维普资讯 http://www.cqvip.com



第1期 1998年3月 无机化学学报 JOURNAL OF INORGANIC CHEMISTRY Vol. 14, No. 1 March, 1998

# G(I)、 $\pi(I)$ 离子催化四苯基卟啉锌(I)的 G(I) 生成反应动力学研究

陈正华 朱志昂\* 陈红卫 张智慧 阮文娟 陈荣悌 \_\_\_\_\_ (南开大学化学系·天津 300071)

在二甲基甲酰胺和水混合溶剂中及在大阳离子 M(1)(M(1)=Cd(1)、Hg(1))的催化下,用 分光光度法研究了四苯基卟啉锌 Zn(1)TPP 的生成反应动力学,提出了反应机理:

 $M(1) + H_2 TPP \xrightarrow{K_2} M(1) * H_2 TPP \quad M(1) * H_2 TPP + Zn(1) \xrightarrow{k_3} Zn(1) TPP + M(1) + 2H^+$ 

 $Zn(1)+H_2TPP \xrightarrow{K_1} Zn(1) * H_2TPP Zn(1) * H_2TPP \xrightarrow{k_1} Zn(1)TPP+2H^+$ 

 $Z_n(\mathbf{I}) * H_2TPP + Z_n(\mathbf{I}) \xrightarrow{k_2} Z_n(\mathbf{I})TPP + Z_n(\mathbf{I}) + 2H^+$ 

研究了温度对反应动力学参数的影响,求得各平衡步的  $\Delta rH_m^n$ ,  $\Delta rS_m^n$  及其他基元反应的活化参数  $\Delta^{\neq}H_m$ ,  $\Delta^{\neq}S_m$ 。



金属卟啉具有重要的生物功能。研究其生成反应动力学、机理和条件,对理解血红素、肌红 蛋白、叶绿素等在生物、植物体内的活动机理十分重要<sup>[1]</sup>。对金属卟啉生成反应动力学已进行 了许多研究<sup>[2]</sup>,有关大阳离子催化金属离子嵌入卟啉的反应也有报道。Tabata<sup>[3]</sup>利用 Hg(I)、 Cd(I)、Pb(I)离子加速 Mn(I)离子嵌入水溶性四磺酸基对位取代苯基卟啉 H<sub>2</sub>TPPS<sub>4</sub> 的性 质,测定金属卟啉的稳定常数和痕量的 Hg(I)、Cd(I)、Pb(I)离子,提出了反应机理。Hambright<sup>[4]</sup>研究了 55 种卟啉与 Zn(I)离子在 DMF 中的生成反应动力学,提到 Zn(I)/Cd(I) TPP 的交换反应和 Hg(I)离子的催化,但没有进行定量的动力学研究。本文在前人<sup>[2~4]</sup>工作 的基础上,系统、定量地研究了 Cd(I)、Hg(I)离子催化 Zn(I)与 H<sub>2</sub>TPP 的生成反应动力学。

## 1 实验部分

1.1 试剂

四苯基卟啉 H<sub>2</sub>TPP 按文献<sup>[5]</sup>合成,经紫外可见光谱、核磁波谱鉴定。元素分析理论值(实-验值)(1%),C:85.97(85.85),H:4.92(4.96),N:9.11(8.96)。试剂 Zn(NO<sub>3</sub>)<sub>2</sub>・6H<sub>2</sub>O、Cd(NO<sub>3</sub>)<sub>2</sub>・4H<sub>2</sub>O、HgCl<sub>2</sub>和 KNO<sub>3</sub> 经重结晶。DMF 的处理和储存方法同文献<sup>[6]</sup>。Zn(NO<sub>3</sub>)<sub>2</sub>・6H<sub>2</sub>O、6H<sub>2</sub>O。用 EDTA 标定准确浓度。

\* 通讯联系人。

收稿日期:1996-12-09。 收修改稿日期:1997-09-03。

国家自然科学基金,天津自然科学基金资助项目。

第一作者:陈正华,女,34岁,讲师(天津医科大学化学教研室);研究方向:金属卟啉动力学。

• 41 •

#### 1.2 实验方法和数据处理

反应在 Zn(I)浓度大大过量于 H<sub>2</sub>TPP 浓度的假一级条件下进行。用 KNO<sub>3</sub> 控制溶液离子 强度为 0.1 mol·dm<sup>-3</sup>。溶剂为二甲基甲酰胺和水(4:1V/V)。使用 Shimadzu UV-240 紫外可 见分光光度计,在 558.5 nm 下测量反应体系吸光度随时间的变化。使用 Shimadzu TB 85 恒温 槽控制温度,精度为±0.1°C。采用 Guggenheim<sup>[7]</sup>方法拟合表观速率常数  $k_{obs}$ :

