基元因子对相控接收阵指向性增益的影响

耿 成 徳

(七一五研究所)

1982年3月17日收到

本文对几种常见的较简单的基元因子,给出了二维相控平面格阵指向性增益随相控角的变化公式, 同时对相应的线列阵也进行了讨论.为比较起见,还给出了各向同性基元时的情况.最后给出了数值 结果,进行了分析,得出了一些有益的结论.

一、引 言

众所周知, 指向性增益或指向性指数 DI, 是指向性系数 (D) 的分贝值. 不难证明, 对单 向性信号来说, 在均匀各向同性噪声场中, 它与 用基阵信噪比空间增益所表示的阵增益是一致 的.

本文讨论的是离散型平面格阵.在公式的 推导中未专门计及阵中基元间的互耦合效应, 而认为在接收阵中的这种较弱的互耦效应以及 实际障板对声场的影响都反映在基元因子的改 变上.

本文首先给出了基元具有方向性时平面格 阵的空间方向性公式,然后根据定义推导出了 平面格阵相控时的指向性系数的一般表达式, 继而对三种较理想的基元因子进行了具体的公 式推导,从而得出了较明显的、有利于计算的函 数表示式,并作了数值计算. 在结果的分析 中,对线列阵特例,其端射增益比旁射增益增加 3dB 的条件、机理,用示意图作了几何解释.

二、一般情况下指向性系数 公式的推导

指向性系数是在选定方向上,从空间的一 定体积中接收能量或集中辐射能量的度量,也

• 24 •

是基阵抗干扰能力的一种度量,它被定义为选 定(相控角 θ_0 、 ϕ_0)方向上的功率密度除以基 阵的平均功率密度,一般它可写为:¹¹

$$D(\theta_0, \phi_0) = \frac{4\pi}{\int_0^{\pi} \int_0^{2\pi} R^2(\theta, \phi, \theta_0, \phi_0) \sin \theta d\theta d\phi}$$
(1)

当我们讨论的是如图 1 所示的由相同基元(其 固有振幅与相位一致)组成的矩形平面格阵时, 上式中的

图 1 基阵坐标图

 $R(\theta, \phi, \theta_0, \phi_0) = G_0(\theta) R_x(\theta, \phi, \theta_0, \phi_0) R_y$ $\times (\theta, \phi, \theta_0, \phi_0) \qquad (2)$ $G_0(\theta) = G(\theta)/G(\theta_0) \qquad (3)$

 $R_x(\theta, \phi, \theta_0, \phi_0)$ 和 $R_y(\theta, \phi, \theta_0, \phi_0)$ 分别为沿 x 轴和 y 轴的线性基阵的基阵因子, $G(\theta)$ 为 基元因子. 当把(2)式代人(1)式, 经过一些积

3 卷 1 期

分运算后,便可得到矩形平面格阵指向性系数 的一般公式来.

$$D(\theta_{0}, \phi_{0}) = MND_{0}G^{2}(\theta_{0})$$

$$\times \left[1 + \frac{2D_{0}}{M} \sum_{m=1}^{M-1} (M-m) \cos(Z_{mx} \sin \theta_{0} \cos \phi_{0})F_{m} + \frac{2D_{0}}{N} \sum_{n=1}^{N-1} (N-n) \cos(Z_{ny} \sin \theta_{0} \sin \phi_{0})F_{n} + \frac{4D_{0}}{MN} \sum_{m=1}^{M-1} \sum_{n=1}^{N-1} (M-m)(N-n) \cos(Z_{mx} + \sin \theta_{0} \cos \phi_{0}) \cos(Z_{ny} \sin \theta_{0} \sin \phi_{0})F_{mn}\right]^{-1}$$

$$\times \sin \theta_{0} \cos \phi_{0}) \cos(Z_{ny} \sin \theta_{0} \sin \phi_{0})F_{mn}\right]^{-1}$$
(4)

