首页 | 官方网站   微博 | 高级检索  
     

Ultradilute self-bound quantum droplets in Bose–Bose mixtures at finite temperature
引用本文:王佳,刘夏姬,胡辉.Ultradilute self-bound quantum droplets in Bose–Bose mixtures at finite temperature[J].中国物理 B,2021(1).
作者姓名:王佳  刘夏姬  胡辉
作者单位:Centre for Quantum Technology Theory
基金项目:Project supported by the Australian Research Council’s(ARC)Discovery Program(Grant Nos.DE180100592 and DP190100815),(Grant No.DP180102018),(Grant No.DP170104008)。
摘    要:We theoretically investigate the finite-temperature structure and collective excitations of a self-bound ultradilute Bose droplet in a flat space realized in a binary Bose mixture with attractive inter-species interactions on the verge of meanfield collapse. As the droplet formation relies critically on the repulsive force provided by Lee–Huang–Yang quantum fluctuations, which can be easily compensated by thermal fluctuations, we find a significant temperature effect in the density distribution and collective excitation spectrum of the Bose droplet. A finite-temperature phase diagram as a function of the number of particles is determined. We show that the critical number of particles at the droplet-to-gas transition increases dramatically with increasing temperature. Towards the bulk threshold temperature for thermally destabilizing an infinitely large droplet, we find that the excitation-forbidden, self-evaporation region in the excitation spectrum, predicted earlier by Petrov using a zero-temperature theory, shrinks and eventually disappears. All the collective excitations, including both surface modes and compressional bulk modes, become softened at the droplet-to-gas transition. The predicted temperature effects of a self-bound Bose droplet in this work could be difficult to measure experimentally due to the lack of efficient thermometry at low temperatures. However, these effects may already present in the current cold-atom experiments.

关 键 词:Bose–Einstein  condensation  quantum  droplet
本文献已被 CNKI 维普 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号