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Electron transport involves a family of important material properties that can provide a wealth of information
about the underlying system. In recent few decades, it has been more and more realized that the geometrical
quantities in the momentum space, such as the Berry curvature and the orbital magnetic moment, play a highly
involving role in the electron transport. Their connection to the transport property has been examined to great
extent at the linear order. At the nonlinear order, such connection has begun to be examined recently. This
not only deepens the understanding of such nonlinear transport phenomena, but also helps the band-structure
engineering of them. In this work, we introduce the general semiclassical framework of the transport theory,
which can be used to study both the linear and nonlinear phenomena, and exemplify the Berry phase effect in
several transport phenomena.
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电子输运现象包含一系列很重要的材料性质，并可以用来提供关于载体物理系统的很多信息。在
最近的二三十年，人们逐渐认识到除了电子能谱之外，电子在布里渊区的几何性质，比如贝利曲率和
轨道磁矩，会在电子输运中起到关键性的作用。在线性输运现象中的此种关联已引起广泛的兴趣并得
到深入的研究。然而，在非线性输运现象中的电子几何性质的作用的研究最近才逐渐起步。此种关联
可以大大加深对各种非线性输运现象的认识，并对如何从材料控制上调节非线性现象的强度提供有价
值的研究视角和指导原则。基于此背景，本文试图引入研究输运现象的半经典理论框架，并在几种输
运现象中举例说明贝利相的作用。
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I. INTRODUCTION

After its introduction by M. Berry [1], the concept of Berry
phase is found to have profound implications in physics. Es-
pecially, the electron transport theory greatly benefits from a
deeper understanding of such geometric quantities in the mo-
mentum space induced by the wave functions instead of the
energy spectrum. One of the most well-known examples is the
anomalous Hall effect [2, 3]. Central to the anomlaous Hall ef-
fect is the concept of the Berry curvature, i.e. the Berry phase
per unit area in the momentum space. Its integration yields the
Chern number, which can be used for the topological classifi-
cation of matter [4]. Moreover, it can also be used to study

the optical transport phenomena, such as the circular dichro-
ism in ferromagnetic materials [5], the valley-contrast circular
dichroism [6], and so on. The Berry curvature is also the ana-
log of the magnetic field in the momentum space. As such,
the source of Berry curvature is the momentum-space analog
of magnetic monopoles, which can be realized by Weyl/Dirac
points, leading to unique magnetoresistance behavior [7, 8].

Recently, it has been realized that besides linear transport
phenomena, the geometrical quantities are also essential in
understanding various nonlinear transport phenomena. For ex-
ample, in noncentrosymmetric materials, the second harmonic
generation and nonlinear anomalous Hall effect is mainly de-
termined by the dipole of the Berry curvature in the momen-
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tum space [9–12]. Weyl semimetals can have a quantized cir-
cular photogalvanic current due to the quantized Berry curva-
ture dipole [13]. Berry phase and Berry connection helps the
discovery of the large photovoltaic effect in Weyl semimet-
als [14–16]. Two spatially dispersive phenomena, i.e. the
natural optical activity and the directional dichroism, depend
on the dipole of magnetic moment and quantum metric ten-
sor [17–20], respectively.

In this work, we introduce several efforts of understanding
the transport phenomena in the language of Berry phase and
Berry curvature in a systematic framework, i.e. the semiclas-
sical theory, paying special attention to the nonlinear phenom-
ena. Our work is organized as follows. In Sect. II, we provide
a self-contained introduction of the Berry phase and Berry cur-
vature and exemplify them using a simple two-band model. In
Sect. III, we briefly introduce the semiclassical theory up to
linear order of electromagnetic fields and hence discuss the
role of Berry phase and Berry curvature in characterizing the
order parameter as well as the static and optical anomalous
Hall effect. In Sect. IV, we extend the semiclassical theory
up to second order and exemplify the implication of the Berry
phase and Berry curvature in nonlinear phenomena in static
and optical transport.

II. GENERAL SETTING OF BERRY PHASE AND
CURVATURE

In this section, we provide a self-contained introduction to
the Berry phase and Berry curvature. We will start from the
demonstration of Berry phase in the adiabatic evolution dur-
ing which the driven parameter returns to its starting value af-
ter some time τ. This Berry phase can be re-expressed using
the integration of the Berry curvature through the Stoke’s the-
orem. The Berry curvature is then exemplified in a two-band
model which is of great importance to later application.

A. Berry phase

We consider a physical system with the Hamiltonian Ĥ0(R)
subject to the evolution of the parameter R(t). We assume
that after a period of time τ, R returns to the initial value:
R(τ) = R(0). Moreover, R(t) varies slowly enough to warrant
the adiabatic approximation.

In this setting, M. V. Berry discussed the following famous
question [1]. If initially the system resides in an eigenstate |n0⟩
of Ĥ0(R(0)), the adiabaticity of the evolution guarantees that
approximately at any subsequent time t, the system is in the
instantaneous eigenstate |n(R)⟩, determined by the following
equation

Ĥ0(R)|n(R)⟩ = εn(R)|n(R)⟩ . (1)

Then at time t = τ when R returns to its starting value, |n(R)⟩
returns to |n0⟩. However, to what extent does the final state
conform to |n0⟩?

To proceed, one first makes the following observation:
Eq. (1) only determines the eigenstate up to a phase factor.
Without loss of generality, one can assume that the intermedi-
ate state during the evolution has the following form:

|Ψ⟩ = eiγ|n(R)⟩ . (2)

On the other hand, |Ψ⟩ should satisfy the Schrödinger equation

i
d
dt
|Ψ⟩ = Ĥ0(R)|Ψ⟩ . (3)

This yields the equation for the phase factor

dγ
dt
= Ṙ(t) · ⟨n(R)|i∇R|n(R)⟩ − εn(R) . (4)

One can define the phase factor apart from the well-known
dynamical factor

dγ̃
dt
=

dγ
dt
+ εn(R) = Ṙ(t) · ⟨n(R)|i∇R|n(R)⟩ . (5)

The accumulated phase is then

γ̃ =

∫ τ

0
Ṙ(t) · ⟨n(R)|i∇R|n(R)⟩dt

=

∮
⟨n(R)|i∇R|n(R)⟩ · dR . (6)

The integrant in the above equation is defined as the Berry
connection

A(R) = ⟨n(R)|i∇R|n(R)⟩ . (7)

It is easy to check that the Berry connection is not gauge-
independent. Instead, adding an arbitrary phase factor e−iϕ

(U(1) gauge transformation) to |n(R)⟩ will also shift the Berry
connection:

A(R)→ A(R) + ∇Rϕ . (8)

Interestingly, the resulting Berry phase is gauge-independent
modulo 2π in a cyclic evolution. Since the wave function is
single-valued, the phase is subject to the following constraint

ϕ[R(τ)] − ϕ[R(0)] = 2πm , (9)

with m being an arbitrary integer. After the gauge transforma-
tion, the change in Berry phase reads

γ̃ → γ̃ + ϕ[R(τ)] − ϕ[R(0)] = γ̃ + 2mπ . (10)

Therefore, the phase factor eiγ̃ is unchanged.
Three comments are in order about the derivation of the

Berry phase. First, we note that Eq. (6) does not depend on
the changing rate of R(t). It only depends on the geometry of
the path in the parameter space. From this regard, the Berry
phase is also referred to as the geometric phase.

Second, the adiabaticity in the derivation is to guarantee the
cyclic evolution of states arising from the cyclic changing of
parameters. However, the appearance of the Berry phase im-
plies that this cyclic evolution of states only exists in the pro-
jective Hilbert space, in which eigenstates with different but
constant phase factors are identified as the same point.

Third, the real wave function |Ψ⟩ as defined in Eq. (2) is
parallel transported during the evolution. This can be seen by
multiplying ⟨Ψ| to Eq. (3)

⟨Ψ|i d
dt
|Ψ⟩ = ⟨Ψ|Ĥ0(R)|Ψ⟩ = 0 . (11)

The second equality can be realized by either shifting the en-
ergy level to 0 or by discounting the dynamical phase factor.
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This implies that at each infinitesimal and consecutive step of
evolution, |Ψ(R)⟩ and |Ψ(R + ∆R)⟩ are in phase. Yet the fi-
nal state is deviated from the initial state by a path-dependent
Berry phase. This is actually an array of consecutive and in-
finitesimal realization of the Pancharatnam’s phase [21, 22],
which states that if both states |1⟩ and |2⟩ are in phase with
another state |3⟩, i.e. |1⟩ + |3⟩ and |2⟩ + |3⟩ have the maximum
magnitude [23] , |1⟩ and |2⟩ are not necessarily in phase, be-
cause they can have different components that are orthogonal
to |3⟩.

Based on the above understandings, the concept of the
Berry phase has been generalized in several scenarios. First,
the adiabaticity can be removed if the cyclic evolution in the
projective Hilbert space is already ensured, such as the pe-
riodic spin procession in a magnetic field. This leads to the
Ahanorov-Anandan phase [24], which discusses the geomet-
ric phase accumulated in a cyclic, but not necessarily adia-
batic, evolution. This generalization can be most easily seen
through the parallel transport in Eq. (11). Assume that |Ψ(t =
τ)⟩ = eiϕ|Ψ(t = 0)⟩. One can thus define |Ψ̃⟩ = e−i f (t)|Ψ⟩, with
f (τ) − f (0) = ϕ and hence |Ψ̃(t = τ)⟩ = |Ψ̃(t = 0)⟩. Thus |Ψ̃⟩
is a well-defined single-valued wave function which plays the
role of |n(R)⟩ in the original setting. The Berry phase is then
expressed as

ϕ =

∫ τ

0
dt⟨Ψ̃|i d

dt
|Ψ̃⟩. (12)

We comment that enlightened by the Pancharatnam’s phase,
the cyclic condition can be further removed [25]: a non-cyclic
evolution can be made cyclic by adding an auxiliary evolution
along the geodesic curve.

Second, the Berry phase is also extended to the non-Abelian
case [26]. Suppose that initially the system is in the eigenstate
|n1⟩, which is one in a set of degenerate states |ni⟩, i = 1, 2, · · · .
Adiabaticity ensures that the intermediate states have the fol-
lowing form

|Ψ⟩ = Ui1(t)|ni(t)⟩ . (13)

Here and hereafter, repeated indices are summed. Using the
parallel transport law in Eq. (11), one can then obtain the equa-
tion for the unitary evolution opeartor

Ui1 = iAi jU j1 , (14)

where Ai j = ⟨ni|i(d/dt)|n j⟩ is the nonabelian Berry connec-
tion. Letting the initial state run through the whole degenerate
set of states, we obtain

U = iAU ⇒ U = Pei
∫ τ

0 dtA , (15)

where P stands for path-ordering. In case of nondegenerate
single-band scenario, the above result naturally returns to the
Abelian Berry phase.