 $\ln\left(A_{\rm t}-A'_{\rm t}\right)=$ 

$$-k_{obs} \cdot t + 常数$$
 (1)

(1)式中 A, A',分别为 t,t+Δt 时刻体系的 吸光度,Δ 一般取四至五倍反应半衰期的时 间。实验数据表明对 H<sub>2</sub>TPP 确为一级反应,利 用(1)式求得 k<sub>obs</sub>,其拟合的相关系数均大于 0.998,测量误差在±2%之内。用非线性阻尼 最小二乘法对不同锌浓度的 k<sub>obs</sub>进行拟合,求 得前置平衡常数和基元反应的速率常数。

### 2 结果与讨论

#### 2.1 Zn(I)TPP 的生成反应

 $Zn(I) + H_2TPP \longrightarrow Zn(I)TPP + 2H^+$ (2)

在不同温度下,固定 H<sub>2</sub>TPP 浓度(4.80× 10<sup>-5</sup> mol·dm<sup>-3</sup>),改变 Zn(I)浓度(>2.00× 10<sup>-2</sup> mol·dm<sup>-3</sup>),测量 Zn(I) TPP 生成反应 的吸光度随时间的变化,如图 1 所示。求得 koos 与[Zn(I)]的关系。研究发现:koos与[Zn(I)] 成直线关系,相关系数,分别为:0.997(35.

0℃)、0.999(40.0℃)、0.996(45.0℃)、0.999(50.0℃)。 根据实验结果和文献<sup>[4]</sup>提出反应机理(机理 I):

$$Z_{n}(\mathbf{I}) + H_{2}TPP \stackrel{K_{1}}{\longleftarrow} Z_{n}(\mathbf{I}) * H_{2}TPP$$
(3)

$$Zn(\mathbb{I}) * H_2 TPP \xrightarrow{*} Zn(\mathbb{I}) TPP + 2H^+$$
(4)

$$Zn(\mathbb{I}) * H_2 TPP + Zn(\mathbb{I}) \xrightarrow{*_2} Zn(\mathbb{I}) TPP + Zn(\mathbb{I}) + 2H^+$$
(5)

此机理的表观速率常数为:

$$k_{\text{obs}} = (k_1 K_1 [\text{Zn}(\mathbb{I})] + k_2 K_1 [\text{Zn}(\mathbb{I})]^2) / (1 + K_1 [\text{Zn}(\mathbb{I})])$$
(6)

 $K_1$  为前置平衡步的平衡常数, $k_1$  和  $k_2$  为基元反应的速率常数。当[Zn(I)]较高, 且  $K_1$ [Zn(I)]シ1时,该式可简化为:

$$k_{\text{obs}} = k_1 + k_2 [Zn(\mathbf{I})] \tag{7}$$

根据(7)式,对实验数据进行拟合,求得 k<sub>1</sub> 和 k<sub>2</sub>,列于表 1。根据动力学 Eyring 公式:

$$\ln(k/T) = -\Delta^{\neq} H_{m}/(RT) + \Delta^{\neq} S_{m}/R + \ln[R/(N_{A}h)]$$
(8)

用  $\ln(k/T)$ 对 1/T 作线性回归,求出各基元反应的活化焓  $\Delta^{\neq}H_m$ 、活化熵  $\Delta^{\neq}S_m$ ,也列于表 1。



