首页 | 官方网站   微博 | 高级检索  
     

基于PVDF复合压电效应的低强度冲击波柔性测量
引用本文:范志强,常瀚林,何天明,郑航,胡敬坤,谭晓丽.基于PVDF复合压电效应的低强度冲击波柔性测量[J].爆炸与冲击,2023,43(1):73-85.
作者姓名:范志强  常瀚林  何天明  郑航  胡敬坤  谭晓丽
作者单位:1.中北大学理学院,山西 太原 030051
基金项目:国家自然科学基金(12072326);中国博士后科学基金(2021T140562);中北大学青年学术带头人支持计划(QX202003)
摘    要:为探索低强度冲击波的柔性测量技术,对PVDF(polyvinylidene fluoride)压力传感器开展冲击波加载和灵敏度标定实验,评估其低强度冲击波压力测量的可靠性。基于微结构设计改进薄膜传感器,获得适用于低强度冲击波压力测量的高灵敏柔性传感器,结果表明:单一压电工作模式的薄膜传感器测量低强度冲击波时有效输出电荷量和信噪比较低,测量结果容易受压电膜力电响应非线性、结构表面变形振动以及封装因素的影响,灵敏度系数不稳定、个体差异性大。采用周向固支的微结构设计能够将作用于薄膜传感器表面幅值较低的冲击波转换为幅值较高的面内拉应力,产生的复合压电效应可大幅提高传感器名义灵敏度系数、降低个体差异性。研制的柔性传感器在0.2~0.7 MPa压力范围内名义灵敏度约900~1 350 pC/N,相对测量误差不大于±13%。

关 键 词:冲击波  柔性测量  聚偏氟乙烯  复合压电效应  灵敏度系数
收稿时间:2022-04-11

Flexible measurement of low-intensity shock wave based on coupling piezoelectric effect of PVDF
Affiliation:1.School of Science, North University of China, Taiyuan 030051, Shanxi, China2.School of Aeronautics, Northwestern Poly technical University, Xi’an 710072, Shaanxi, China3.CAS Key Laboratory of Mechanical Behavior and Design of Materials, Hefei 230027, Anhui, China
Abstract:To explore the flexible measurement technology of low-intensity shock wave, the sensitivity calibration experiment was performed on PVDF (polyvinylidene fluoride) filmed pressure gauges by using a shock tube. The measurement reliability of flexible PVDF pressure gauge for low intensity shock wave was evaluated. To improve the measurement stability and sensitivity, the filmed pressure gauge was modified based on the microstructure design and obtained a flexible gauge with high force-electric sensitivity, which was more suitable for low-intensity shock wave measurement. It was found that the effective output charge caused by the out-of-plane shock wave and the signal-noise ratio were too low when the pressure gauge was in an individual piezoelectric mode that was mostly used in high intensity pressure measurement. The measurement results were significantly influenced by the nonlinear force-electric response of the piezoelectric membrane, the deformation and vibration of the structural surface, and the packaging factors inside the gauge. The effects of these factors led to unstable piezoelectric sensitivity and large discrepancy among different gauges when the gauges were used under low intensity pressure. By using the micro-structure design with circumferential fixed constraint on the filmed gauge, the low-intensity out-of-plane shock can be transformed into a high-amplitude in-plane tensile stress field in the PVDF filmed gauge, causing a coupling piezoelectric working mode. The coupling piezoelectric effect produced by the micro-structure can greatly improve the nominal sensitivity coefficient of the gauge and reduce the individual difference. The nominal sensitivity of the developed flexible gauge is about 900?1350 pC/N within the 0.2?0.7 MPa pressure range, which is about 40 times higher than that in the individual piezoelectric working mode. In addition, the relative measurement error can be controlled within ±13% under the coupling piezoelectric mode. The proposed flexible measurement method of low-intensity shock wave can provide effective design technique for the development of high-sensitive flexible devices which are suitable for shock wave monitoring of personnel equipment.
Keywords:
点击此处可从《爆炸与冲击》浏览原始摘要信息
点击此处可从《爆炸与冲击》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号