首页 | 官方网站   微博 | 高级检索  
     


Magnetic Coupling Induced Self-Assembly at Atomic Level
Abstract:Developing accurate self-assembly is the key for constructing functional materials from a bottom-up approach.At present, it is mainly hindered by building blocks and driving modes. We design a new self-assembly method based on the magnetic coupling between spin-polarized electrons. First-principles calculations show that spinpolarized electrons from different endohedral metallofullerene(EMF) superatoms can pair each other to ensure a one-dimensional extending morphology. Furthermore, without ligand passivation, the EMF superatoms maintain their electronic structures robustly in self-assembly owing to the core-shell structure and the atomic-like electron arrangement rule. Therefore, it should noted that the magnetic coupling of monomeric electron spin polarization can be an important driving mechanism for high-precision self-assembly. These results represent a new paradigm for self-assembly and offer fresh opportunities for functional material construction at the atomic level.
Keywords:
本文献已被 CNKI 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号