图 1 Zn(1)TPP 生成反应吸光度随时间变化的 关系图

Fig. 1 Plot of A vs t for Zn(1)TPP formation reaction

| • | 42 | • |
|---|----|---|
|---|----|---|

表 1 不同温度下 7n(1) TPP 生成反应的动力学数据

第14卷

| Table 1 Kinetic Data of $Zn(1, 1)$ P Formation Reaction at Different Temperature |       |       |       |        |                                           |                                                                                     |       |  |
|----------------------------------------------------------------------------------|-------|-------|-------|--------|-------------------------------------------|-------------------------------------------------------------------------------------|-------|--|
| <i>t/</i> 'C                                                                     | 35.0  | 40.0  | 45.0  | 50.0   | $\Delta^{\neq} H_{m}/(kJ \cdot mol^{-1})$ | <i>J</i> ≠ <i>S</i> <sup><i>m</i></sup> /(J • mol <sup>-1</sup> • K <sup>-1</sup> ) | r     |  |
| $k_1/(10^{-5}s^{-1})$                                                            | 0.827 | 1.53  | 5.20  | 9. 44  | :38.00                                    | 105.10                                                                              | 0.990 |  |
| $k_2/(10^{-3} \text{ mol}^{-1} \cdot \text{s}^{-1} \cdot \text{dm}^3)$           | 4.92  | 8.88  | 15.76 | 27.24  | 91.54                                     | 7.89                                                                                | 0.990 |  |
| r                                                                                | 0.997 | 0.999 | 0.996 | 0. 999 |                                           |                                                                                     |       |  |

从表 1 数据可知:随着温度的升高,各步反应的速率常数增加。对于 H<sub>2</sub>TPP,当温度从 35.0 C 上升到 50.0 C, $k_1$  增加 11.4 倍,而  $k_2$  增加 5.5 倍,可见  $k_1$  对温度变化更敏感,这是  $\Delta^{\#}H_{m,1} > \Delta^{\#}H_{m,2}$ 的缘故。能量因素  $\Delta^{\#}H_m$  和混乱度  $\Delta^{\#}S_m$  对速率常数均有影响,由表 1 可知,  $\Delta^{\#}H_m$ 是影响 k 的主要因素。

2.2 Cd(I)离子催化 Zn(I)TPP 生成反应

在 35.0 C, [H<sub>2</sub>TPP]=4.80×10<sup>-5</sup> mol · dm<sup>-3</sup>, [Cd(I)]=7.80×10<sup>-3</sup> mol · dm<sup>-3</sup>的条件 下,改变[Zn(I)](2.40×10<sup>-3</sup>~2.40×10<sup>-2</sup> mol · dm<sup>-3</sup>), 测得 k<sub>00</sub>与[Zn(I)]的关系, 如图 2 所示。研究发现: k<sub>00</sub><sup>-1</sup>与[Zn(I)]<sup>-1</sup>成直线关系(r=0.999)。





 $7.80 \times 10^{-3} \text{ mol} \cdot \text{dm}^{-3}$ 



图 3 不同温度下,kom与[Cd(I)]的关系图 Fig. 3 Plots of kom vs [Cd(I)] at different temperature [Zn(I)]=4.20×10<sup>-3</sup> mol・dm<sup>-3</sup> (● 25.0℃ ○ 30.0℃ ▲ 35.0℃ △ 40.0℃)

在不同温度,[Zn(1)]=4.20×10<sup>-3</sup> mol·dm<sup>-3</sup>的条件下,改变[Cd(I)](1.30×10<sup>-3</sup>~ 1.30×10<sup>-2</sup> mol·dm<sup>-3</sup>),测出 kom与[Cd(I)]的关系,如图 3 所示。进一步研究发现:kom<sup>-1</sup>与[Cd(I)]<sup>-1</sup>成直线关종(r 均为 0.999)。

根据实验结果、反应独立共存原理和文献<sup>[3,4]</sup>,提出 Cd(Ⅰ)离子存在时,Zn(Ⅰ)TPP 生成 反应机理(机理Ⅰ):

$$Cd(\mathbb{I}) + H_2 TPP \xrightarrow{K_2} Cd(\mathbb{I}) * H_2 TPP$$
(9)

$$Cd(\mathbb{I}) * H_2TPP + Zn(\mathbb{I}) \xrightarrow{*_3} Zn(\mathbb{I})TPP + Cd(\mathbb{I}) + 2H^+$$
(10)

$$Zn(\mathbb{I}) + H_2 TPP \stackrel{K_1}{\Longrightarrow} Zn(\mathbb{I}) * H_2 TPP$$
(11)

$$Zn(\mathbb{I}) * H_2 TPP \xrightarrow{\kappa_1} Zn(\mathbb{I}) TPP + 2H^+$$
(12)