式中 M、N 分别为
$$x$$
 轴和 y 轴上的基元数
D₀ = 2 $/\int_{0}^{x} G^{2}(\theta) \sin \theta d\theta$ ——基元的轴向指向

$$F_m = \frac{1}{2} \int_0^{\pi} G^2(\theta) J_0(Z_{mx} \sin \theta) \sin \theta d\theta, \quad (6)$$

$$F_{n} = \frac{1}{2} \int_{0}^{\pi} G^{2}(\theta) J_{0}(Z_{ny} \sin \theta) \sin \theta d\theta, \qquad (7)$$

$$Z_{mx} = mKd_x, \qquad (8)$$

$$Z_{sy} = nKd_y, \qquad (9)$$

$$F_{mn} = \frac{1}{2} \int_0^{\infty} G^2(\theta) J_0(K d_{mn} \sin \theta) \sin \theta d\theta, \quad (10)$$

 $d_{mn} \leftarrow \sqrt{(md_x)^2 + (nd_y)^2} - -- 第 mn 个基元中$ 心到坐标原点的距离(11)

K 为波数, d_x 和 d_y 分别为 x 轴和 y 轴上的基元间隔.

三、几个特定基元因子下的结果

1. 假定平面格阵由全向均匀辐射的各向同 性点源组成,这是一种最理想化的情况,即令

$$G(\theta) = G_i(\theta) = 1.$$
(12)

将上式分别代人(5),(6),(7)和(10)式进行 积分,再将积分结果代人(4)式,并令 $\phi_0 = 0^\circ$, 即波束只在水平方向上相控,立即得到点**源组** 成的矩形平面相控格阵指向性系数的具体表示 式:

应用声学

$$D_{1}(\theta_{0}) = MN \left[1 + \frac{2}{M} \sum_{m=1}^{M-1} (M-m) \frac{\sin (Z_{mx})}{Z_{mx}} \cos(Z_{mx} \sin \theta_{0}) + \frac{2}{N} \sum_{n=1}^{N-1} \frac{\sin (Z_{ny})}{Z_{ny}} + \frac{4}{MN} \sum_{m=1}^{M-1} \sum_{n=1}^{N-1} \frac{\sin (Z_{ny})}{Kd_{mn}} + \frac{2}{MN} \sum_{m=1}^{N-1} \sum_{n=1}^{N-1} \frac{\sin (Kd_{mn})}{Kd_{mn}} \times \cos (Z_{mx} \sin \theta_{0})\right]^{-1}$$
(13)

式中的 Z_{mx}, Z_n, 和 d_{mn} 分别由(8),(9)和(11) 式给出.

2. 在多数实际应用中,选择基元因子使得
 它在 Z < 0 的半空间内给出的辐射可以忽略,
 指向 于是我们首先假定基元因子为如下的余弦
 (5) 型⁽²⁾:

$$G(\theta) - G_2(\theta) = \begin{cases} \cos\theta & \le 0 \le \theta \le \pi/2 \\ 0 & \le \pi/2 < \theta \le \pi. \end{cases}$$
(14)

同样计算,并只考虑在水平方向上相控,便可得 到由具有余弦型的方向性基元组成的相控矩形 平面格阵的指向性系数表示式:

$$D_{2}(\theta_{0}) = 6MN\cos^{2}(\theta_{0}) \left[1 + \frac{12}{M} \sum_{m=1}^{M-1} (M-m)\cos(Z_{mx}\sin\theta_{0})F_{m2} + \frac{12}{N} \sum_{n=1}^{N-1} (N-n)F_{n2} + \frac{24}{MN} \sum_{m=1}^{M-1} \sum_{n=1}^{N-1} (M-m)(N-n)\cos(Z_{mx}\sin\theta_{0}) \times F_{mn2}\right]^{-1}.$$
(15)