B. Berry curvature

Although the Berry connection A is gauge-dependent, one
can define a gauge-independent quantity called Berry curva-
ture as follows

Ωi j = ∂RiA j − ∂R jAi. (16)

This is similar to the relation between the magnetic field and
the gauge-dependent vector potential in the electromagnetic
theory. Indeed, under the gauge transformation, the Berry con-
nection transforms according to Eq. (8), indicating that

Ωi j → ∂Ri (A j + ∂R jϕ) − ∂R j (Ai + ∂Riϕ) = Ωi j . (17)

If the parameter space is three-dimensional, since the Berry
curvature is antisymmetric about the two indices, it can be rep-
resented by a axial vector

Ω =
1
2
ϵi jkΩi jêk . (18)

In terms of the Berry curvature, the Berry phase can be recast
using the Stokes’ theorem

γ̃ =

∮
Σ

A · dR =
∫

S
Ω · dS . (19)

Here S is a surface enclosed by the closed curve Σ. This makes
the gauge-independence of the Berry phase more evident.

The Berry curvature is an essential ingredient in our later
demonstration. For calculation convenience, we will put it in
an alternate form.

Ωn
i j = ∂i⟨n|i∂ j|n⟩ − (i↔ j)

= i⟨∂in|∂ jn⟩ − (i↔ j)

=
∑

m

i⟨∂in|m⟩⟨m|∂ jn⟩ − (i↔ j)

= −
∑
m,n

i⟨n|∂im⟩⟨m|∂ jn⟩ − (i↔ j)

= i
∑
m,n

⟨n|∂iĤ0|m⟩⟨m|∂ jĤ0|n⟩ − (i↔ j)
(εn − εm)2 . (20)

In the above derivation, we use the identity

⟨n|∂iĤ0|m⟩ = −εm⟨∂in|m⟩ − εn⟨n|∂im⟩
= (εm − εn)⟨n|∂i|m⟩ . (21)

Here ∂i is short for ∂Ri and we also recover the level index n
for the Berry curvature.

Equation (20) demonstrates the importance of the residue
Hilbert space |m⟩ with m , n. This is in accordance with the
interpretation of the Berry phase as a consecutive and infinites-
imal array of the Pancharatnam’s phase, whose existence lies
in the different orthogonal parts. If there is no residue Hilbert
space, i.e. we sum the Berry curvature over different levels,
we recover the conservation law for the Berry curvature∑

n

Ωn
i j = 0 . (22)

Finally, we comment that the Berry curvature is part of a
more general geometrical quantity called quantum geometri-
cal tensor [27], defined as follows

Gn
i j = ⟨∂in|∂ jn⟩ − An

iAn
j . (23)

The imaginary part of Gn
i j yields the Berry curvature while

its real part yields the quantum metric tensor gn
i j: Gn

i j = g
n
i j −
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iΩn
i j/2. The quantum metric tensor can also be expressed using

summation of states:

gn
i j = −Re

∑
m,n

⟨n|∂im⟩⟨m|∂ jn⟩

= Re
∑
m,n

⟨n|∂iĤ0|m⟩⟨m|∂ jĤ0|n⟩
(εn − εm)2 . (24)

The meaning of the quantum metric tensor can be inter-
preted as follows: we consider two neighbouring Bloch states
|n(R)⟩ and |n(R + δR)⟩ and define their distance as follows

d = ⟨n(R + δR) − n(R)|n(R + δR) − n(R)⟩
− |⟨n(R)|n(R + δR) − n(R)⟩|2 . (25)

The second term is to remove the gauge-dependence. This
distance can be expressed using the quantum metric tensor:

d = gn
i jdRidR j . (26)

Therefore, the quantum metric tensor measures the distance
of neighbouring Bloch states in the Hilbert space. The Berry
curvature and quantum metric tensor generally modify the dy-
namical structure and correct the energy in the evolution, re-
spectively, as shown in the study of the lattice motion under
the Born-Oppenheimer approximation.

C. Generic two-level system

As a concrete example, we consider a generic two-level sys-
tem. Despite its simple structure, it has wide applicability as
it can be realized in various different scenarios as discussed
later. The model Hamiltonian is given by

Ĥ = hxσx + hyσy + hzσz , (27)

where hx, hy, and hz are real parameters and σ is the Pauli
matrix for spin/pseudospin. Its eigenenergy reads ε = ±h with

h =
√

h2
x + h2

y + h3
z . The corresponding wave function is

ψ+ =
1
ξ

(
hx − ihy
h − hz

)
, ψ− =

1
ξ

(
hz − h

hx + ihy

)
, (28)

where ξ =
√

2h(h − hz) is a normalization factor.
We consider the Berry curvature in the vector form for the

lower band in the parameter space spanned by h = (hx, hy, hz).
Without loss of generality, we calculate the z-component,
which can be expressed as follows

Ωz = i
⟨ψ−|∂xĤ0|ψ+⟩⟨ψ+|∂yĤ0|ψ−⟩ − (x↔ y)

(ε− − ε+)2

= − 1
2h2 Im[⟨ψ−|σx|ψ+⟩⟨ψ+|σy|ψ−⟩] . (29)

The interband elements for the pseudospin can be obtained
from the wave function and the results read

⟨ψ−|σx|ψ+⟩ =
h2

x − h2
y − (h − hz)2 − 2ihxhy

2h(h − hz)

⟨ψ−|σy|ψ+⟩ =
2hxhy + ih2

x − ih2
y + i(h − hz)2

2h(h − hz)
. (30)

Then the Berry curvature can be calculated and the result is

Ωz =
hz

2h3 ⇒ Ω =
h

2h3 . (31)

This is the field generated by the monopole at h = 0. Indeed,
one can integrate the Berry curvature over a spherical surface
that enclose the origin to find

1
2π

∫
S

dS ·Ω = 1 . (32)

This resembles the Gauss’ theorem that connects the field
strength with the source charge.

III. TRANSPORT PHENOMENA AT LINEAR ORDER

In this section, we discuss various transport phenomena re-
lated the concept of Berry phase and Berry curvature. We
will focus on the semiclassical framework as introduced in
Sect. III A, because it is intuitive and has clear physical inter-
pretation. In Sect. III B, we discuss how to obtain the material
order parameter up to linear order, i.e. electric polarization
and magnetization. The understanding of the polarization also
benefits from a more general formulation of the semiclassical
theory, which yields the charge pumping and charge density
modulation, as shown in Sect. III C. In Sect. III D, We dis-
cuss one of the most important applications of the Berry cur-
vature, i.e. the anomalous Hall effect. We then explore two
phenomena closely related to the anomalous Hall effect. We
first change the driven force of currents from electric field to
the thermal gradient and derive the anomalous thermoelectric
current in Sect. III E. Finally, we consider the counterpart of
the anomalous Hall effect in optics, i.e. the circular dichroism
in ferromagnetic materials, in Sect. III F.

A. Semiclassical framework of electron dynamics in
electromagnetic fields

We consider the following general crystal Hamiltonian in
the non-relativistic limit that governs the dynamics of Bloch
electrons under uniform electromagnetic fields

Ĥf = Ĥ0[ p̂+ eA(r); r] + eE · r , (33)

where Ĥ0( p̂; r) is the unperturbed Hamiltonian for periodic
crystals with p̂ being the momentum operator. We emphasize
that the magnetic vector potential A is different from the Berry
connection A. Here the magnetic field modifies the Hamilto-
nian through the minimal coupling and we ignore the Zeeman
coupling for simplicity. In the case of magnetic field only,
generally speaking, Ĥf only respects the translational symme-
try when the magnetic flux through a unit cell is a rational
number times the flux quantum [28–31].

The dynamics of Bloch electrons can in principle be solved
from Ĥf. But for simplicity, we assume that the solution to
the Schrödinger equation (i~∂t − Ĥf)ψ = 0 has the form of
a wave packet. To deal with the unbounded position opera-
tor, in constructing the wave packet, one can decompose the
full Hamiltonian into a local one plus perturbations. The local
Hamiltonian Ĥc is obtained by evaluating the electromagnetic
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potential in Ĥf at the center of mass position rc of the wave
packet. As a result, Ĥc recovers the translational symmetry of
the original unperturbed crystal. The resulting local Hamilto-
nian reads:

Ĥc = Ĥ0[ p̂+ eA(rc); r] + eE · rc , (34)

Its eigenenergy is the local Bloch bands εn[p+ (e/~)A(rc)] +
eE · rc, where n is the band index and ~p the crystal mo-
mentum. Its eigenfunction is the Bloch function eip·r|un[p +
eA(rc)/~]⟩.

In the following, we focus on a single band with index 0 and
assume that it is well separated from all the other bands. Under
weak electromagnetic fields, a Bloch electron starting from
some state in one band will stay in the same band. Therefore,
the wave packet is constructed as the superposition of Bloch
states from the band 0 [3, 32]

|W⟩ =
∫

d pC0(p)eip·r|u0[p+ eA(rc)/~]⟩ . (35)

|W⟩ should be normalized, indicating
∫

d p|C0|2 = 1.
The coefficient C0 is constrained in two ways. On one hand,

we assume that the wave packet is sharply localized in the
momentum space. Therefore, the magnitude of C0 satisfies
|C0|2 ≈ δ(p − pc). Here ~pc is the center of mass momentum
of the wave packet, i.e.

pc = ⟨W |p|W⟩ . (36)

On the other hand, the center of mass position rc of the wave
packet should be determined in a self-consistent manner in the
following way [32]:

rc = ⟨W |r|W⟩

=

∫
d pd p′C⋆

0 (p)C0(p′)⟨u0(p)|(i∂pe−ip·r)eip′·r|u0(p′)⟩

=
∂γ

∂p

∣∣∣∣∣
p=pc

+A0(kc) , (37)

where γ = −arg(C0), A0(p) = ⟨u0(p)|i∂p|u0(p)⟩ is the intra-
band Berry connection, and ~kc = ~pc + eA(rc) is the gauge-
independent physical momentum. We have ignored the de-
pendence on A(rc) in |u0(p)⟩ for simple notation. These two
constraints complete the construction of the wave packet. We
comment that the construction of the wave packet can also be
generalized to account for the general multiband case [33, 34].

The dynamics of the wave packet can be derived using the
variational principle. The coefficient C0 in the wave packet can
be determined through the variation of the Lagrangian evalu-
ated under the wave packet state. Alternatively, C0 has inde-
pendent magnitude and phase, which are determined by kc (or
equivalently, pc) and rc respectively, and hence one can also
obtain the dynamics of rc and kc, i.e. the phase space equa-
tions of motion, from the variation of the Lagrangian.