· 43 ·

镉(I)、汞(I)离子催化四苯基卟啉锌(I)的生成反应动力学研究

 $k_{obs} = (k_3 K_2 [Cd(\mathbb{I})] + k_1 K_1 + k_2 K_1 [Zn(\mathbb{I})]) \cdot [Zn(\mathbb{I})] / (1 + K_2 [Cd(\mathbb{I})] + K_1 [Zn(\mathbb{I})]$ (14)

当 [Cd(I)]一定时,  $k_3K_2$ [Cd(I)]+ $k_1K_1 + k_2K_1$ [Zn(I)]  $\approx k_3K_2$ [Cd(I)](例如: 25.0°C, [Cd(I)]=7.80×10<sup>-3</sup> mol·dm<sup>-3</sup>, [Zn(I)]=2.40×10<sup>-3</sup>~2.40×10<sup>-2</sup> mol·dm<sup>-3</sup>,(14)式 中的数值依次为: 1.46、6.50×10<sup>-4</sup>、1.82×10<sup>-3</sup>~1.82×10<sup>-2</sup>,即 $k_3K_2$ [Cd(I)] $\gg k_1K_1$ ,  $k_2K_1$ [Zn(I)])(14)式可简化为:

$$k_{obs} = \frac{k_3 K_2 [Cd(\mathbb{I})] \cdot [Zn(\mathbb{I})]}{1 + K_2 [Cd(\mathbb{I})] + K_1 [Zn(\mathbb{I})]}$$
(15)

上式取倒数:  $\frac{1}{k_{obs}} = \frac{1 + K_2[Cd(\mathbb{I})]}{k_3 K_2[Cd(\mathbb{I})]} \cdot \frac{1}{[Zn(\mathbb{I})]} + \frac{K_1}{k_3 K_2[Cd(\mathbb{I})]}$ 此时,  $k_{obs}^{-1} = [Zn(\mathbb{I})]^{-1}$ 成直线关系, 与实验结果一致。当 $[Zn(\mathbb{I})]$ 一定时,(15)式成立(理由 同上), 此时  $k_{obs}^{-1} = [Cd(\mathbb{I})]^{-1}$ 成直线关系, 与实验结果相符。

根据(14)式,用非线性阻尼最小二乘法对图 3 中的各实验点进行拟合,求出动力学数据和 拟合的相对偏差平方和 *S*,,列于表 2。图 3 中的曲线即为拟合曲线,与实验点很好地吻合。当 [Cd(I)]=0 时,机理 I 还原为机理 I,(14)式还原为(6)式,这些均说明所提机理可能是合理 的。

根据 Eyring 公式,求出各基元反应的 △<sup>≠</sup>H<sub>m</sub>、△<sup>≠</sup>S<sub>m</sub>。根据 Van't Hoff 方程: lnK<sup>+</sup>= - △<sub>r</sub>H<sup>+</sup><sub>m</sub>/(RT) + △<sub>r</sub>S<sup>+</sup><sub>m</sub>/R (17)

(17)式中  $K^{\bullet} = K/(\text{mol}^{-1} \cdot d^{3}\text{m})$ 为标准平衡常数,用 ln $K^{\bullet}$  对 1/T 作线性回归,求出前置平 衡步的标准摩尔焓  $\Delta_{r}H^{\bullet}_{m}$ 、标准摩尔熵  $\Delta_{r}S^{\bullet}_{m}$ ,数值也列于表 2。

