首页 | 官方网站   微博 | 高级检索  
     


Boosting the performance of crossed ZnO microwire UV photodetector by mechanical contact homo-interface barrier
Affiliation:1. State Key Laboratory of Luminescence and Applications, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China;2. Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
Abstract:One-dimensional (1D) micro/nanowires of wide band gap semiconductors have become one of the most promising blocks of high-performance photodetectors. However, in the axial direction of micro/nanowires, the carriers can transport freely driven by an external electric field, which usually produces large dark current and low detectivity. Here, an UV photodetector built from three cross-intersecting ZnO microwires with double homo-interfaces is demonstrated by the chemical vapor deposition and physical transfer techniques. Compared with the reference device without interface, the dark current of this ZnO double-interface photodetector is significantly reduced by nearly 5 orders of magnitude, while the responsivity decreases slightly, thereby greatly improving the normalized photocurrent-to-dark current ratio. In addition, ZnO double-interface photodetector exhibits a much faster response speed (~ 0.65 s) than the no-interface device (~ 95 s). The improved performance is attributed to the potential barriers at the microwire—microwire homo-interfaces, which can regulate the carrier transport. Our findings in this work provide a promising approach for the design and development of high-performance photodetectors.
Keywords:ZnO microwire  interface  potential barrier  dark current  photocurrent-to-dark current ratio  
点击此处可从《中国物理 B》浏览原始摘要信息
点击此处可从《中国物理 B》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号