The Lagrangian reads

L = ⟨W |i~∂t − Ĥc − Ĥ1|W⟩ . (38)

where Ĥ1 =
e
2 B · [(r − rc) × û] + eE · (r − rc) is the first

order correction to the local Hamiltonian Ĥc with û being the
velocity operator. Here we have used the symmetric gauge for
the magnetic vector potential. The energy part can be easily
evaluated

⟨W |Ĥc|W⟩ =
∫

d pd p′C0(p)⋆C0(p′)⟨u0(p)|e−ip·rĤceip′·r|u0(p′)⟩

=

∫
d pd p′C0(p)⋆C0(p′)ε0(p)δ(p− p′)

=

∫
d pδ(p− pc)ε0(p)

= ε0(kc) . (39)

The other part of correction to energy is

⟨W |Ĥ1|W⟩ = ⟨W |
e
2

B · [(r − rc) × û] + eE · (r − rc)|W⟩

=
e
2

B · ⟨W |(r − rc) × û|W⟩

=
e
2

B ·
∫

d pd p′C0(p)⋆C0(p′)⟨u0(p)|e−ip·r(r − rc) × ûeip′·r|u0(p′)⟩

=
e
2

B ·
∫

d pd p′C0(p)⋆C0(p′)⟨u0(p)|(i∂pe−ip·r) × ûeip′·r|u0(p′)⟩ − e
2

B · rc × u0

=
e
2

B ·
∫

d p(−i∂p)C0(p)⋆C0(p) × u0 +
e
2

B ·
∫

d pC0(p)⋆C0(p)(−i)⟨∂pu0(p)| × û|u0(p)⟩ − e
2

B · rc × u0 . (40)

Here the first term and the intraband part in the second term
exactly cancel the third term, using the definition of the center
of mass position rc in Eq. (37). The remaining term reads

⟨W |Ĥ1|W⟩

=
e
2

B ·
∑
n,0

∫
d p|C0(p)|2(−i)⟨∂pu0|un⟩ × ⟨un|û|u0⟩

=
e
2

B · Re
∑
n,0

A0n × un0 , (41)

where A0n = ⟨u0|i∂p|un⟩ is the interband Berry connection
and un0 = ⟨un|û|u0⟩ is the interband velocity matrix element. If
we define m0 = − e

2 Re
∑

n,0A0n × un0 as the orbital magnetic
moment, this energy correction takes the form of the Zeeman
coupling due to the orbital motion.

It is interesting to find that in a two-band model, the orbital
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magnetic moment is connected to the Berry curvature. In fact,
we have

m0 = −
e
2

ReA0n × un0

=
e
2

(ε0 − εn)Re[iA0n ×An0]

=
e
2

(ε0 − εn)Ω0 . (42)

This indicates that the magnetic moment is proportional to the
Berry curvature with a factor linear in the band gap. The con-
servation law of the Berry curvature implies that for a two-
band model, the upper and lower band have opposite Berry

curvatures. Due to the appearance of the band gap, they have
exactly the same orbital magnetic moment. As a result, under
a magnetic field, they will shift in the same direction in energy.

One interesting fact is that if one begins with the rela-
tivistic Dirac Hamiltonian where the magnetic field only en-
ters through the minimal coupling and constructs a coherent
wave packet for the upper two bands, one can naturally ob-
tain the spin magnetic moment as the orbital magnetic mo-
ment of this wave packet [35]. Mathematically, this is equiva-
lent to the Foldy-Wouthuysen transformation that reduces the
Dirac Hamiltonian to the non-relativistic Schrödinger Hamil-
tonian [36, 37]. Here we have a heuristic and clear picture for
the emergence of spin using the semiclassical theory.

We now calculate the time derivative in the Lagrangian:

⟨W |i~∂t |W⟩ =
∫

d pd p′C0(p)⋆C0(p′)⟨u0(p)|e−ip·ri~dteip′·r|u0(p′)⟩

+

∫
d pd p′C0(p)⋆[i~dtC0(p′)]⟨u0(p)|e−ip·reip′·r|u0(p′)⟩

= [dt A(rc)] ·
∫

d pC0(p)⋆C0(p)⟨u0(p)|i∂p|u0(p′)⟩ +
∫

d pd p′C0(p)⋆[~dtγ(p, rc, t)]C0(p)

=
e
2

B × ṙc · A0 + [~dtγ(p, rc, t)]|p=pc

=
e
2

B × ṙc · A0 + ~dtγ(pc, rc, t) − ~ ṗc · ∂pcγ(pc, rc, t)

= ~dtγ(pc, rc, t) − ~ ṗc · (rc −A0) +
e
2

B × ṙc · A0

= dtγ(pc, rc, t) − ~ k̇c · (rc −A0) +
e
2

B × ṙc · rc . (43)

In the above derivation, we use the fact that the phase of C0
is generally a function of p, rc, and t (although its magnitude
depends on pc). The total time derivative does not affect the
dynamics and will be ignored. We can sum up the above con-
tributions and obtain the following total Langrangian

L = −(rc −A0) · ~ k̇c −
1
2

eB × rc · ṙc − ε̃0 , (44)

where ε̃ = ε0 − B ·m0 + eE · rc is the modified band energy up
to first order.

The Berry connection A0 is an essential ingredient in the
Lagrangian. In the absence of A0, the above Lagrangian re-
duces to the conventional canonical form for electrons under
electromagnetic fields:

L =
(
~kc −

1
2

eB × rc

)
· ṙc − ε̃0 . (45)

The appearance ofA0 indicates that rc and kc are not canoni-
cal variables. To make this statement clearer, we consider the
following transformation [35]

rc = q +A0 +
1
2

e
~

(B ×A0 · ∂p)A0 +
1
2

e
~
Ω0 × (B ×A0) ,

(46)

kc = p+
1
2

e
~

B × q +
e
~

B × (rc − q) , (47)

whereΩ0 = ∇p×A0 is the Berry curvature.Here the argument
ofA0 andΩ0 is p+ e

2~ B× q. Then the Lagrangian in Eq. (44)
recovers the canonical form for p and q

L = ~p · q̇ − ε̃0 . (48)

Eq. (46) and (47) thus describe the connection between phys-
ical variables and canonical variables.

One consequence of the noncanonicality is that the phase
space measure for the volume element drcdkc has to change
based on the Jacobian J = ∂(q, p)/∂(rc, kc), i.e. the phase
space density of states is D = | detJ|. To calculate this, we
notice that the Lie bracket can be expressed using the above
matrices

{ξi, ξ j} = J−1
(

0 I
−I 0

)
(J−1)T , (49)

with ξ = (rc, kc). As a result

det {ξi, ξ j} = (detJ)−2 . (50)

On the other hand, we have

{ξi, ξ j} =
(
R Q
S T

)
, (51)

with
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R =

 0 Ωz −Ωy
−Ωz 0 Ωx
Ωy −Ωx 0

 (52)

Q =

1 −
e
~ (BzΩz + ByΩy) 0 0

0 1 − e
~ (BzΩz + BxΩx) 0

0 0 1 − e
~ (BxΩx + ByΩy)

 (53)

S =

−1 + e
2~ (BzΩz + ByΩy) 0 0

0 −1 + e
2~ (BzΩz + BxΩx) 0

0 0 −1 + e
2~ (BxΩx + ByΩy)

 (54)

T =

 0 −eBz/~ eBy/~
eBz/~ 0 −eBx/~
−eBy/~ eBx/~ 0

 . (55)

This yields the following phase space density of states [38]

D = 1 +
e
~

B ·Ω0(kc) . (56)

Since the range for the physical position and momentum are
the crystal volume and the Brillouin zone, respectively, it is
natural to evaluate the statistical average of any operator in
the physical phase space spanned by (rc, kc). Therefore, we
should always use the modified density of statesD.

The noncanonicality of rc and kc as shown in Eq. (51) will
affect the structure of the equations of motion. From Eq. (44),
the Euler-Lagrangian equations of motion yield the following
phase space dynamics [32]

∂L
∂kc
=

d
dt

∂L
∂ k̇c
⇒ ṙc =

∂ε̃0

~∂kc
− k̇c ×Ω0(kc) , (57)

∂L
∂rc
=

d
dt
∂L
∂ṙc
⇒ ~ k̇c = −eE − eṙc × B . (58)

The second term in the velocity equation is the anomalous ve-
locity due to the noncanonicality. It has the same form with
the Lorentz force from the magnetic field. From this perspec-
tive, the Berry curvature is also the momentum-space analog
of the magnetic field. The above equations of motion have
wide applicability in the various transport phenomena.

B. Electromagnetic Dipoles

The semiclassical theory can be used to derive the electro-
magnetic multipoles in crystals. We note that because the
wave packet is sharply localized in the momentum space, it
should have a finite width in the real space. The charge and
current distributions within this spread can be inhomogeneous.
To describe such internal inhomogeneity of the wave packet,
it is natural to use electromagnetic multipoles. It is interesting
that such multipoles are related to the macroscopic order pa-
rameters of the bulk materials, such as the electric polarization
and magnetization, eventually.

The electric dipole of the wave packet reads ⟨W | − er|W⟩ =
−erc, with rc given in Eq. (37). Under the periodic gauge [3,
39], the Bloch wave function and the coefficient C0 is periodic
in the momentum space. Therefore, if we integrate rc in the
Brillouin zone, the first term in Eq. (37) from the phase of C0

can at most yield an integer multiples of 2π and hence can be
ignored. The remaining term yields the electric polarization in
crystals

P = −e
∫

dkc

(2π)3A0(kc) . (59)

The electric polarization can also be derived using either the
adiabatic charge pumping current [40, 41] or the dipole cor-
rection to the charge density [3]. Here our method yields the
same electric polarization under the periodic gauge for Bloch
functions.

The magnetic dipole has already been derived in Eq. (40).
Here we further demonstrate that it directly contributes to the
orbital magnetization. We consider the free energy under mag-
netic field. On one hand, the band energy is modified through
the Zeeman coupling between the orbital magnetic moment
and the magnetic field. On the other hand, magnetic field also
changes the phase space density of states. They together yield
the following free energy

F =
∫
D dk

(2π)3 (−kBT ) ln
[
1 + exp

(
ε̃0 − µ
kBT

)]
. (60)

Be definition, the orbital magnetization reads [42]

M = − ∂F
∂B

∣∣∣∣∣
B=0
=

∫
dk

(2π)3

(
f0m0 −

e
~
geΩ0

)
, (61)

where ge = −(kBT ) ln[1+exp((ε0−µ)/kBT )] is the grand poten-
tial density, and f0 is the equilibrium Fermi distribution func-
tion. Here and hereafter we will ignore the subscript c in the
integration over kc. This is the contribution of the orbital mag-
netization from band 0. The total contribution can be obtained
by summing over the band index. In the two contributions to
the orbital magnetization, the first one is due to the relative
motion inside the wave packet, or the self-rotation of the wave
packet; the second one is due to the rotation of the wave packet
as a whole, or the revolution of the wave packet. The same
magnetization can also be obtained through the Wannier func-
tion approach [43, 44], the exact Hofstadter spectrum [45, 46],
or the linear response theory [47, 48].
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C. General perturbation

In this section, we derive the electron dynamics under gen-
eral perturbations. We consider the following Hamiltonian

Ĥf = Ĥ( p̂, r; r, t) . (62)

The first and second argument r represent fast and slowly
changing part of the Hamiltonian, respectively. We also as-
sume that the system evolves slowly with time. We can ex-
pand the slowly changing part of the Hamiltonian around the
center of the wave packet.

