超声频谱法在换热器内管壁厚测量中的应用

陶良 田浩 王萍萍 郭重雄

(哈尔滨工业大学 哈尔滨 150001) 1996 年 3 月 29 日收到

摘要 本文研究了超声频谱测厚方法在换热管壁厚测量中的应用,介绍了处理方法的基本原理以及 硬件系统的构成,并对一些实验测厚结果进行了分析. 关键词 超声,管壁测厚,频谱分析

Application of ultrasonic spectral analysis method to measuring the thickness of heat-exchanger pipe

Tao Liang, Tian Hao, Wang Pingping, Guo Zhongxiong

(Harbin Institute of Technology, Harbin 150001)

Abstract This paper studies the application of ultrasonic spectral analysis method to measuring the thickness of heat-exchanger pipe, presents the principle of the method and the composition of the hardwar system, and discusses some experimental thickness measuring results.

Key words Ultrasound, Pipe thickness measurement, Spectral analysis

1 前言

理想情况下或测试条件较好时,超声测厚 可采用脉冲反射法^[1].在本文涉及的换热器内 管壁厚超声测定中,由于超声传感器在内管中 水流冲击下作高速旋转和轴向运动,同时由于 钢水界面的声反射率很高、管内壁粗糙、传感 器与被测管难以保证严格同轴以及水流中微小 气泡和颗粒的散射等原因,实际接受的回波信 号信噪比不高、幅度变化较大,难以直接由时 域信号脉冲间隔测量厚度.而超声束在管壁中 的多次反射产生的回波具有严格的重复性,其 频率处出现共振峰值^[2-4],利用这些峰值计算 厚度,其结果的分辨率有显著的提高,且对时 域噪声的敏感性也大大降低.采用频谱测厚方 法,理论和实验均证实了该方法的可靠性和可 行性.

2 原理^[4]

对于图 1 所示, 第 n 次外表面反射回波声 压

$$s_n(t) = T_{1,2}T_{2,1}(R_{2,1}R_{2,3})^{n-1}R_{2,3}\frac{1}{R_{1,2}} \cdot s_0(t-n\tau)$$
(1)

其中 7 是相邻反射回波脉冲的时间间隔

$$\tau = \frac{2d}{c} \tag{2}$$

T 是声压透射率, R 是声压反射率, 下标1表

应用声学

示水、2表示钢、3表示空气.

其 Fourier 变换谱为:

$$T_{1.2} = \frac{2Z_2}{Z_1 + Z_2}, \quad T_{2.1} = \frac{2Z_1}{Z_1 + Z_2} \quad (3)$$

$$R_{1.2} = \frac{Z_2 - Z_1}{Z_1 + Z_2} = -R_{2.1} = R,$$

$$R_{2.3} = \frac{Z_3 - Z_2}{Z_2 + Z_3} \approx -1 \quad (4)$$

式中 Z_i 是介质的声阻抗,这样,总的回波信号 声压可表示为:

$$s(t) = \sum_{n=0}^{\infty} s_n(t)$$

= $s_0(t) - \sum_{n=1}^{\infty} (1 - R^2) R^{n-2} s_0(t - n\tau)$
(5)

对于接收到的总回波信号,只利用外表面的多次反射信号,并考虑到数据采集长度的限制, 待处理的回波信号为:

$$a(t) = s(t) - s_0(t)$$

= $-\sum_{n=1}^{N} (1 - R^2) R^{n-2} s_0(t - n\tau)$
(6)

$$A(v) = -\sum_{n=1}^{N} (1 - R^2) R^{n-2} S_0(v) \exp(-2i\pi v n\tau)$$

= $-\frac{(1 - R^2) \exp(-2i\pi v \tau)}{R[1 - R\exp(-2i\pi v \tau)]} s_0(v)$
[$1 - R^N \exp(-2ni\pi v \tau)$]
= $S_0(v) \cdot M(v)$ (7)

其中 M(v) 的能谱具有图 2(a) 的形式,在 $v_j = j/\tau (j = 0, 1, 2, \cdots)$ 处出现尖锐的共振峰 值.

