首页 | 官方网站   微博 | 高级检索  
     


Strain-modulated excitonic gaps in mono-and bi-layer MoSe_2
Affiliation:Department of Physics, Beijing Key Laboratory of Opto-Electronic Functional Materials & Micro-nano Devices, Renmin University of China, Beijing 100872, China
Abstract:Photoluminescence (PL) and Raman spectra under uniaxial strain were measured in mono- and bi-layer MoSe2 to comparatively investigate the evolution of excitonic gaps and Raman phonons with strain. We observed that the strain dependence of excitonic gaps shows a nearly linear behavior in both flakes. One percent of strain increase gives a reduction of ~ 42 meV (~ 35 meV) in A-exciton gap in monolayer (bilayer) MoSe2. The PL width remains little changed in monolayer MoSe2 while it increases rapidly with strain in the bilayer case. We have made detailed discussions on the observed strain-modulated results and compared the difference between monolayer and bilayer cases. The hybridization between 4d orbits of Mo and 4p orbits of Se, which is controlled by the Se-Mo-Se bond angle under strain, can be employed to consistently explain the observations. The study may shed light into exciton physics in few-layer MoSe2 and provides a basis for their applications.
Keywords:photoluminescence  strain  low-dimensional semiconductors  
本文献已被 CNKI 等数据库收录!
点击此处可从《中国物理 B》浏览原始摘要信息
点击此处可从《中国物理 B》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号