而成, 1 中 L 与 Co<sup>2+</sup>的 摩尔比是 1:1。CoL<sup>+</sup>进一步与 Fe<sup>2+</sup>、[Fe(ox)<sub>3</sub>]<sup>3-</sup>反应 得到配合物 2, Mössbauer 谱清楚地表明配合物 2 中 含有 Fe<sup>2+</sup>和 Fe<sup>3+</sup>两种价态的铁离子, 红外光谱表明 该配合物具有二维层状结构。因此, 2 是双金属层状 配位聚合物。在该配合物中, 比邻的自旋载体之间 存在反铁磁交换作用。5K 时, 该聚合物有弱的磁滞 效应, 表明该配合物在低温时可能存在铁磁有序, 低 温铁磁有序可能是亚铁磁或自旋倾斜造成的。

#### 参考文献

- Bhattacharjee A., Miyazaki Y., Sorai M. Solid State Commun., 2000, 115, 639.
- [2] Bhattacharjee A., Miyazaki Y., Sorai M. J. Phys. Soc. Jap., 2000, 69, 479.
- [3] Bhattacharjee A., Feyerherm R., Steiner M. J. Phys. Soc.

Jap., 1999, 68, 1679.

- [4] Bhattacharjee A. J. Matt. Sci. Lett., 1996, 15, 102.
- [5] Mathoniere C., Nuttal C. J., Carling S. G., Day P. Inorg. Chem., 1995, 35, 1201.
- [6] Coronado E., Galán-Mascarós J. R., Gómez-García C. J. Synthetic Metals, 1999, 102, 1459.
- [7] Coronado E., Galán-Mascarós J. R., Gómez-García C. J., Martínez-Agudo J. M. Synthetic Metals, 2001, 122, 501.
- [8] (a)Coronado E., Galán-Mascarós J. R., Gómez-García C. J., Laukhin V. Nature, 2000, 408, 447;
  (b)Pellaux R., Schmalle H. W., Huber R., Fisher P., Hauss
  - T., Ouladdiaf B., Decurtins S. Inorg. Chem., 1997, 36, 2301.
- [9] Baylar J. C., Jones E. M. Inorg. Synth., 1939, 1, 37.
- [10]TANG Hui-Tong(唐恢同) Spectroscopic Identification of Organic Compound(有机化合物光谱鉴定), Beijing: Peking University Press, 1992.
- [11] (a) Zhuang J. Z., Matsumoto N., Ökawa H., Kida S. Chem. Lett., 1990, 87;
  - (b) Nakamoto K. Infrared Spectra of Inorganic and Coordination Compounds, 2 nd ed., Wiley-Interscience: New York, 1970, p244.
- [12]Coronado E., Galán-Mascarós J. R., Gómez-García C. J., Martínez-Agudo J. M. Inorg. Chem., 2001, 40, 113.
- [13]FONG Duan(冯 端), ZHAI Hong-Ru(翟宏如) Metal Physics(金属物理学), Beijing: Science Press, 1998, p386.

# Coordination Polymer $\{[CoL][Fe^{II}Fe^{III}(ox)_3 \cdot 1.5H_2O]\}_{\infty}$ : Syntheses, Spectra Characterization and Magnetic Properties

CHEN You-Cun\* LIU Guang-Xiang ZHOU Hong XU Heng (Department of Chemistry, Anging Normal College, Anging 246011)

A new Schiff base complex,  $CoL(ClO_4) \cdot 3H_2O(1)$  {L represents condensed from equal molar ratio of salicylaldehyde and diethylenetriamine} was synthesized and characterized. Further, a new coordination polymer, {[CoL][Fe<sup>II</sup>Fe<sup>III</sup>(ox)<sub>3</sub>] · 1. 5H<sub>2</sub>O}<sub>\*</sub> (2), was synthesized and characterized, where ox<sup>2-</sup> = oxalate. The results of the IR and Mössbauer spectra of 2 revealed that the coordination polymer exists 2-D layer structure in the solid state, and anions layer was formed by [Fe<sup>II</sup>Fe<sup>III</sup>(ox)<sub>3</sub>]<sup>-</sup> unit. The magnetic properties of 2 have been measured and the results indicate that there is magnetic ordering in the low temperature, which may arise from intermolecular ferromagnetic interactions or spin canted effects.

Keywords: bridging oxalate coordination polymer synthesis spectra characterization magnetic properties