*S*₀(*v*) 表示聚焦探头发射的超声脉冲由内 表面反射回来的回波信号频谱,这样得到的 *A*(*v*) 是一个带宽受限信号,如图 2(b),对 *A*(*v*) 进行如下的逆滤处理:

$$\|A'(v)\|^{2} = \|A(v)\|^{2} \left[\frac{\|S_{0}(v)\|}{\|S_{0}(v)\|^{2} + \lambda}\right]^{2}$$
(8)

其中 λ 是降低逆滤波处理对实际信号噪声敏感 性的常数,其取值与具体的检测传感器及信号 接收系统有关,可通过实验获得.

在 $||A'(v)||^2$ 中测得两相邻极值点的间距 △v, 如图 2(b), 管壁厚度即可由下式求出.

$$d = \frac{c}{a \triangle v} \tag{9}$$

图 1 管壁对超声波反射模型和波形 (a) 超声束在管壁内的多次反射和透射 (b) 理想情况下接收到的波形

?1994-2017 China Academic Journal Electronic Publishing House. All rights reserved. http://www.cnki.net

 $\cdot 22 \cdot$

图 2 多次反射回波能谱的共振峰 (a) ||M(v)||² (b)quad (1)||A(v)||²; (2)||S₀(v)||²

3 装置

基于超声频谱测厚方法,作者所研制的"换 热器内管壁厚超超声测定仪"已通过鉴定,正 式投入北京燕山石化的换热器检修应用中.如 图3所示,整个系统从结构上分成测控仪器和 水枪传感器两大部分,在功能上,可具体分为 传感器、送线机构、水枪、超声波发射和接收 装置、数据采集、时序控制、信号分析、微机 和软件系统九个主要部分.

其中, 传感器主要由超声波聚焦换能器、 壳体、 45° 声反射镜、叶轮、轴承和支撑弹簧 片构成 (结构如图 4). 超声波换能器采用高频 宽带换能器, 中心频率 10MHz,并带有焦点在 被测管壁的聚焦透镜; 壳体上加工有水流导向 槽以增加叶轮转动效率,整个传感器在水流冲 击下沿内管中心轴线前进,从超声聚焦探头发 射的超声脉冲经 45°反射镜反射后沿内管的半 径方向垂直入射管壁,壁内外表面多次反射的 回波沿原路返回,被超声换能器接收.叶轮在 水流作用下带动 45°声反射镜旋转,使发射和 接收声束沿被测管做螺旋线式扫查.弹簧支持 架则保持传感器的中心轴线尽可能和内管中心 轴线重合.

仪器工作时,超声传感器发射并接收超声 信号,经 50MHz 高速数据采集卡实时将该信 号数字化,由 FFT 处理卡作信号频谱分析,最 后由软件系统对所获得的厚度数据进行统计分 析.

图 3 仪器系统结构框图

应用声学

· 23 ·

4 测试及结果分析

利用"换热器内管壁厚超声测定仪",对几 种用实际使用的换热管加工而成的试块进行了 实验、并在北京燕山石化现场对在线换热器的 部分换热管进行了测试、以下给出的就是部分 实验的统计分析结果:

(1) 试管类型:	内、外表面都加工
标称壁厚:	0.8mm
测试方式:	轴向定位,圆周扫查
统计结果:	0.8mm 占 100%
(2) 试管类型:	外表面加工、内表面腐蚀严

重

标称壁厚: 1.0mm

测试方式:轴向定位、圆周扫查

统计结果: 0.8mm 占 81%, 1.0mm 占 19%

(3) 试管类型: 4m 实际换热管, 无严重腐

蚀

标称壁厚: 2.0mm

测试方式: 实测方式 (传感器 4m/min 前进、圆周扫杏)

统计结果: 1.8mm 占 7.0%, 2.0mm 占 62.3%, 2.2mm 占 30.7%

基于实用性考虑、"换热器内管壁厚超声 测定仪"的检测结果以内管壁厚的统计分布形 式给出 – 即在给定长度的换热管中测量厚度为 某一值的测量点数在测量总点数中所占的百分 比来表示 (在实际应用中厚度分布按每米分段 或者管总长两种方式给出厚度统计分布结果), 其中、厚度统计以 0.2mm 为步距计算.