| t/'C                                                                | 25. 0                | 30. 0 | 35.0         | 40.0                 | ∆r <i>II</i> ∰/<br>(kJ•mol−1) | $\Delta_{\mathbf{r}} S \mathbf{f}_{\mathbf{r}} / (\mathbf{J} \cdot \mathbf{mol}^{-1} \cdot \mathbf{K}^{-1})$ | $\Delta \neq H_{\rm m}/$ (kJ • mol <sup>-1</sup> ) | ∆≠ <i>S</i> m/<br>(J•mol−1•K−1) | r      |
|---------------------------------------------------------------------|----------------------|-------|--------------|----------------------|-------------------------------|--------------------------------------------------------------------------------------------------------------|----------------------------------------------------|---------------------------------|--------|
| $K_2/(mol^{-1} \cdot dm^3)$                                         | 1.10                 | 2.30  | 4.30         | 9.90                 | 114.20                        | 441.50                                                                                                       |                                                    |                                 | 0. 999 |
|                                                                     | imes 10 <sup>3</sup> | ×103  | imes103      | ×103                 |                               |                                                                                                              |                                                    |                                 |        |
| $K_{\perp}'(mol^{-1} + dm^3)$                                       | 524.70               | 1.20  | 2.50         | 4.90                 | 115.40                        | 439.70                                                                                                       |                                                    |                                 | 0. 999 |
|                                                                     |                      | × 103 | $	imes 10^3$ | imes 10 <sup>3</sup> |                               |                                                                                                              |                                                    |                                 |        |
| k₃/(mol−1 • s−1<br>• dm³)                                           | 0. 170               | 0.348 | 0. 591       | 0.860                |                               |                                                                                                              | 78.59                                              | 5.07                            | 0.995  |
| $k_1/(10^{-6} \cdot s^{-1})$                                        | 1.24                 | 3.12  | 8.27         | 15.30                |                               |                                                                                                              | 138.00                                             | 105.10                          | 0. 990 |
| k <sub>2</sub> /(10-3dm <sup>3</sup> ⋅ mol-1<br>⋅ s <sup>-1</sup> ) | 1.45                 | 2.70  | 4.92         | 8. 88                |                               |                                                                                                              | 91.54                                              | 7.89                            | 0. 990 |
| Sy/10-2                                                             | 2.90                 | 2.10  | 7.70         | 2.70                 |                               |                                                                                                              |                                                    |                                 |        |

表 2 在不同温度和 Cd(I)离子存在时,Zn(I)TPP 生成反应的动力学数据 Table 2 Kinetic Data of Zn(I)TPP Formation Reaction at Different Temperature in the Presence of Cd(I)

由表 2 数据可知,  $\Delta_r H_{m,1}^*, \Delta_r H_{m,2}^*$ 为正值, 说明前置平衡步是吸热反应, 升高温度有利于其进行。因为中间体 Cd(I) \* H<sub>2</sub>TPP 和 Zn(I) \* H<sub>2</sub>TPP 是金属离子凸出卟啉平面的四方锥形结构, 该结构不稳定, 能量高于反应物致使  $\Delta_r H_{m,1}^*$ 和  $\Delta_r H_{m,2}^*$ 均大于零。由于溶剂 DMF 具有较高的 介电常数和偶极矩使带电粒子(Zn(I)、Cd(I))产生强烈的溶剂化作用, 而 Cd(I) \* H<sub>2</sub>TPP 和 Zn(I) \* H<sub>2</sub>TPP 中, 金属离子已接近卟啉环的位置, 且与卟啉间的配位键已部分形成, 大大 降低了金属离子的溶剂化作用, 故前置平衡步是熵增加的过程。基元反应(12)是离解过程, 需

吸收较多的能量打断化学键,所以 ^\* Hm, 约大。

在 30.0 C, [H<sub>2</sub>TPP]、[Zn(1)]、[Cd(1)]一定时,改变反应体系离子强度(KNO<sub>3</sub>水溶 液),测得 k<sub>obs</sub>与[KNO<sub>3</sub>]的关系,列于表 3。

表 3 30.0 C时, [KNO,]对 kob的影响 \*Table 3 Effect of [KNO,] on kob at 30.0 C

| [KNO <sub>2</sub> ]/(mol • dm <sup>-3</sup> ) | $k_{abs}/(10^{-3}s^{-1})$ | average $k_{ob_1}/(10^{-3}s^{-1})$ |
|-----------------------------------------------|---------------------------|------------------------------------|
| 0. 02                                         | 1.86 2.04                 | 1. 95                              |
| 0. 10                                         | 2.17 2.34                 | 2.26                               |

从表 3 数据可知, kom 随着离子强度的增大而增大。说明在 DMF 和 H<sub>2</sub>O 混合溶剂中,离子 强度对反应体系具有动力学的正原盐效应,机理中应有正离子之间的反应存在。在机理 I 中, 基元反应(10)和(13)是正离子之间的反应,与实验结果一致,从另一个方面验证了所提机理可 能是合理的。

