首页 | 官方网站   微博 | 高级检索  
     


Observation of hopping transitions for delocalized electrons by temperature-dependent conductance in silicon junctionless nanowire transistors
Abstract:We demonstrate transitions of hopping behaviors for delocalized electrons through the discrete dopant-induced quantum dots in n-doped silicon junctionless nanowire transistors by the temperature-dependent conductance characteristics.There are two obvious transition platforms within the critical temperature regimes for the experimental conductance data,which are extracted from the unified transfer characteristics for different temperatures at the gate voltage positions of the initial transconductance gm peak in V_(g1) and valley in V_(g2). The crossover temperatures of the electron hopping behaviors are analytically determined by the temperature-dependent conductance at the gate voltages V_(g1) and V_(g2). This finding provides essential evidence for the hopping electron behaviors under the influence of thermal activation and long-range Coulomb interaction.
Keywords:
本文献已被 CNKI 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号