实验中所用的1号、2号试管均由实际换 热管加工,由于原管材存在一定的椭圆度、偏 心度以及再加工误差,使试管各点的厚度难以 保证与标称值完全一致, 整体厚度也与标称值 相比存在或大或小的偏差.

1号0.8mm 试管内、外表面都进行了加工 处理、各点管壁厚度值偏差较小、多次重复实 验结果的壁厚分布均在 0.7mm~ 0.9mm 之间 (以 0.2mm 为步距的统计结果 0.8mm 项均占 100%);

对1号、2号试管的测试结果中给出的时 域波形和滤波频谱 (图 5 及图 6) 是测厚算法的 中间结果的定性显示,实际检测过程中各检测 点的时域回波信号变化较大、这里每根管只给 出了一个随机截取的波形.对时域波形中、难 以分辨各次反射的信号,而相应的滤波频谱则 可看出明显的峰值,可用来容易地计算厚度, 稳定、准确的检测结果表明仪器的最小测厚可 达 0.8mm.

图 4 0.8mm 试管测试随机截取波形及其频谱

16卷6期

· 24 ·

实验中使用的 3 号管是一段 4m 实际换热管,管壁有轻微锈蚀,出厂标称壁厚 2.0mm,用超声波测厚仪在管外壁多处测得厚 度为 2.1mm(误差 ±0.1mm).实验中按现场检 测步骤操作,以 4m/min 的速度送线,使声束 对管壁进行螺线式全面扫查,检测结果重复性 好,数值与实际壁厚相符.

5 结论

使用相同超声传感器,在同样条件下测同 一根管的厚度,由时域信号脉冲时间间隔测量 厚度,统计测量准确率不足 30%;由频谱法测 厚,统计准确率超过 90%.这些实验结果表明 了采用频谱测厚对表面粗糙、噪声干扰严重的 对象的有效性.

基于频谱测厚方法所研制的"换热器内管 壁厚超声测定仪"针对当前检测对象的特点, 把测量结果以厚度分布的形式给出,能够满足 对换热管减薄状况评价的实际应用需要.

参考文献

- (1) 蒋危平,方京,超声检测学,武汉:武汉测绘科技大学 出版社, 1991:223-225.
- (2) Paradis L, Serruys Y, and Saglio R. Materials Evaluation, 1986, 44(10):1344-1349.
- (3) Kinra V K, Iyer V R, Ultrasonics. 1995, 33(2):95-109.
- (4) Kinra V K, Dayal V. Exp. Mech., 1988, 28:288-297.

(上接第 42 页)

- [8] Wang C Y. J. Acoust. Soc. Am., 1982, 71(3):580-584.
- [9] Lee C P, Wang T G. J.Acoust. Soc. Am., 1988, 83(4):1324-1331.
- [10] Kim S K, Troesch A W. Phys.Fluid, 1989, A1(6):975-985.
- [11] Makarov S N, Semenova N G, Smirnov V E, et al. Fluid Dyn. 1989,24 (6):823-826.
- [12] Wu JunRu, Du Gonghuan, Ultrasound Med. Biol. 1993, 19(2):167-176.
- [13] Starritt H C, Duck F A, Humphery V F. Ultrasound Med. Biol. 1989, 15(4):363-373.
- [14] Kamakura T, Matsuda K, Kumamoto Y. J. Acoust.

Soc. Am. 1995,97(5): 2740-2746.

- [15] 明晓, 戴昌晖, 史胜熙. 力学学报, 1992, 24(1):48-53
- [16] Barnett S B, Ter G R Haar, Ziskim M C, Ultrasound Med. Biol., 1994, 20(3):206-217.
- [17] Miller. Ultrasound Med.Biol., 1987, 13(5):443-470.
- [18] Lysenko Y A, Petrash V V, Semenova N G. Sov. Phy. Acoust. 1992, 38 (2):173-177.
- [19] Wu Junru, Winkler A J, O'Neill T P. Ultrasound Med. Biol. 1994, 20 (2):195-201.
- [20] Holmer N G, Almquist L O, Hertz T G. Ultrasound Med, Biol., 1991, 17 (5):479-489.

 $\cdot 25 \cdot$