Ĥf = Ĥc + Ĥ1 + · · ·
Ĥc = Ĥ( p̂, r; rc, t) ,

Ĥ1 =
1
2
∂rc Ĥc · (r − rc) + h.c. . (63)

The eigenenergy and eigenstate of the local Hamilto-
nian generally have the following form: εn(p, rc, t) and
eip·r|un(p, rc, t)⟩.

The derivation of the Lagrangian is very similar to that un-
der electromagnetic fields. For the energetic part, it is easy to
check that

⟨W |Ĥc|W⟩ = ε0(pc, rc, t) , (64)

⟨W |Ĥ1|W⟩ =
∑
n,0

Re[⟨u0|∂rc Ĥc|un⟩⟨un|i∂pc |u0⟩] . (65)

We can recover Eq. (41) from the second equation by noting
that ∂rc Ĥc = −(e/2)B × û under magnetic field. For the dy-
namic part, one can find

⟨W |i~∂t |W⟩ = ṙc · ⟨u0|i∂rc |u0⟩ + ⟨u0|i∂t |u0⟩ + ~dtγ(pc, rc, t) − ~ ṗc · ∂pcγ(pc, rc, t)
(66)

Therefore, the Lagrangian reads

L = ṙc · Ar +At − ~ ṗc · (rc −Ap) − ε̃ , (67)

where we have define Ar = ⟨u0|i∂rc |u0⟩, At =

⟨u0|i∂t |u0⟩, Ap = ⟨u0|i∂pc |u0⟩, and ε̃ = ε0(pc, rc, t) +∑
n,0 Re[⟨u0|∂rc Ĥc|un⟩⟨un|i∂pc |u0⟩]. The dynamics can be ob-

tained through the Euler-Lagrangian equations of motion

∂L
∂pc
=

d
dt
∂L
∂ ṗc

⇒ṙc =
∂ε̃0

~∂pc
− (Ωpr · ṙc +Ω

pp · ṗc) −Ωpt , (68)

∂L
∂rc
=

d
dt
∂L
∂ṙc

⇒~ ṗc = −
∂ε̃

∂rc
+ (Ωrr · ṙc +Ω

rp · ṗc) +Ωrt , (69)

where Ωrr
i j = ∂rciAr

j − ∂rc jAr
i is the real space Berry curvature,

Ω
pp
i j = ∂pciA

p
j − ∂pc jA

p
i is the momentum space Berry cur-

vature, Ωpr
i j = ∂pciAr

j − ∂rc jA
p
i is the mixed Berry curvature,

Ω
rp
i j = −Ω

pr
i j , Ωpt = ∂pcAt − ∂tAp, and Ωrt = ∂rcAt − ∂tAr.

One can make several interesting observations. First, in the
case of electromagnetic field, the rc-dependence in the energy
is simply the electrostatic potential and Ωrr will reduce to the
magnetic field (i.e. the magnetic field can be viewed as the real

space Berry curvature). Then the above equations of motion
will coincide with those in Eq. (57) and (58).

Second, one can obtain the electric polarization from dif-
ferent perspectives. On one hand, we can consider a system
slowly changing in time but homogeneous in space. Then we
can obtain the current in the system by integrating the electron
velocity

J = e
∫

dk
8π3Ω

pt . (70)

This is the charge pumping current. To gain further insight,
we note that the periodic part of the Bloch function can be
added to an arbitrary phase factor. Specifically, one can choose
a gauge so that At is periodic in the Brillouin zone and its
derivative with respect to p will integrate to zero. Therefore,
the current can be put in the following form

J = −e∂t

∫
dk
8π3A

p . (71)

Together with the displacement current in the Maxwell equa-
tions, which suggests ∂t P→ J, we can identify

P = −e
∫

dk
8π3A

p . (72)

This is the same as the polarization obtained in the last section.
On the other hand, we can consider a spatially inhomoge-

neous but static system. As a result, Ωrp and Ωpr are nonzero.
The Lie bracket in Eq. (51) becomes (here we only keep en-
tries up to first order spatial derivative)
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{ξi, ξ j} =



0 Ω
pp
xy −Ωpp

zx 1 −Ωpr
xx 0 0

−Ωpp
xy 0 Ω

pp
yz 0 1 −Ωpr

yy 0
Ω

pp
zx −Ωpp

yz 0 0 0 1 −Ωpr
zz

−1 +Ωpr
xx 0 0 0 0 0

0 −1 +Ωpr
yy 0 0 0 0

0 0 −1 +Ωpr
zz 0 0 0


. (73)

Therefore, the density of states read

D = 1 + TrΩpr . (74)

With this density of states, we can calculate the electron
density

ρ = −e
∫

dk
(2π)3 (1 + TrΩpr)

= ρ0 + e∂r ·
∫

dk
(2π)3A

p . (75)

The second equality is true when we choose the gauge such
that Ar is periodic in the Brillouin zone. The contribution
from the polarization to the electron density reads −∇ · P.
Therefore, we can identify the polarization as

P = −e
∫

dk
(2π)3A

p . (76)

D. Anomalous Hall effect

An important application of the semiclassical theory is to
understand the anomalous Hall effect, which refers to a Hall-
type current in ferromagnets solely driven by an electric field
and without the presence of the magnetic field. It is a topic
under extensive studies. For a review, see Ref. [2]. In the
past, there are three mechanisms identified: the intrinsic con-
tribution, the skew-scattering contribution, and the side-jump
contribution. Here we focus on the intrinsic contribution. The
anomalous velocity in Eq. (57) contributes to a current density

J = −e2

~

∫
dk

(2π)3 E ×Ω . (77)

ForΩ along ẑ direction, we have the following anomalous Hall
conductivity

σxy = −σyx = −
e2

~

∫
dk

(2π)3Ωz . (78)

It is interesting to note that the conventional Hall conduc-
tivity is due to the magnetic field, i.e. the magnetic field
bends the trajectory of Bloch electrons, while the anomalous
Hall conductivity is due to the Berry curvature, which is the
momentum-space analog of the magnetic field and which gen-
erates a velocity transverse to the driven force. Moreover, we
comment that the anomalous Hall conductivity is intrinsic, i.e.
independent of the relaxation process, while the conventional
Hall conductivity is quadratic in the transport relaxation time.

To further understand the symmetry requirement of the
anomalous Hall conductivity, we analyze the transformation

of the Berry curvature under symmetry operations. This can
be most easily seen from Eq. (57). Both ṙc and k̇c flip sign
under inversion operation. Therefore, the inversion symmetry
requires Ω(k) = Ω(−k). ṙc and k̇c transform oppositely un-
der time reversal operation, indicating Ω(−k) = −Ω(k) [49]
under time reversal symmetry. This indicates that anomalous
Hall effect can only happen when the time reversal symmetry
is broken, while the conventional Hall effect does not require
the system to break any symmetry.

As a concrete example, we consider the following low-
energy Hamiltonian.

Ĥ = λ(kxσy − kyσx) + ∆σz , (79)

where σ is the spin Pauli matrix, kx and ky are momentum
along x and y direction. The first term is a Rashba-type spin-
orbit coupling. The second term is the Zeeman coupling due
to the local net spin moment. The energy spectrum is ε± =
±
√
λ2k2 + ∆2. The Zeeman coupling breaks the time-reversal

symmetry. However, we also need the spin-orbit coupling to
have the anomalous Hall current as it admits the orbital motion
sense the broken time-reversal symmetry in the spin space.
Using Eq. (20), we can calculate the Berry curvature, which
reads

Ω± = ±
λ2∆

2(λ2k2 + ∆2)3/2 . (80)

When the Fermi level µ falls in the valence band, one can in-
tegrate the Berry curvature and find the anomalous Hall con-
ductivity

σxy = −
e2

2h
∆

|µ| . (81)

We note that both ferromagnets and antiferromangets
breaks the time-reversal symmetry. For a long time, only fer-
romagnetic metals with net magnetization are under study for
the anomalous Hall effect. Recently, it is also shown that an-
tiferromagnetic metals can also generate the anomalous Hall
effect [50–58]. This can also be explained by the symmetry
property of the Berry curvature. Without loss of generality,
we still consider the xy-component of the conductivity. We
have shown that its existence requires the time reversal sym-
metry to be broken. Moreover, we note that for Ωz, ṙc and k̇c
in the velocity equation transform oppositely under mirror-x
or mirror-y symmetry, indicating thatΩz is odd under mirror-x
or mirror-y operations. Therefore, σxy also needs those sym-
metries to be broken. A net magnetization along ẑ direction
would certainly do that, but it is not necessary. As shown in
Ref. [56], there are antiferromagnets that also satisfy this cri-
teria and hence make the anomalous Hall current possible.
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Finally, we comment that the derivation of the anomalous
Hall current using semiclassical theory also helps the under-
standing of other types of Hall current. In writing Eq. (77),
we use the fact that the current density in the phase space
has the form −eṙc. If we change the electric charge to other
types of charge, we can obtain different types of current due to
the anomalous velocity. For example, in the gapped graphene
system, one can use the valley index τ instead of the electric
charge, which will gives rise to the valley Hall current, indi-
cating that electrons in different valleys will move oppositely
and hence accumulate at opposite edges [59, 60]. One can also
use one of the spin component instead of the electric charge,
giving rise to the spin Hall current [33, 61, 62], which suggests
accumulation of opposite spins at opposite edges.

E. Using wave packet for spatial average

Central to the electromagnetic theory is the macroscopic
Maxwell equations, which can be derived from the micro-
scopic Maxwell equations by applying a proper spatial average
technique. We note that this is for localized charge and current
sources [63]. In solid state physics, we often deal with un-
bounded crystals. In this regard, we can use the wave packet
as the smallest unit in the macroscopic level to perform the
spatial average.