2.3 Hg(1)离子催化 Zn(1)TPP 生成反应

实验表明:Hg(I)离子对 Zn(I)/H<sub>2</sub>TPP 体系的催化作用规律与前面讨论的 Cd(I)离子 催化作用规律完全一致,拟合曲线与实验点相吻合,见图 4、图 5,拟合所得动力学参数列于表 4。本文认为 Hg(I)离子催化 Zn(I)TPP 生成反应的机理同样遵守机理 I,k<sub>om</sub>的表达式符合 (14)式。



- 图 4 30.0℃,[Hg(I)]一定时,k<sub>m</sub>与[Zn(I)]的关 系图
- Fig. 4 Plot of  $k_{obs}$  vs [Zn(1)] at 30.0°C  $[Hg(1)] = 9.40 \times 10^{-5} \text{ mol} \cdot \text{dm}^{-3}$



图 5 不同温度下 k<sub>obs</sub>~[Hg(I)]的关系图 Fig. 5 Plots of k<sub>obs</sub> vs [Hg(I)] at different temperature [Zn(I)]=4.90×10<sup>-3</sup> mol • dm<sup>-3</sup> (● 20.0℃ ○ 25.0℃ ▲30.0℃ △35.0℃)

• 45 •

第1期

实验得到 Cd(I)、Hg(I)离子明显加速 Zn(I)TPP 的生成反应。这是由于,根据本文提出的 反应机理(I),当有 Cd(I)、Hg(I)离子存在时,Zn(I)TPP 的生成有两种同时进行的途径, 与机理 I 相比,增加了一条途径。从表 2,4 数据可以看出, $k_3$ , $k_4 \gg k_1$ , $k_2$ , $K_2$ , $K_3 > K_1$ ,可见有 Cd (I)、Hg(I)离子参与的途径更易进行,从而明显加速反应。Cd(I)、Hg(I)离子的半径较大, 中间体 Cd(I) \* H<sub>2</sub>TPP 和 Hg(I) \* H<sub>2</sub>TPP 是金属离子凸出卟啉平面的四方锥形结构,该结构 中分子内应力的作用使卟啉环发生变形,这种结构上的形变更有利于 Zn(I)离子的进攻<sup>[3]</sup>, 从而起到加速 Zn(I)TPP 生成的作用。

表 4 在不同温度及 Hg(1)离子存在时,Zn(1)TPP 生成反应的动力学数据 Table 4 Kinetic Data of Zn(1)TPP Formation Reaction at Different Temperature in the Presence of Hg(1)

| <i>ι/</i> ℃                                                     | 20.0 25.0                         | 30.0            | 35.0         | Δ <sub>t</sub> H≜/<br>(kJ • mol <sup>−1</sup> ) | $\frac{\Delta_t S \underline{h}}{(\mathbf{J} \cdot \mathbf{mol}^{-1} \cdot \mathbf{K}^{-1})}$ | Δ≠H <sub>m</sub> /<br>(kJ•mol <sup>-1</sup> ) | Δ≠S <sub>m</sub> /<br>(J•mol <sup>-1</sup> •K <sup>-1</sup> ) | 7      |
|-----------------------------------------------------------------|-----------------------------------|-----------------|--------------|-------------------------------------------------|-----------------------------------------------------------------------------------------------|-----------------------------------------------|---------------------------------------------------------------|--------|
| $\overline{K_3/(\mathrm{mol}^{-1}\cdot\mathrm{dm}^3)}$          | 1.20 2.20                         | 4.50            | 7.00         | 87.59                                           | 396.10                                                                                        |                                               | ·                                                             | 0.999  |
|                                                                 | ×10 <sup>5</sup> ×10 <sup>5</sup> | $\times 10^{5}$ | $	imes 10^5$ |                                                 |                                                                                               |                                               |                                                               |        |
| $K_1/(\text{mol}^{-1} \cdot \text{dm}^3)$                       | 252. 30524. 7                     | 0 1.20          | 2.50         | 115.40                                          | 439.70                                                                                        |                                               |                                                               | 0.999  |
|                                                                 |                                   | ×103            | $	imes 10^3$ |                                                 |                                                                                               |                                               |                                                               |        |
| • dm <sup>3</sup> )                                             | 0.428 0.789                       | 1.34            | 2.10         |                                                 |                                                                                               | 76. 93                                        | 11.39                                                         | 0. 999 |
| $k_1/(10^{-6}s^{-1})$                                           | 0.467 1.24                        | 3.12            | 8.27         |                                                 |                                                                                               | 138.00                                        | 105.10                                                        | 0.990  |
| $k_2/(10^{-3} dm^3)$<br>• mol <sup>-1</sup> • s <sup>-1</sup> ) | 0.757 1.45                        | 2.70            | 4.92         |                                                 |                                                                                               | 91.54                                         | 7.89                                                          | 0. 990 |
| $S_y/10^{-2}$                                                   | 6.80 4.00                         | 4. 20           | 6.00         |                                                 |                                                                                               |                                               |                                                               |        |

