首页 | 官方网站   微博 | 高级检索  
     


Magnetic entropy change involving martensitic transition in NiMn-based Heusler alloys
Authors:Hu Feng-Xia  Shen Bao-Gen  Sun Ji-Rong
Affiliation:State Key Laboratory for Magnetism, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
Abstract:Our recent progress on magnetic entropy change (ΔS) involving martensitic transition in both conventional and metamagnetic NiMn-based Heusler alloys is reviewed. For the conventional alloys, where both martensite and austenite exhibit ferromagnetic (FM) behavior but show differentmagnetic anisotropies, a positive ΔS as large as 4.1 J·kg-1·K-1 under a field change of 0–0.9 T was first observed at martensitic transition temperature TM ~ 197 K. Through adjusting the Ni:Mn:Ga ratio to affect valence electron concentration e/a, TM was successfully tuned to room temperature, and a large negative ΔS was observed in a single crystal. The -ΔS attained 18.0 J·kg-1·K-1 under a field change of 0–5 T. We also focused on the metamagnetic alloys that show mechanisms different from the conventional ones. It was found that post-annealing in suitable conditions or introducing interstitial H atoms can shift the TM across a wide temperature range while retaining the strong metamagnetic behavior, and hence, retaining large magnetocaloric effect (MCE) and magnetoresistance (MR). The melt-spun technique can disorder atoms and make the ribbons display a B2 structure, but the metamagnetic behavior, as well as the MCE, becomes weak due to the enhanced saturated magnetization of martensites. We also studied the effect of Fe/Co co-doping in Ni45(Co1-xFex)5Mn36.6In13.4 metamagnetic alloys. Introduction of Fe atoms can assist the conversion of the Mn–Mn coupling from antiferromagnetic to ferromagnetic, thus maintaining the strong metamagnetic behavior and large MCE and MR. Furthermore, a small thermal hysteresis but significant magnetic hysteresis was observed around TM in Ni51Mn49-xInx metamagnetic systems, which must be related to different nucleation mechanisms of structural transition under different external perturbations.
Keywords:magnetic entropy change  martensitic transition  NiMn-based Heusler alloys
本文献已被 CNKI 维普 等数据库收录!
点击此处可从《中国物理 B》浏览原始摘要信息
点击此处可从《中国物理 B》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号