The spatial average process proceeds as follows. We con-
sider an arbitrary operator Ô and multiply it with a sampling

function (delta function) to obtain the density of the operator

O(q) =
∫

drcdkc

(2π)3 f (rc, kc)⟨W |Ôδ(r − q)|W⟩ . (82)

In writing this density, we use the distribution of the wave
packet to substitute the real distribution function. Each wave
packet has a localized position rc and we can expand the sam-
pling function around it:

δ(r − q) = δ(r − rc + rc − q)
= δ(rc − q) + (rc − r) · ∂qδ(q − rc) + · · · . (83)

Plugging this expansion into the density of the operator, we
obtain

O(q) =
∫

drcdkc

(2π)3 f (rc, kc)⟨W |Ô|W⟩δ(q − rc)

+ ∂q ·
∫

drcdkc

(2π)3 f (rc, kc)⟨W |Ô(rc − r)|W⟩δ(q − rc)

=

∫
dkc

(2π)3 f (q, kc)⟨u0|Ô|u0⟩

− ∂q ·
∫

dkc

(2π)3 f (q, kc)D(O) , (84)

where D(O) is the dipole moment of the operator Ô. In
deriving the above result, we use the fact that ⟨W |Ô|W⟩ =
⟨u0|Ô|u0⟩ [64] and

⟨W |Ô(r − rc)|W⟩ =
∫

d pd p′C0(p)⋆C0(p′)⟨u0(p)|e−ip·rÔ(r − rc)eip′·r|u0(p′)⟩

=

∫
d pd p′C0(p)⋆C0(p′)⟨u0(p)|e−ip·rÔ(−i∂p′ )eip′·r|u0(p′)⟩ − rc⟨u0|Ô|u0⟩

=

∫
d pC0(p)⋆(i∂p)C0(p)⟨u0|Ô|u0⟩ +

∫
d pC0(p)⋆C0(p)i⟨u0|Ô|∂pu0⟩ − rc⟨u0|Ô|u0⟩

= Re
∑
n,0

⟨u0|Ô|un⟩⟨un|i∂p|u0⟩
∣∣∣
p=kc

. (85)

This completes the spatial average process.

The result in Eq. (84) has been used in the study of the
charge and spin transport [42, 65]. Here we will focus on the
charge transport. For this purpose, we put Ô = −ev̂i, i.e. the
local current operator. Then we have

D(O) = −eRe
∑
n,0

⟨u0|v̂i|un⟩(A j)n0ê j

= − e
~

Re
∑
n,0

i(ε0 − εn)(Ai)0n(A j)n0ê j

= − e
2~

Re
∑
n,0

i(ε0 − εn)[(Ai)0n(A j)n0 − (i↔ j)]ê j

= −ϵi jkmkê j . (86)

Here we have used the identity in Eq. (21) and m is the orbital
magnetic moment as defined in Eq. (41). Therefore, the local

current density reads

J = −e
∫

dk
(2π)3 f (r, k)u0 + ∇ ×

∫
dk

(2π)3 f (r, k)m . (87)

On the other hand, if the orbital magnetization M is
nonzero, due to the inhomogeneous distribution function f ,
M will also vary in space, which can give rise to a magnetiza-
tion current from ∇ × M. This magnetization current does not
contribute to transport and has to be discounted from the total
current [42, 66]. The resulting transport current is

Jtr = J − ∇ × M

=
e
~
∇ ×

∫
dk

(2π)3 geΩ0 . (88)

Here we have use the orbital magnetization given in Eq. (61).
In the presence of a thermal gradient, we have

∇ge =
∇T
T

[ge − (ε0 − µ) f ] . (89)
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Therefore, we have the following thermoelectric current

Jtr =
e
~
∇T
T
×

∫
dk

(2π)3 [ge − (ε0 − µ) f ]Ω0 . (90)

This current always flows normal to the thermal gradient, de-
spite the absence of the magnetic field. It is thus referred to
as the anomalous thermoelectric current. The above result can
also be derived using the linear response theory with a precise
understanding of the local equilibrium [48].

F. Circular dichroism in ferromagnetic materials

The material response to light is determined by the optical
conductivity

J =
(
σxx σxy
−σxy σyy

)
E . (91)

Here we have assumed that the off-diagonal element only con-
tains the antisymmetric part, which can always be realized by
choosing a proper reference frame. At zero frequency, the off-
diagonal element reduces to the anomalous Hall conductivity.
At finite frequency, we will demonstrate that it can lead to the
circular dichroism, referring to the different absorbtion rate of
light with opposite helicities.

To derive the circular dichroism, we start with the Maxwell
equation for the electric field

∇ × (∇ × E) = −µ0
∂J
∂t
− 1

c2

∂2E
∂t2 , (92)

where µ0 is the vacuum permeability and c is the speed of
light. We can put the following ansatz for the light electric
field: E0einω/c−iωt. Then we find that the electric polarization
and the refractive index n satisfy the following equation(

n2 − n2
0 −ic2µ0σxy/ω

ic2µ0σxy/ω n2 − n2
0

)
E = 0 , (93)

where n2
0 = 1+ic2µ0σxx/ω. From this, we can solve the eigen-

value of the refractive index

n± =
√

n2
0 ± c2µ0σxy/ω . (94)

For n±, the eigenvector reads

E± =
(

1
∓i

)
. (95)

As a result, n± corresponds to the refractive index for the
right/left circularly polarized light. This indicates that to
have different refractive indices for left/right handed light, a
nonzero σxy is required. Using the linear response theory,
we can calculate this component of the optical conductiv-
ity [67, 68]

σxy = −
e2

ω

∑
m,n

∫
dk

(2π)3

∆ fmn

ωmn + ~ω + iη
Im[(vx)mn(vy)nm] ,

(96)

where ∆ fmn = fm − fn and ωmn = εm − εn.
The connection between optical phenomena and the micro-

scopic properties of the ground state is often captured by the
sum rule. In the case of the circular dichroism, one can for-
mulate two rules, which is related to the Berry curvature and
magnetic moment, respectively. We will assume that in exper-
iments, the refractive index is measurable for left/right handed
circularly polarized light through reflection/refraction and ab-
sorption. Then according to Eq. (94), the optical conductivity
component σxy can be obtained. The first sum rule directly
follows from the Kramers-Kronig relation

Reσxy(0) =
2
π

∫ ∞

0
dω

Imσxy

ω

= 2e2
∫ ∞

0
dω

∑
m,n

∆ fmn

ω2 δ(ωmn + ~ω)Im[(vx)mn(vy)nm]

=
2e2

~

∑
n>m

∆ fmnIm[(Ax)mn(Ay)nm]

= −e2

~

∑
m

fm(Ωz)m . (97)

Here the subscript n > m means εn > εm. One recognizes
that the final expression is just the intrinsic anomalous Hall
conductivity due to the static electric field.

The second sum rule is the direct integration of Imσxy [5]∫ ∞

0
Imσxydω

= 2πe2
∫ ∞

0
dω

∑
m,n

∆ fmn

ω
δ(ωmn + ~ω)Im[(vx)mn(vy)nm]

= −2π
e2

~

∑
n>m

∆ fmnRe[(Ax)mn(vy)nm]
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= −2π
e2

~

n∈unocc∑
m∈occ

Re[(Ax)mn(vy)nm]

= −πe2

~

n∈unocc∑
m∈occ

Re[(Ax)mn(vy)nm − (x↔ y)] . (98)

Here m ∈ occ means m runs through the occupied band indices
while n ∈ unocc means that n runs through the unoccupied
band indices. By comparing the result to the magnetic mo-
ment given in Eq. (41), we immediately find that Eq. (98) is
proportional to orbital magnetic moment except that the index
n only runs through unoccupied bands.

There is a deeper reason for this difference. We note that
although the orbital magnetic moment is invariant under the
gauge transformation of the Bloch states, it is not a ground
state property. At zero temperature, the ground state den-
sity matrix ρ =

∑
n∈occ,k |ψnk⟩⟨ψnk| is invariant under any ro-

tation that mixes different occupied bands at the same k-point.
Therefore, any ground state property should respect such sym-
metry. However, the orbital magnetic moment contains the
Berry connection Amn between two occupied bands m and n.
As a result, it will change under a rotation of states in the occu-
pied band subspace. On the contrary, the sum rule in Eq. (98)
does not change under such a rotation. In this regard, we can
claim that the sum of σxy is proportional to the gauge-invariant
part of the orbital magnetic moment.

IV. NONLINEAR TRANSPORT PHENOMENA

In this section we focus on several nonlinear phenomena
that are affected by the Berry phase and Berry curvature. In
Sect. IV A, we will extend the semiclassical framework up
to second order. This lays the groundwork for later discus-
sions. We will discuss some examples in detail to demonstrate
the utility of the semiclassical framework and to introduce the
new perspective using the geometrical quantities. Specifically,
we will discuss the Landau level quantization and the nonlin-
earity in the Landau level fan diagram measured through the
Shubinikov-de Haas oscillations in Sect. IV B. In Sect. IV C,
we discuss the field correction to the anomalous Hall current,
i.e. the nonlinear anomalous Hall effect. In Sect. IV D and
E, we discuss two spatially dispersive phenomena: natural
optical activity and nonreciprocal directional dichroism, and
demonstrate that they are related to the dipole of magnetic
moment and Berry curvature, as well as the quantum metric
tensor, respectively.

A. Semiclassical theory up to second order

The semiclassical dynamics in Eq. (57) and (58) cannot
fully account for nonlinear phenomena such as the magnetore-
sistance, magnetoelectric effect, and so on. For this purpose,
we need to generalize the semiclassical framework up to sec-
ond order [69, 70].

Before proceeding to the detail of the theory, we comment
that at the second order, there are two distinct perturbations,
i.e. the electromagnetic fields to second order and the spatial
derivative of the electromagnetic fields. In this section, we
focus on the first type and leave the discussion of the second
type to the last two parts in this section. From the semiclassical
theory point of view, these two types of perturbations can be
derived in quite similar manners.

To extend the semiclassical theory up to second order, the
construction of the wave packet has to be modified accord-
ingly, to incorporate the modification from the external elec-
tromagnetic fields. In fact, the wave packet should be the su-
perposition of the true eigenstates instead of the unperturbed
ones. The true eigenstate can be further expanded in the
basis of the unperturbed ones, yielding the following wave
packet [69]

|W⟩ =
∫

d peip·r

C0(p)|u0⟩ +
∑
n,0

Cn(p)|un⟩
 . (99)

Here for simplicity we drop the argument p+(e/~)A(rc) of |u0⟩
and |un⟩. In principle, Cn should be connected to C0 through
perturbation theory. To derive this connection, we still con-
sider the Lagrangian

L = ⟨W |i~∂t − Ĥ|W⟩ . (100)

By taking the variation of L with respect to C⋆
0 and C⋆

n , we can
obtain two sets of equations for the coefficient. This amounts
to transforming to the basis spanned by the local unperturbed
eigenstates. Specially, the equation through the variation of
C⋆

n is equivalent to the following constraint:

⟨un|e−ip·r(i~∂t − Ĥf)|W⟩ = 0 , ∀ n , 0 . (101)

This determines the connection between Cn and C0.
To calculate it at the first order, we note that

⟨un|i~∂t |W⟩ =
∫

d p′C0(p′)⟨un(p)|ei(p′−p)·ri~∂t |u0(p′)⟩ + i
∫

d p′~∂tCn(p′)⟨un(p)|ei(p′−p)·r|un(p′)⟩

=
e
2

B × ṙc · An0C0(p) + i~Ċn(p)

=
e
2

B × ṙc · An0C0(p) + ε0Cn(p) . (102)

In the last equality, we have used that the dynamical phase fac-
tor for Cn is e−i

∫
ε0/~dt. This is due to two facts: (i) we have

assume that the wave packet is the superposition of the Bloch
states from a single band 0 and |un⟩ part is just the perturbation;
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as a result, it should evolve according to the modified eigenen-
ergy, which is ε0 at the lowest order; (ii) the time derivative is
only on the phase factor of Cn as the derivative on the mag-
nitude of Cn vanishes in the Lagrangian; as a result, we do

not need to concern with the localization of the wave packet
around pc which only affects the magnitude of the coefficients
C0 and Cn.

