首页 | 官方网站   微博 | 高级检索  
     


Improved thermoelectric performance in p-type Bi_(0.48)Sb_(1.52)Te_3 bulk material by adding MnSb_2Se_4
Affiliation:1. Physics and Optoelectronics Engineering College, Guangdong University of Technology, Guangzhou 510006, China;2. Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
Abstract:Bismuth telluride(Bi_2Te_3) based alloys, such as p-type Bi_(0.5)Sb_(1.5)Te_3, have been leading candidates for near room temperature thermoelectric applications. In this study, Bi_(0.48)Sb_(1.52)Te_3 bulk materials with MnSb_2Se_4 were prepared using high-energy ball milling and spark plasma sintering(SPS) process. The addition of MnSb_2Se_4 to Bi_(0.48)Sb_(1.52)Te_3 increased the hole concentration while slightly decreasing the Seebeck coefficient, thus optimising the electrical transport properties of the bulk material. In addition, the second phases of MnSb_2Se_4 and Bi_(0.48)Sb_(1.52)Te_3 were observed in the Bi_(0.48)Sb_(1.52)Te_3 matrix. The nanoparticles in the semi-coherent second phase of MnSb_2Se_4 behaved as scattering centres for phonons,yielding a reduction in the lattice thermal conductivity. Substantial enhancement of the figure of merit, ZT, has been achieved for Bi_(0.48)Sb_(1.52)Te_3 by adding an Mn_(0.8)Cu_(0.2)Sb_2Se_4(2mol%) sample, for a wide range of temperatures, with a peak value of 1.43 at 375 K, corresponding to ~40% improvement over its Bi_(0.48)Sb_(1.52)Te_3 counterpart. Such enhancement of the thermoelectric(TE) performance of p-type Bi_2Te_3 based materials is believed to be advantageous for practical applications.
Keywords:Bi0  48Sb1  52Te3  thermoelectric materials  semi-coherent second phase  ZT enhancement  
本文献已被 CNKI 等数据库收录!
点击此处可从《中国物理 B》浏览原始摘要信息
点击此处可从《中国物理 B》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号