式中

$$F_{m2} = \frac{1}{2(Z_{mx})^2} [\sin(Z_{mx})/Z_{mx} - \cos(Z_{mx})],$$
(16)

$$F_{n2} = \frac{1}{2 (Z_{ny})^2} [\sin(Z_{ny})/Z_{ny} - \cos(Z_{ny})],$$
(17)

$$F_{mn2} = \frac{1}{2(Kd_{mn})^2} \left[\sin{(Kd_{mn})} / Kd_{mn} \right] \cdot 25$$

$$G(\theta) = G_{3}(\theta) = \begin{cases} (1 + \cos\theta)/2 & \text{if } 0 \leq \theta \leq \pi/2 \\ 0 & \text{if } \pi/2 < \theta \leq \pi \end{cases}$$
(19)

经过完全类似的计算,便得到由倾斜因子组成 的平面格阵波束相控时的指向性系数:

$$D_{3}(\theta_{0}) = 6MN(1 + \cos\theta_{0})^{2} \left[7 + \frac{48}{M} \sum_{m=1}^{M-1} (M - m)\cos(Z_{mx}\sin\theta_{0})F_{m3} + \frac{48}{N} \sum_{n=1}^{N-1} (N - n)F_{n3} + \frac{96}{MN} \sum_{m=1}^{M-1} \sum_{n=1}^{N-1} (M - m) (N - n)\cos(Z_{mx}\sin\theta_{0})F_{mn3}\right]^{-1}.$$
 (20)

式中

$$F_{m3} = \frac{1}{8} \left\{ \sin (Z_{mx}) / Z_{mx} + 2J_1(Z_{mx}) / Z_{mx} + \frac{1}{(Z_{mx})^2} [\sin (Z_{mx}) / Z_{mx} - \cos (Z_{mx})] \right\},$$
(21)

$$F_{n3} = \frac{1}{8} \left\{ \sin (Z_{ny}) / Z_{ny} + 2J_1(Z_{ny}) / Z_{ny} + \frac{1}{(Z_{ny})^2} \left[\sin (Z_{ny}) / Z_{ny} - \cos (Z_{ny}) \right] \right\}, \qquad (22)$$

$$F_{mn3} = \frac{1}{8} \left\{ \sin (Kd_{mn}) / Kd_{mn} + 2J_1(Kd_{mn}) / Kd_{mn} + \frac{1}{(Kd_{mn})^2} \right\}$$

$$\times \left[\sin (Kd_{mn}) / Kd_{mn} - \cos (Kd_{mn}) \right] \left\}.$$
(23)

 $J_1(x)$ ——宗量为x的一阶贝塞尔函数.

只要在(13),(15)和(20)式中,令 N = 1, 便立即分别得到由具有不同方向性基元组成的 均匀间隔相挖线列阵的指向性系数.

按定义 DI = $10 \log D(\theta_0)$,就可得到各种 相应情况下的指向性增益随相控角的变化公式

四、数值结果与分析

来.

我们同时对三个公式[(13),(15)和(20)] 在许多不同的限制条件下用 ALGoL 60 语言 程序设计进行了不同组合的数值计算. 图中标 的参数 d₀ 是以波长计的基元间隔; DI₁, DI₂ 和 DI₃ 分别表示由 D₁(θ₀), D₂(θ₀)和 D₃(θ₀)算 得的分贝值,并分别用实线、虚线和点划线表示 之.

1. 首先讨论线列阵, 即 N = 1 时的情况.