For the second part, we have

⟨un|Ĥ0 + Ĥ1|W⟩ = εnCn +

∫
d p′C0(p′)⟨un(p)|ei(p′−p)·r e

2
B × (r − rc) · û|u0(p′)⟩

= εnCn +

∫
d p′C0(p′)⟨un(p)| e

2
B × (i∂p − rc)ei(p′−p)·r · û|u0(p′)⟩

= εnCn +
e
2

B × (i∂p − rc) · [C0(p)un0] − e
2

B · i⟨∂pun| × u|u0⟩C0(p)

= εnCn +
e
2

B × (i∂p +A0 − rc)C0(p) · un0 −
e
2

B ·
∑
m,0

unm ×Am0 . (103)

band 0 

band n 

p 

E 

horizontal mixing with 

vertical mixing 

�p =
1

2
B ⇥ (q̂ � rc)

Gn0

FIG. 1. The correction to wave packet from magnetic field. q̂ has the
same meaning of r. From Ref. [70].

We can then combine Eq. (102) and (103) and solve the

constraint at the linear order of electromagnetic fields. The
result reads

Cn =
Gn0

ε0 − εn
C0 −

i
2

e
~

[B × (i∂p +A0 − rc)C0] ·An0 , (104)

where Gn0 = −B · Mn0 + eE ·An0 with Mn0 =
e
2
∑

m,0(unm +

u0δmn) ×Am0 being the interband element of the orbital mag-
netic moment. The contribution from the spin Zeeman energy
can be easily added.

Equation (104) has two contributions with different origins.
Due to the appearance of the band gap in the denominator, the
first term has the conventional form of the perturbation cor-
rection. It is hence referred to as the vertical mixing because
it mixes Bloch states from different bands but at the same p
point in the Brillouin zone. It also contains the nonadiabatic
perturbation, due to the fact that the wave packet |W⟩ is time-
dependent because of the time-dependence of the argument
p+ (e/~)A(rc) of the Bloch state.

In comparison, the second term in Cn modifies the wave
packet in the following way:

∫
d peip·r−i

2
e
~

[B × (i∂p +A0 − rc)C0] ·
∑
n,0

An0|un⟩

=

∫
d peip·r e

2~
[B × (i∂p +A0 − rc)C0] · D̂|u0⟩

=

∫
d peip·r e

2~
[B × (r +A0 − rc)C0] · D̂|u0⟩ −

∫
d peip·rC0

e
2~

[B × i∂p] · D̂|u0⟩

=

∫
d peip·r e

2~
[B × (r − rc)C0] · D̂|u0⟩ +

∫
d peip·rC0

e
2~

B ·Ω|u0⟩ . (105)

where D̂ = ∂p + iA0 is the covariant derivative that ensures
the gauge invariance. Notice that the momentum argument
of |u0⟩ is p + (e/~)A(rc). The first term in Eq. (105) has the
effect of shifting the momentum to p + (e/~)A(r). This is a
special property of the perturbation from the magnetic field.
It suggests that the correction to the wave function also obeys
the Peierls substitution. The same property can also be de-

rived using the Moyal product and phase space formulation of
quantum mechanics [71]. The second term in Eq. (105) de-
pends on the Berry curvature and it makes the total correction
normal to the original state eip·r|u0⟩ to eliminate redundancy in
the perturbative correction. The second term in Cn is referred
to as the horizontal mixing because it mixes Bloch states in
the same band but at neighbouring p points. Both corrections
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can be visualized in Fig. 1.
With this new wave packet, the center of mass position in

Eq. (37) will change

rc = ⟨W |r|W⟩

=
∂γ

∂p

∣∣∣∣∣
p=pc

+A0

+

∫
d pC⋆

0 (p)Cn(p)⟨u0|i∂p|un⟩ + c.c. . (106)

The last term represents the additional shift to the center of
mass position due to the external fields, which we refer to as
the positional shift and label it byA′0. It can be further calcu-
lated as follows

A′0 =
∫

d p|C0|2
Gn0A0n + c.c.

ε0 − εn

− ie
2~

∫
d pC⋆

0 [B × (∂pγ +A0 − rc)C0] · An0A0n + c.c.

+
e

2~

∫
d pC⋆

0 e−iγB × ∂p|C0| · An0A0n + c.c.

=
Gn0A0n + c.c.

ε0 − εn
+

e
2~

Re
∫

d pB × ∂p|C0|2 · An0A0n

=
Gn0A0n + c.c.

ε0 − εn
− e

2~
(B × ∂p)i · Re[(Ai)n0A0n] . (107)

It is easy to check that the positional shift is gauge-
independent.

The two terms in the positional shift is a direct reflection of
the two contributions in the correction to the wave packet state.
In fact, the first term in the positional shift is due to the vertical
mixing and the second term is due to the horizontal mixing.
We find that the horizontal mixing yields a purely geometric
correction to the Berry connection. This is not a coincidence,
because the horizontal mixing involves neighbouring Bloch
states in the momentum space. Their difference is proportional
to the Berry connection and their distance is determined by the
quantum metric. This positional shift has also been envisioned
in Ref. [72], using a similar technique.

Using the modified wave packet, we can derive the La-
grangian. The process is exactly the same with that in the
semiclassical theory up to first order. The energetic part will
pick up an additional second order correction, and the dynam-
ical part is the same with the expression on the fourth line in
Eq. (43). We then use the new expression for the center of
mass position and obtain the following Lagrangian

L = −(rc −At
0) · ~k̇c −

1
2

eB × rc · ṙc − ε̃0 , (108)

where At
0 is the Berry connection evaluated in the true eigen

state instead of the unperturbed one. It can be put in the form
of the original Berry connection plus the positional shift cor-
rection: At

0 = A0 +A′0. This Lagrangian has the exact same
form with the previous one in Eq. (44). Consequently, the con-
nection between physical and canonical variables also has the
same form except that the Berry connection At

0 in the exact
eigenstate should be used

rc = q +At
0 +

e
2~

(B ×At
0 · ∂p)At

0 +
e

2~
Ωt

0 × (B ×At
0) ,

(109)

kc = p+
e

2~
B × q +

e
~

B × (rc − q) , (110)

where Ωt
0 = ∇p ×At

0 is the Berry curvature evaluated using
the exact eigenstate. This suggests the following phase space
density of states

D = 1 +
e
~

B ·Ωt
0 . (111)

One can also derive the equations of motion up to second or-
der using the variational principle. Interestingly, they keep the
same form [69]

ṙc =
∂ε̃0

~∂kc
− k̇c ×Ωt

0(kc) , (112)

~ k̇c = −eE − eṙc × B . (113)

Finally, we comment that as the essential ingredient in the
semiclassical dynamics up to the second order, the positional
shift has the meaning of the change in the electric dipole
moment of the wave packet. It can be used to derive the
polarizability. For this purpose, we apply external electro-
magnetic fields, and there will be two changes in the elec-
tric polarization accordingly. First, the density of states has
to be changed to D. Second, the Berry connection A0 →
At

0 +
e

2~ (B × At
0 · ∂p)At

0 +
e

2~Ω
t
0 × (B × At

0) according to
Eq. (109). Adding up these two modifications, we find that
the first order change in electric polarization is

δP = −e
∫

dk
(2π)3

[ e
2~

(Ω0 ·A0)B +A′0
]
. (114)

The first term is the Abelian Chern-Simons 3-form, which cor-
responds to the topological part of the orbital magnetoelectric
coefficient. The second term can give rise to both the electric
polarizability and the cross-gap part of the orbital magneto-
electric polarizability, consistent with the calculation using the
linear response theory [73]. This confirms the validity of the
first order correction to the Berry connection.

B. Landau level quantization and nonlinear Landau level fan
diagram

The first nonlinear phenomena that we explore is the non-
linearity in the Landau level fan diagram measured through
the quantum oscillation experiment. Landau levels in solids
are described by the Onsager’s rule [74]

S (εn) = 2π
(
n +

1
2

)
eB
~
, (115)

where S (εn) is the area in the momentum space enclosed by an
equal-energy contour. If we plot the level index as a function
of 1/B, all data points should fall on the straight lines

n =
~S

2πeB
− 1

2
. (116)

The slope of the line is governed by the area S , which can be
tuned by changing the quantization energy through, for exam-
ple, gating. This type of pattern forms the Landau level fan
diagram.
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FIG. 2. Temperature-dependence of the Shubnikov-de Haas oscil-
lations (a) and the gate-voltage-dependence of the Landau level fan
diagram (b) in graphene. From Ref. [81].A. A. TASKIN AND YOICHI ANDO PHYSICAL REVIEW B 84, 035301 (2011)

FIG. 4. (Color online) Landau-level fan diagram
for oscillations in dρxx/dB measured at T =
1.6 K and θ 
 0◦ reported in Ref. 21 for BTS. Minima and
maxima in dρxx/dB correspond to n + 1

4 and n + 3
4 , respectively.

Solid (dark gray) line is the calculated diagram for an ideal Dirac
cone with vF = 3.4 × 105 m/s and F = 62 T; dashed (blue) line
includes the effect of the actual dispersion with m/m0 = 0.13;
dotted (red) line further includes the Zeeman effect, where gs

= 76 or −45 was determined from a least-squares fitting to the
data. Inset shows the experimental data and calculations after
subtracting the contribution from an ideal Dirac cone, (1/B)Dirac,
where �(1/B) ≡ (1/B) − (1/B)Dirac.

finite Berry phase, but it was not exactly equal to π , which
remained a puzzle.21 Now, we analyze this LL fan diagram
by considering the nonideal Dirac dispersion as well as the
Zeeman effect. The ARPES data27 for the surface state of BTS
(Fig. 1) give vF = 3.4 × 105 m/s and the averaged effective
mass m/m0 = 0.13. We fix the oscillation frequency F at 62 T
obtained from the Fourier-transform analysis of the dρxx/dB

oscillations.21

In Fig. 4, the calculated diagram for an ideal Dirac cone
is shown by the solid (dark gray) line, whereas that for the
nonideal Dirac cone with the effective-mass term is shown by
the dashed (blue) line. One can see that the difference is small,
which indicates that the effective mass of 0.13m0 is not light
enough to significantly alter the LL fan diagram. One may
also see that these two lines undershoot the actual data points
at smaller n, which is even more clearly seen in the inset,
where the experimental data and the calculations are shown
after subtracting the contribution from an ideal Dirac cone. By
further including the Zeeman effect, we can greatly improve
the analysis, as shown by the dotted (red) line; here, gs is taken
as the only fitting parameter and a least-squares fitting to the
data was performed. The best value of gs is 76 or −45.

