首页 | 官方网站   微博 | 高级检索  
     


Surface-enhanced fluorescence and application study based on Ag-wheat leaves
Affiliation:1.State Key Laboratory of Materials Science&Technology and Key Laboratory for Microstructural Material Physics of Hebei Province, School of Science, Yanshan University, Qinhuangdao 066004, China;2.Hebei Key Laboratory of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China
Abstract:Wheat leaves with natural microstructures as substrates were covered by the silver nanoislands by magnetron to prepare a low-cost, environment-friendly and mass production surface-enhanced fluorescence (SEF) substrate (Ag-WL substrate). The best SEF substrate was selected by repeatly certifying the fluorescence intensity of 10-5 M Rhodamine B (RB) and 10-5 M Rhodamine 6G (R6G) aqueous solutions. The abundant semi-spherical protrusions and flake-like structures on the surface of the Ag-WL substrate produce high-density hot spots, which provides a new and simple idea for the preparation of biomimetic materials. The results of 3D finite-different time-domain (FDTD) simulation show that the nanoisland gap of semi-spherical protrusions and flake-like structures has produced rich hotspots. By adjusting the time of magnetron sputtering, the enhancement factor (EF) was as high as 839 times, relative standard deviation (RSD) reached as low as 10.7%, and the substrate was very stable and repeatable, which shows that Ag-WL substrate is trustworthy. Moreover, semi-spherical protrusions provide stronger surface-enhanced Raman scattering (SERS) effects compared to flake-like structure. What is more surprising is that the detection limit of the substrate for toxic substance crystal violet (CV) is as low as 10-10 M.
Keywords:surface-enhanced fluorescence  wheat leaf  crystal violet  semi-spherical protrusions  
点击此处可从《中国物理 B》浏览原始摘要信息
点击此处可从《中国物理 B》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号