(1) 由图 2 和图 3 的曲线表明, 4 当基元 因子是点源时,此时的指向性增益 DL, 只有 在基元间隔等于半波长的整数倍时才与相控角 无关.一般情况下,它随相控角的增大而增大. 特别是,当基元数较多且基元间隔接近于半波 长时,端射($\theta_0 = 90^\circ$)时的增益比旁射($\theta_0 =$ 0°)时的大 3dB. 这可作如下的解释^[3]. 我们 在半径 R = 1 的球上(见图 4),用两个圆锥形 面 (所通过的表面值为 0.707) 和球的环形部分 代表空间方向特性. 线列阵的指向性系数与方 向特性平方的积分(亦即球带的面积)成反比。 東宽Δ随相控角的增大按 secθ。的规律增加, 而其圆周的平均长 $2\pi b$ 按 $\cos\theta_0$ 规律减小, 所以球带的面积,亦即指向性系数仍保持不变. 但是从某 θ 。角开始,内部的圆锥闭合成一条线 了,且球带(现在甚至变成一个球缺了)的面积 开始减小,因而指向性系数就增加了. 当利用 旁射与端射情况下表示波束宽的近似公式时, 很容易计算出 $\theta_0 = 0^\circ$ 时球带的 面积 同 $\theta_0 =$ 90° 时球缺的面积比来. 这个比值等于2,它 与端射时的指向性增益比旁射时的大 3dB 的结 论是一致的.

当取第二种基元因子时,不论基元间隔是 接近半波长或等于半波长,当 $\theta_0 < 60^\circ$, DI₂缓 慢减小,当 $\theta_0 > 60^\circ$ 后, DI₂迅速下降至零. 基阵线度愈长开始变化很小,后来则急剧下降. 对第三种基元因子,当 $\theta_0 < 60^\circ$, DI₃变化不 大,当 $d_0 = 0.375$, $60^\circ < \theta_0 < 90^\circ$, DI₃开始

3 卷 1 期

?1994-2015 China Academic Journal Electronic Publishing House. All rights reserved. http://www.cnki.net

• 26 •

稍微增大而后下降; 当 d₀ = 0.5, 则曲线平滑 下降.由此看来,对大的相控角(比如 $\theta_0 > 60^\circ$ 后),基元因子愈锐,则指向性增益下降愈快。 这是由于当大角度相控时,由于乘积定理的结 果,锐的基元因子辐射能量很小,甚至无辐射, 从而使基阵的相控方向与实际达到的主波束方 向产生偏移,这就是指向性增益随相控角增大 而下降的原因. b不论相控角 θ 。为何值,当基 元因子为点源时,且 $d_0 = 0.5i(i = 1, 2, \dots, n)$ 就可得到通常所说的最大的 指向性增益,即 (DI)max = 10 lg M (从公式 (13), 是显 而 易 见 的). 其物理意义也是很明显的: 它是无束控 下,信号全相关,基阵完全补偿噪声完全独立时 的自然结果,这意味着此时信号能量是按振幅 应用声学

相加,而噪声能量是按功率相加的. *c* 对旁侧 基阵或相控角度不太大时,基元因子愈锐,指向 性增益愈大,这就是所谓采用方向性基元改善 基阵性能的一个措施,这点与早年的AD报告⁽⁴⁾ 中阐述的一致.

(2) DI₂ 的数值结果与变化规律同 B. B.
 Меркулов 给出的结果^ш是一致的.

2. 其次讨论平面格阵

(1) 从图 2,图 3 看出: 4 不论对哪一种 基元因子,若 $d_0 = 0.5$,则 DI 值皆随 θ_0 的增 大而减小;端射时最小,除第二种基元因子外, 导致减小的原因是如同线列阵一样,因为此时 在相控角的另一方出现了栅瓣. 若 $d_0=0.375$, 在 $\theta_0 < 60^\circ$ 范围内 DI 值逐渐减小,当 $\theta_0 >$

图 4 用来说明指向性系数与相控角的关系图

60°后, DI₁ 从小增大; DI₂一直减小到零; DI₃ 平稳减小. 6 M、N 增大, DI 值增大,但并不 改变图形的基本变化规律. c对同一相控角,

· 28 ·

M不变,N增大(即增加垂直方向性时),指向性 增益增大,这说明垂直方向性的增强提高了抗 垂直方向干扰的能力;N不变,M增大时,增益 也增大,道理是相同的.当然,更直观些,不管 哪种情况都使基阵的有效尺寸增大,所以增益 增大.