The inset of Fig. 4 makes it clear that it is the slight
deviation of the experimental points from the ideal Dirac line
that causes a simple straight-line fitting of the LL fan diagram
to intersect the n axis not exactly at 0.5. Since the Berry phase
in real situations is not a fixed value but is dependent on
the magnetic field, the simple straight-line analysis of the LL
fan diagram should not be employed for the determination
of the Berry phase. Obviously, the SdH oscillations of the
topological surface states are best understood by the analysis
which considers both the the deviation of the energy spectrum

FIG. 5. (Color online) Landau-level fan diagrams for SdH oscil-
lations observed in various TIs and graphene. Symbols are obtained
from the published experimental data in the literature. Solid lines
are calculations taking into account the nonideal dispersions of the
surface states (determined by m/m0) and the Zeeman coupling to
an external magnetic field (determined by gs). Dashed lines are
calculations for ideal Dirac fermions (m/m0 = ∞ and gs = 0). Open
diamonds are (dρyx/dB)min,max in Bi2Te3 from Ref. 18; filled circles
are (�Rxx)min in Bi2Se3 from Ref. 20; open circles are (Rxx)min,max in
graphene from Ref. 11; filled squares are (�Rxx)min,max in a Bi2Te3

nanoribbon from Ref. 25; open squares are (dρxx/dB)min,max in BTS
from Ref. 21.

of the Dirac-like charge carriers from the ideal linear dispersion
and their strong coupling with an external magnetic field.

VII. OTHER MATERIALS

Similar analyses can be performed for other TIs in which
the quantum oscillations coming from the 2D topological
surface states have been observed. Figure 5 shows the LL
fan diagrams for the SdH oscillations published to date for
TI materials,18,20,21,25,38 together with the data obtained in
graphene,11 which provides a good reference for studies
of Dirac fermions. We digitized the published experimental
data in the literature and determined ourselves the positions
of minima 1/Bmin and maxima 1/Bmax of the oscillating
parts of the resistivity (resistance), Hall resistivity, or their
derivatives with respect to B. The data obtained for various
materials are plotted as functions of n in Fig. 5. Note that, to
avoid ambiguities, we considered only those data that show
oscillations with a single frequency.38

The parameters of the surface states used in our fan-diagram
analyses have been obtained from the published ARPES data
by fitting them in the same way as for BTS (see Fig. 1).
Table I shows vF and m/m0 for the Bi2Se3/Bi2Te3 family
and graphene. These parameters were fixed during the fitting
of the data shown in Fig. 5. The only parameter that could

TABLE I. Parameters of the surface states from ARPES.

Material vF (m/s) m/m0 Ref. Remark

Bi2Se3 3.0 ×105 0.25 [28] Averaged
Bi2Te2Se 3.4 ×105 0.13 [21] Averaged
Bi2Te3 3.7 ×105 3.8 [29] Near Dirac point
Graphene 1 ×106 ∞ [11] Calculations

035301-4

FIG. 3. Landau level fan diagrams observed in various topological
insulators and graphene. The nonlinearity is clear at large magnetic
field. From Ref. [82].

As the Berry phase can modify the Lagrangian, it can also
change the Landau level position. In the presence of the Berry
phase, it has been shown that the quantization rule changes
to [75–77]

S (εn) = 2π
(
n +

1
2
− Γ

2π

)
eB
~
, (117)

where Γ is the Berry phase associated with the equal-energy
contour in the momentum space. Later this quantization rule
has also been generalized to include the contribution from the
magnetic moment [3, 78, 79] and to include the non-Abelian
case [80].

The role of the Berry phase is most clearly seen in the two-
dimensional gapless Dirac model, as it has a constant Berry
phase π and −π for the conduction and valence band. This
will shift the Landau level index by ±0.5 and hence change
the position of the Landau level. The linear relation between
n and 1/B still holds and one can obtain the Berry phase by
fitting the Landau level fan diagram according to Eq. (116)
and calculate the offset in the Landau level index. This has
already been done in the quantum oscillation experiments in
graphene [81, 83], as shown in Fig. 2. However, later quan-
tum oscillation experiments in the surface states of three-
dimensional topological insulators demonstrate violations of
the linearity between n and 1/B [82, 84–91], as shown in
Fig. 3. To explain this nonlinearity, one needs a more accu-
rate Landau level quantization rule.

To further generalize the Onsager’s rule, we assume that

⇢
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  Electron	  density	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  Smooth	  Interpola4on	  
	  	  	  	  	  	  	  	  	  	  	  	  Midpoints	  

µ

FIG. 4. Density quantization rule for Landau levels. The true elec-
tron density and the semiclassical one are in the blue and red lines,
respectively. From Ref. [92].

instead of the Berry phase, we should have a function of en-
ergy which admits an asymptotic expansion with respect to the
magnetic field, i.e.(

n +
1
2

)
eB
h
=

N∑
m=0

Rm(εn)
Bm

m!
+ O(BN+1) . (118)

This meaning of the assumption will be made clear later. By
comparing it with Eq. (117), we should have R0 = S/4π and
R1 = eΓ/2πh. In general, there is a connection between the co-
efficient Rm with the magnetic response function at zero field
and zero temperature, i.e.

Rm = lim
T→0

lim
B→0

∂mρ(B,T, µ)
∂Bm , (119)

where ρ(B,T, µ) is the electron density for the Landau level
spectrum.

This relation can be justified as follows. Without loss of
generality, we consider the electron density for Landau level
spectrum εn(B) from a band minimum in two dimensions:

ρ(B,T, µ) = (B/ϕ0)
∑

n

f [εn(B) − µ] , (120)

where ϕ0 = h/e is the flux quantum, f is the Fermi function,
and µ is the chemical potential. At T = 0, the electron density
is a staircase function with constant risers B/ϕ0 located at µ =
εn(B), as shown by the blue curve in Fig.(4).

We then perform a smooth interpolation of the spectrum
εn(B) as follows. We can re-write the spectrum as εn(B) =
g(xn, B), where xn = (n + 1/2)B/ϕ0 is the zero-temperature
electron density when the n-th Landau level is half-filled. We
then allow x to change continuously, the function ε = g(x, B)
smoothly interpolates the spectrum εn(B) at x = xn for each
value of B. As εn(B) increases with n, g(x, B) is a mono-
tonic function of x for each B. g(x, B) can be inverted to yield
x = x(µ, B), represented as the smooth curve in Fig.(4). We
assume that this function x(µ, B) admits an asymptotic expan-
sion with respect to B, which is actually Eq. (118). By con-
struction, the interpolation condition dictates that this smooth
curve x(µ, B) crosses midpoints of the staircase risers, i.e.
xn = x(εn, B). This completes half of the quantization rule,
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i.e. the quantized part. We still need to connect the right hand
side x(µ, B) with the property of the system without magnetic
field.

We now analyze the right hand side of Eq.(119). The order
of the limit T → 0 and B→ 0 can be realized in the following
scenario: Landau level spacing is much smaller than kBT , and
kBT is much smaller than the inherent energy scale of the band
structure. Examples of the latter include the distance between
the chemical potential and band singularity energy such as the
band bottom and band top). The first condition validates the
use of the Euler-Maclaurin formula to express the summation
over n in Eq. (120) as an integration over a continuous variable
x:

ρ(B,T, µ) =
∫ ∞

B/2ϕ0

f dx +
B f |x=B/2ϕ0

2ϕ0
+ R , (121)

where f = f [g(x, B) − µ]. R contains all the remainder terms.
R only involves exponentially small terms at low tempera-

ture. Terms in R should be calculated at x = B/2ϕ0, i.e. at the
0-th Landau level near the band minimum. We have ignored
the contribution at x = ∞ since they correspond to very high
energy and hence are exponentially small as T → 0. The ar-
guments can be easily generalized for realistic models in solid
state physics which contain singular points such as the van
Hove singularities. Moreover, terms in R are proportional to
successively higher power of B and contain ∂ f /∂µ or its higher
order derivatives with respect to µ. Therefore, each term is ex-
ponentially small as T → 0.

We now calculate the right hand side of Eq.(119). Due
to the above property of R, only finite number of terms in
R contribute to limB→0(∂mρ/∂Bm). We then take the limit
T → 0. The first two terms in Eq.(121) will yield x,
and finte number of terms from R vanishes. As a result,
limT→0 limB→0(∂mρ/∂Bm) = (∂mx/∂Bm)|B=0. Under the limit
that kBT is much larger than the Landau level spacing, the true
electron density can be approximated by the semiclassical one
ρsemi, and the latter is exactly the meaning of x.

In the following, we prove the identity Rm = (∂mx/∂Bm)|B=0.
This will be able to establish the equality in Eq.(119). Note
that the left hand side of Eq.(118) is xn = (n + 1/2)B/ϕ0.
Therefore, if εn in the function Rm(εn) on the right hand side
of Eq.(118) is replaced by a continuous variable µ, we get a
continuous function x = x′(µ, B). If this quantization rule
in Eq. (118) works, i.e. xn = x′(εn, B), this function x′

has to coincide with another function directly derived from
the Landau level spectrum, i.e. x = x(µ, B). Therefore,
Rm = (∂mx′/∂Bm)|B=0 = (∂mx/∂Bm)|B=0. This completes the
proof of Eq.(119).

Based on the above discussions, the quantization rule in
Eq. (118) can also be concisely represented by the following
density quantization rule [92]

ρsemi(εn) =
(
n +

1
2

)
eB
h
. (122)

This suggests that the smooth semiclassical electron density
always intersects with the true stepwise electron density at the
half-filling points, as shown in Fig. 4.

One can connect Rm in Eq.(118) with the familiar mag-
netic response functions derived from the free energy, such
as the magnetization M and the magnetic susceptibility χ
at zero temperature. The semiclassical electron density is

related to the semiclassical free energy: ρsemi(B,T, µ) =
−(∂/∂µ)Gsemi(B,T, µ). The semiclassical free energy can be
expanded with respect to B: Gsemi = G0 − BM − χB2/2 + · · · .
Therefore, we can identify the following relation: R0 =

S/(4π2), R1 = ∂M/∂µ, R2 = ∂χ/∂µ, and so on. Here S is
the k-space area enclosed by the equal energy contour, and
proportional to the semiclassical electron density R0 at B = 0.
The zero-field magnetic response functions up to second order,
i.e. M and χ, have been studied using both the linear response
theory and the semiclassical theory [38, 47, 93–95].

With the expression of the coefficient we can discuss the
connection between the new quantization rule in Eq. (118) and
the previous Onsager’s rule. Truncating the quantization rule
in Eq. (118) at zeroth order recovers the Onsager’s rule: from
the expression of R0, we can obtain S 0 = 2π

(
n + 1

2

)
eB
~ . Trun-

cating Eq.(118) at first order can recover the well-known Berry
phase and magnetic moment correction to the Onsager’s rule.
The magnetization is given by M =

∫
(m f − Ωg)d2k/(4π2).