由表 2,4 可知: $\Delta^{*}H_{m,4} < \Delta^{*}H_{m,3}$ 。Hg(I)离子存在时,反应所需的能量低。因此,Hg(I)离子对 Zn(I)TPP 生成反应的催化作用大于 Cd(I)离子。

参考文献

[1]Lavallee, D. K. Coord. Chem. Rev., 1985, 61, 55.

[2]Dolphin, D. The Porphyrin, Academic press: New York, 1978,5,459.

[3]a. Tabata, M.; Tanaka, M. J. Chem. Soc. Commun., 1985, 42.

b. Tabata, M.; Tanaka, M. Anal. Lett., 1980, 13(A), 427.

c. Tabata, M. Analyst, 1987, 112, 141.

d. Tabata, M.; Tanaka, M. J. Chem. Soc., Dalton Trans., 1983, 1955.

e. Tanaka, M. Pure and Appl. Chem., 1983, 55, 151.

f. Tabata, M.; Miyata, W. Chem. Lett., 1991,785.

g. Tabata, M.; Ozutsumi, K. Bull. Chem. Soc. Jpn., 1994, 67, 1608.

[4] Robinson, L. R.; Hambright, P. Inorg. Cham. Acta, 1991, 185, 17.

[5]Adler, A. D. J. Org. Chem., 1967, 32, 476.

[6] Perrin, D. D.; Arovego, W. L. F.; Perrin, D. R. 著,时 雨译,实验室化学药品的提纯方法,第二版,北 京,化学工业出版社,1987,171.

[7] Moore, J. W. et al Kinetics and Mechanism, 3rd ed, 1981,70.

#### 无机化学学

第14卷

## THE KINETICS OF FORMATION REACTION OF TETRAPHENYLPORPHYRINATOZINC (I) IN THE PRESENCE OF CADMIUM (I) AND MERCURY (I) ION

报

Chen Zhenghua Zhu Zhiang Chen Hongwei Zhang Zhihui Ruan Wenjuan Chen Rongti (Department of Chemistry, NanKai Unwersity, Tianjin 300071)

Kinetics of formation reaction of tetraphenylporphyrinatozinc ( $\mathbb{I}$ ) in mixture of DMF and H<sub>2</sub>O has been studied spectrophotometrically in the presence of large cation M( $\mathbb{I}$ ) (M( $\mathbb{I}$ ) = cadmium ( $\mathbb{I}$ ) and mercury ( $\mathbb{I}$ ) ion). The mechanisms of reaction were prop sed.

| $M(I) + H_2 TPP \longrightarrow M * H_2 TPP$                  | $K_2$          |
|---------------------------------------------------------------|----------------|
| $M * H_2TPP + Zn(I) \longrightarrow Zn(I)TPP + M(I) + 2H^+$   | $k_3$          |
| $Zn(I) + H_2TPP \longrightarrow Zn * H_2TPP$                  | $K_1$          |
| $Zn * H_2TPP \longrightarrow Zn(I)TPP + 2H^+$                 | k <sub>i</sub> |
| $Zn * H_2TPP + Zn(I) \longrightarrow Zn(I)TPP + Zn(I) + 2H^+$ | $k_2$          |

The effect of temperature on the reaction has been investigated. The standard molar enthalpy change  $\Delta_r H_m^{\Phi}$  and standard molar entropy change  $\Delta_r S_m^{\Phi}$  of preequilibrium step and the activation parameters  $\Delta^{\neq} H_m$ ,  $\Delta^{\neq} S_m$  of elementary step have been calculated.

Keywords: tetraphenylporphyrin tetraphenylporphyrinatozinc (I) kinetics of formation reaction mechanism of reaction catalysis of Cd(I) and Hg(I) ion