(2) 从图 3(c) 和图 3(d) 看出,一般来 讲,40愈大, DI 值愈大. 但对第三种基元因子 而言,当取 40 = 0.5,端射时的 DI₃比旁射时低 9.6dB, 而 40 = 0.375 时仅低 6.2dB.

(3)为明显起见,我们取两种基元因子,间 隔 $d_0 = 0.375$,选两组平面格阵计算数值列于 表 1 中,其中令 ΔDI 为旁射增益值与端射增

3 卷 1 期

м	N	<i>△Dl</i> (dB)	
		$G_{i}(\theta)$	G ₃ (θ)
5	5	0.70	4.04
	10	1.01	4.29
	20	1.20	4.41
10	5	1.73	4.26
	20	2.43	4.83
	30	2.52	4.89

表1 指向性增益差

益值之差.

从表 1 看出,不论对哪种基元因子,当水平 线度不变时,增长垂直线度会使得端射时的增 益比旁射时更低.这同基元因子愈尖使指向性 增益愈下降的道理完全相同.因为N的增大使 基元因子在垂直方向的波瓣变瘦了,N愈大瘦 得愈励害,增益下降亦愈多.我们还看出,对同 样的 M 和 N,基元因子愈尖,下降亦愈励害.

五、几点结论

 对无方向性基元组成的线列阵,当基元 间隔小于半波长时,其指向性增益随相控角的 增大而增大;只有当基元间隔等于半波长的整 数倍时才与相控角无关.

2. 由方向性基元组成的线列阵,其增益随 相控角的增大而下降.下降的快慢视基元因子 的钝锐程度而定.

3. 对平面格阵无论基元因子如何,无论基 元间隔取何值,指向性增益与相控角有关,且 随着相控角的增大,其总的趋势是减小,其减小 快慢亦视其基元因子而定.端射时总是比旁射 时低(这点与按 R.S. Elliot⁽⁵⁾)附录中给出的公 式所绘图形(图 5)的结论是一致的),其相对差 值与基元间隔、基元因子有关. 基元间隔看来 取接近于半波长的为好.

总而言之,对于实际的相控阵,基元总是有 方向性的.为使得在大相控角下增益损失不要 太大,除了选择适当的基元间隔外,更重要的是 要从换能器结构,障板材料与性能上进行改进, 使上阵后的基元因子尽可能地钝;但对于非相 控或相控角度不太大的基阵来说,为提高指向 性增益倒是要基元因子愈尖愈好.

另外,需要指出的是,本文讨论的是相控方 位上的增益变化. 而实际上,由于基元具有方 向性,会使基阵的主波束方位产生偏离. 因此, 通过一定的公式修正后,还可计算出基阵波束 实际到达方位上的增益变化来.

最后还需指出的是,若对相控发射阵,只要 预先对阵中的各基元在不同相控方位上实现了 速度控制,则本文推导的公式及相应结论仍然 是适用的.

图 5 D/D。与基阵长度的关系曲线 D——端射时平面 阵的指向性系数 D。——旁射时平面阵的指向性系数

导出的公式底稿曾请"哈船院"何祚镛教授看过,得到他 有益的指正;在公式推导过程中同费国强同志进行过有益的 讨论;在程序编制及计算过程中曾得到徐贤金同志的大力协 助,在此一并表示感谢。

- [1] В. В. Меркупов, Радиотехика и электороника, вып. 1, 1974, 20-29.
- [2] Э. Л. Вяноградова, В. В. Фурдуев, Акуст. Ж. 12-2 (1966), 181.
- [3] М. Д. Смарышев, «Судосуроение», Л, изд-во, 1973.
- [4] AD418,408,
- [5] R. S. Elliot, Microwave Journal, 6(1963), 53-60 and 7(1964), 74-82.

应用声学