首页 | 官方网站   微博 | 高级检索  
     


A simulation study of microstructure evolution during solidification process of liquid metal Ni
Authors:Liu Hai-Rong  Liu Rang-Su  Zhang Ai-Long  Hou Zhao-Yang  Wang Xin and Tian Ze-An
Affiliation:College of Materials Science and Chemical Engineering, Hunan University, Changsha 410082, China; Department of Physics, Hunan University, Changsha 410082, China
Abstract:A molecular dynamics simulation study has been performed for the microstructure evolution in a liquid metal Ni system during crystallization process at two cooling rates by adopting the embedded atom method (EAM) model potential. The bond-type index method of Honeycutt--Andersen (HA) and a new cluster-type index method (CTIM-2) have been used to detect and analyse the microstructures in this system. It is demonstrated that the cooling rate plays a critical role in the microstructure evolution: below the crystallization temperature $T_{\rm c}$, the effects of cooling rate are very remarkable and can be fully displayed. At different cooling rates of $2.0\times10^{13}$\,K\,$\cdot$\,s$^{-1}$ and $1.0\times10^{12}$\,K\,$\cdot$\,s$^{-1}$, two different kinds of crystal structures are obtained in the system. The first one is the coexistence of the hcp (expressed by (12 0 0 0 6 6) in CTIM-2) and the fcc (12 0 0 0 12 0) basic clusters consisting of 1421 and 1422 bond-types, and the hcp basic cluster becomes the dominant one with decreasing temperature, the second one is mainly the fcc (12 0 0 0 12 0) basic clusters consisting of 1421 bond-type, and their crystallization temperatures $T_{\rm c}$ would be 1073 and 1173\,K, respectively.
Keywords:liquid metal Ni  cooling rate  crystallization process  microstructure evolution  molecular dynamics simulation
点击此处可从《中国物理 B》浏览原始摘要信息
点击此处可从《中国物理 B》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号