用几何画板动态演示 2017 年高考江苏物理卷第 15 题

罗志恒

(江苏省苏州第十中学 江苏 苏州 215006) (收稿日期:2017-06-14)

摘 要:用几何画板动态演示了2017年高考江苏物理卷第15题的物理过程,帮助学生建立清晰的几何图像,理清解题思路,在解决问题的过程中锻炼思维能力.

关键词:几何画板 动态演示 物理过程

【问题】(2017年高考江苏物理试题第 15 题) 一台质谱仪的工作原理如图 1 所示. 大量的甲、乙两种离子飘入电压为 U。的加速电场, 其初速度几乎为零, 经过加速后, 通过宽为L的狭缝MN 沿着与磁场垂直的方向进入磁感应强度为 B 的匀强磁场中, 最后打到照相底片上. 已知甲、乙两种离子的电荷量均为 +q,质量分别为 2m 和 m,图中虚线为经过狭缝左、右边界 M 和 N 的甲种离子的运动轨迹. 不考虑离子间的相互作用.

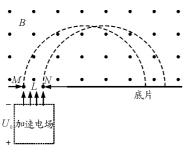


图 1 题图

- (1) 求甲种离子打在底片上的位置到 N 点的最小距离 x:
- (2) 在答题卡的图中用斜线标出磁场中甲种离子经过的区域,并求该区域最窄处的宽度 d;
- (3) 若考虑加速电压有波动,在($U_0 \Delta U$) 到 ($U_0 + \Delta U$) 之间变化,要使甲、乙两种离子在底片上 没有重叠,求狭缝宽度 L 满足的条件.

分析:本题涉及到的物理知识有离子经过加速 电场加速和离子经过匀强磁场偏转,物理知识比较 清晰,学生对这两个知识点也是比较熟悉的.

但是要解决第(2)和(3)小题,则需要学生有敏锐的几何图像观察能力和作图分析能力.

几何画板是一种操作简单、功能强大的数学软

件,尤其在动态作图方面有很好的实用效果.下面就用几何画板来动态演示这一问题.

(1) 如图 2 所示,甲离子经过电压为 U_0 的加速电场加速后,通过宽为 L 的狭缝 MN 沿着与磁场垂直的方向进入磁感应强度为 B 的匀强磁场,由于受到洛伦兹力作用做匀速圆周运动,从 M 点进入的甲离子运动到 M' 点,圆心为 O_1 ;从 N 点进入的甲离子运动到 N' 点,圆心为 O_2 .

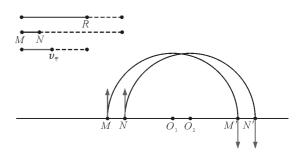


图 2 (1) 问分析图

因此甲种离子打在底片上的位置到 N 点的最小距离就是 M'N,即

$$M'N = MM' - MN$$
 $M'N = 2R_{\#} - L$ $qU_0 = \frac{1}{2}(2m)v_{\#}^2$ $Bqv_{\#} = 2m\frac{v_{\#}^2}{R_{\#}}$

因此可以求出最小距离

$$M'N = \frac{4}{B} \sqrt{\frac{mU_0}{q}} - L$$

(2)题目中给出的图像看不出甲种离子经过的 区域有最窄处,所以首先必须先找到该区域最窄处, 这有一定的难度.

选取M,N和MN的中点这3个点,用几何画板画出甲种离子进入匀强磁场区域后的轨迹,并把MN的距离L适当调大,便能清楚地看到线段EF就

是最窄处的宽度,如图 3 所示.

$$d = R_{\mathbb{H}} - \sqrt{R_{\mathbb{H}}^2 - \left(\frac{L}{2}\right)^2}$$

结合第(1) 小题求出的

$$R_{\scriptscriptstyle ||}=rac{2}{B}\sqrt{rac{mU_{\scriptscriptstyle 0}}{q}}$$

得
$$d = \frac{2}{B} \sqrt{\frac{mU_0}{a}} - \sqrt{\frac{4mU_0}{B^2 a} - \frac{L^2}{4}}$$

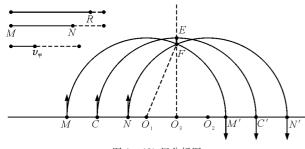
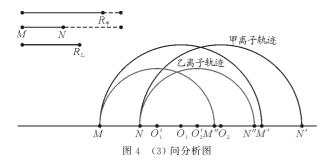



图 3 (2) 问分析图

(3) 甲、乙两种离子,经过同一加速电场加速,乙离子质量小,所以加速后乙离子的速度大,又因为偏转半径 $R = \frac{mv_0}{Ba}$,所以乙离子做圆周运动的半径小.

利用几何画板,分别画出甲、乙两种离子从 *M* 点和 *N* 点进入匀强磁场后的轨迹,如图 4 所示.

因为乙离子的偏转半径小,所以乙离子打到底片的 M''N'' 之间;因为甲离子的偏转半径大,所以甲离子打到底片的 M'N' 之间.

加速电压有波动,在(U_0 — ΔU)到(U_0 + ΔU)之间变化,对于同一种离子,加速电压越大,则加速后的速度越大,偏转半径越大.

要使甲、乙两种离子在底片上没有重叠,只要满足乙离子到达底片最远的距离小于甲离子到达底片 最近的距离,即

$$MN + NN''_{\text{max}} < MM'_{\text{min}}$$

 $MN + 2R_{Z,\text{max}} < 2R_{\Psi,\text{min}}$

当加速电压为 $U_0 - \Delta U$ 时,甲离子加速后获得的速度最小,对应到达底片的距离最近,即

$$R_{\mathrm{\#\,min}} = rac{2}{B} \sqrt{rac{m(U_{\mathrm{0}} - \Delta U)}{q}}$$

当加速电压为 $U_0 + \Delta U$ 时,乙离子加速后获得的速度最大,对应到达底片的距离最远,即

$$R_{\mathrm{Z\,max}} = \frac{1}{B} \sqrt{\frac{2m(U_{\mathrm{0}} + \Delta U)}{q}}$$

代入,可求得狭缝宽度 L 满足的条件,即

$$L < \frac{4}{B} \sqrt{\frac{m(U_0 - \Delta U)}{q}} - \frac{2}{B} \sqrt{\frac{2m(U_0 + \Delta U)}{q}}$$

结论:本题的难点就在于要把物理的动态过程 用几何图像反映出来,一旦有了清晰的几何图像,物 理问题就能很快求解出来.

一道物理问题的求解,离不开清晰的物理过程, 也离不开有力的数学工具的辅助.只有数、理的有机 结合,才能在解决问题的过程中锻炼思维能力.

Dynamic Demonstrating the 15th Questions of Physics Paper in 2017 Jiangsu College Entrance Examination Using Geometer's Sketchpad

Luo Zhiheng

(Suzhou No. 10 High School of Jiangsu Province, Suzhou, Jiangsu 215006)

Abstract: The paper dynamically demonstrates the physics process of 15th question of physics paper in 2017 Jiangsu college entrance examination using Geometer's Sketchpad, helps students to establish clear geometry image, clears problem – solving thinking, and trains the thinking ability in solving problems process.

Key words: Geometer's Sketchpad; dynamic demonstrating; physics process