首页 | 官方网站   微博 | 高级检索  
     


Energy diffusion controlled reaction rate in dissipative Hamiltonian systems
Authors:Deng Mao-Lin and Zhu Wei-Qiu
Affiliation:Department of Mechanics, State Key Laboratory of Fluid Power Transmission and Control, Zhejiang University, Hangzhou 310027, China
Abstract:In this paper the energy diffusion controlled reaction rate in dissipative Hamiltonian systems is investigated by using the stochastic averaging method for quasi Hamiltonian systems. The boundary value problem of mean first-passage time (MFPT) of averaged system is formulated and the energy diffusion controlled reaction rate is obtained as the inverse of MFPT. The energy diffusion controlled reaction rate in the classical Kramers bistable potential and in a two-dimensional bistable potential with a heat bath are obtained by using the proposed approach respectively. The obtained results are then compared with those from Monte Carlo simulation of original systems and from the classical Kramers theory. It is shown that the reaction rate obtained by using the proposed approach agrees well with that from Monte Carlo simulation and is more accurate than the classical Kramers rate.
Keywords:quasi Hamiltonian system  Kramers reaction rate theory  mean first-passage time    stochastic averaging
本文献已被 维普 等数据库收录!
点击此处可从《中国物理 B》浏览原始摘要信息
点击此处可从《中国物理 B》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号