Therefore, ∂M
∂µ
= −

∫
(m f ′ −Ω f ) d2k

4π2 . If we combine the first
term with R0 and move the second term to the left hand side
of Eq.(118), we obtain the following quantization condition:
S ′ = 2π

(
n + 1

2 −
Γ(µ)
2π

)
eB
~ , where S ′ =

∫
f (ε0 − Bm − µ)d2k is

the area enclosed by the equal-energy contour in the modified
band structure ε0−Bm with the energy µ, and Γ(µ) is the Berry
phase associated with the semiclassical orbit. This is exactly
the Onsager’s rule with the Berry phase and magnetic moment
modification [3, 75, 77, 78].

Truncating the quantization rule at second order, we have(
n +

1
2

)
eB
h
=

S (εn)
4π2 + B

∂M
∂µ

∣∣∣∣∣
µ=εn

+
1
2

B2 ∂χ

∂µ

∣∣∣∣∣
µ=εn

. (123)

It is interesting to note that Eq. (123) indicates the nonlinear-
ity in the Landau level fan diagram when plotted as n against
1/B due to the appearance of the susceptibility. Such nonlin-
earity can account for that observed in experiments [85–91],
as shown later.

As a concrete example, we consider the following model
that describes surface states of three dimensional topological
insulators [82] (for simplicity, we choose e, ~ to be unity):

Ĥ = v f (kxσy − kyσx) +
k2

2meff
, (124)

where v f is the Fermi velocity, meff is the effective mass, and
σ are Pauli matrices in the spin space. The three terms in
Eq.(124) represents spin-orbit coupling, kinetic energy, and
spin Zeeman energy, respectively. Under a B field along z
direction, Landau levels in the conduction band reads: εquan =

nB/meff +
√

2v2
f nB + (m0/meff − gs/2)2µ2

BB2, where m0 is the
free electron mass, gs is the surface g-factor, and µB is the
Bohr magneton.

We first discuss the simple case when 1/meff → 0 and gs =

0. Equation (124) then reduces to a perfect two-dimensional
Dirac model, with π Berry phase for the conduction band and
vanishing magnetic moment. In this case, the quantization rule
in Eq.(123) up to linear order on the right hand side yields
the exact Landau levels εquan = v f

√
2nB. This coincidence

suggests that Rℓ = 0 with ℓ ≥ 2 for this model, when µ falls
inside the band. Specifically, at ℓ = 2, the vanishing ∂χ/∂µ
when µ falls inside the band has already been confirmed in
previous literature [93–95].
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FIG. 5. Comparing exact spectrum with Eq.(126). The black line
stands for the exact spectrum and the red dots stand for the quantiza-
tion rule. From Ref. [92].

Now we discuss the general case with a finite meff and gs.
In this case, the susceptibility does not necessarily vanish. In
fact, when µ falls inside the conduction band, the susceptibility
reads

∂χ

∂µ
= −

meffµ
2
B

2πv f

(
1

meff/m0
− 1

2gs

)2

k f + meffv f
, (125)

where k f = −meffv f +
√

m2
effv

2
f + 2meffµ is the Fermi wave

vector. The Berry phase is still π and the magnetic moment
still vanishes. Therefore, Eq.(123) yields

n = k2
f /2B −

meffBµ2
B

2v f

(
1

meff/m0
− 1

2gs

)2

k f + meffv f
. (126)

Due to the appearance of the second term in Eq.(126), n does
not depend on 1/B linearly when m0/meff −gs/2 does not van-
ish.

We can compare the exact spectrum with the quantization
rule in Eq.(126) in a nB-versus-B2 plot which may be more
helpful to experiments, as shown in Fig.(5). We first note that
if n linearly depends on 1/B, nB would be a constant. There-
fore, the inclination of the exact spectrum data clearly suggests
a nonlinear relation. According to Eq.(126), the π Berry phase
is implied by the straightness of the solid line. The slope of the
line yields ∂χ/∂µ, and its interception to the y axis gives the
Fermi surface area. As shown in Fig.(5), the exact spectrum
fits Eq.(126) quite well. As experimental data fits the exact
Landau level spectrum from Eq.(124) quite well, from Fig. (5),
it will also fit the quantization rule in Eq.(126), demonstrating
its utility.

C. Nonlinear anomalous Hall current

As discussed in Sect. IV D, the anomalous Hall effect re-
quires broken time-reversal symmetry as well as certain mirror
symmetries. This can be realized by either a net spin magne-
tization as in ferromagnets or an orbital magnetization as in

noncolinear antiferromagnets. It is forbidden if time rever-
sal symmetry is present. However, the next order contribution
to the Hall effect, i.e. the nonlinear Hall effect, may still be
present, because a net magnetization can be induced by elec-
tromagnetic fields.

We first briefly introduce the general framework of deriv-
ing a current in the semiclassical theory. The current in the
semiclassical theory reads

J = −e
∫

dk
8π3Dṙ f , (127)

where f is the electron distribution function, which is the
Fermi function in equilibrium. Here and hereafter, we drop
the subscript c in the center of mass position rc and momen-
tum kc for simplicity. By plugging the force in Eq. (113) into
the velocity in Eq. (112), we obtain

Dṙ = ũ + eE ×Ωt +
e
~

(
ũ ·Ωt

)
B , (128)

where ũ = ∂ε̃/~∂k is the modified band velocity. Here and
hereafter, we will ignore the band index 0 for simplicity and
the subscript 0 only has the meaning of zeroth order.

The distribution function f in Eq. (127) can be solved from
the Boltzmann equation. Under the relaxation time approxi-
mation, the Boltzmann equation reads

k̇ · ∂ f
∂k
=

d f
dt

∣∣∣∣∣
collision

= − f − f0
τ

, (129)

where τ is the relaxation time. We emphasize that the argu-
ment of equilibrium distribution f0 is the modified band en-
ergy ε̃. Solving the Boltzmann equation perturbatively, one
has [96]

f =
∞∑

m=0

(−τk̇ · ∂k)m f0(ε̃) . (130)

This completes the theory for current in the semiclassical
framework.

Here for the purpose of deriving the correction to the
anomalous Hall effect, we will only keep the solution in
Eq. (130) up to first order. The result reads

f1 =
eτ
~

E · u0 f ′0 , (131)

where f ′0 =
∂ f0
∂ε

.
We can then discuss the anomalous Hall current derived in

the semiclassical theory. We first consider the contribution
equilibrium distribution f0. According to Eq. (128), we have
the following contribution

J1 = −e
∫

dk
8π3 [ũ + eE ×Ωt] f0(ε̃) . (132)

It is easy to show that the first term vanishes in general and we
have

J1 = −e2E ×
∫

dk
8π3Ω

t f0(ε̃) (133)

At lowest order, this will give rise to the anomalous Hall cur-
rent discussed previously. At second order, due to the field
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3

discussed in the following. As detailed in the supplemen-
tal materials [15], we follow the procedure in Ref.[1] and
obtain that

rc = q + a+
1

2
(B × a · ∂p)a+

1

2
Ω × (B × a) + a′ ,

(9)

kc = p+
1

2
B × q +B × (rc − q) . (10)

Note that in Eq.(9) and (10), the argument for a and
a′ is p + 1

2B × q. It was previously thought that the
first four terms on the right hand side of Eq.(9) would
be sufficient to first order in the fields [1], but now one
observes that this is incomplete without the positional
shift a′.

Orbital magnetoelectric polarizability.—In the absence
of external fields, the polarization from electrons in a
filled band is given by the integral of the Berry connec-
tion a [18, 19]. From a semiclassical point of view, a
magnetic field B modifies this formula in two ways: (1)
the density of states in the integral should contain the
factor D = 1 +B · Ω̃ ; (2) the Berry connection a should
be replaced by a+ (B×a ·∂p)a/2 +Ω × (B×a)/2 +a′

according to the relationship between the physical po-
sition and the canonical position in Eq.(9). Combining
these modifications up to first order in the magnetic field
and rewriting them in terms of the gauge invariant crys-
tal momentum kc, we obtain the polarization P ′ that is
first order in B field:

P ′ = −
∫

d3k

(2π)3

[
1

2
(Ω · a)B + a′

]
, (11)

where the integral is over the Brillouin zone and we drop
the subscript c of momentum k for simple notations.

The first term in Eq.(11) is the Abelian Chern-Simons
form, which plays a central role in the classification of
three dimensional topological insulators [10, 20–25]. It is
also derived in a more general setting where the crystal
periodicity is not required [26]. It only involves the Berry
connection and Berry curvature of the unperturbed band,
and can be derived within the framework of the first order
semiclassical theory [13, 27]. The additional term from
the field-induced band mixing was envisioned in Ref.[27],
but its vadidation had to wait for a full quantum per-
turbation treatment in Ref.[14]. We now see that this
additional term actually comes in the nice form of the
positional shift integrated over the Brillouin zone. Our
result agrees exactly with the full quantum result, con-
firming the reliability of our semiclassical theory.

Since the topological part (the first term in Eq.(11))
is quantized and well understood [10, 20–26], we focus
on the magnetoelectric polarization due to the positional
shift, which requires broken time reversal and spatial
inversion symmetry [14]. To show its connection with
the nonlinear anomalous Hall effect discussed later, we
consider the two band model in Eq.(4), in which the

second term in Eq.(11) for the lower band gives P ′i =∫
GiBd

3k/(2π)3, where G = (ẑ · ∂h0 × ∂nj)∂nj/(4h),
with ẑ being the direction of the magnetic field. We note
that, if h0 is a constant, G would vanish. This is con-
sistent with previous observation that a non-zero orbital
magnetoelectric polarization must require particle-hole
symmetry breaking of the system [14]. A minimal lat-
tice model that realizes this effect can be constructed in
2D. Notice that for model Eq.(4) in 2D the topological
part of magnetoelectric polarization, i.e. the first term in
Eq.(11) vanishes [27] hence only the contribution from a′

exists. Moreover, since a′ transforms as a spatial vector
and it must lie in the plane, in general it must vanish
if the system has in-plane rotational symmetry. And if
in-plane mirror symmetry exists, P ′ would be restricted
to be along the normal direction of the mirror line (see
Fig.1 (a)). These symmetry constraints provide guidance
for the construction of the lattice model, as discussed in
the supplemental materials [15].

FIG. 1. (color online) Magnetoelectric Polarization (panel
(a)) and electric nonlinear anomalous Hall effect (panel (b))
in a 2D system with a mirror line along x axis. In panel (a),
the mirror symmetry requires the zeroth order polarization
P0 to be along the mirror line, and requires the first order P ′

to lie in the perpendicular direction. In panel (b), the linear
anomalous Hall current vanishes due to the mirror symmetry,
but the nonlinear anomalous Hall current can exist along the
mirror line if the electric field is applied along the perpendic-
ular direction.

Nonlinear anomalous Hall effect.— In the semiclas-
sical approach the transport current is given by j =
−
∫
ṙcf(k)D d3k/(2π)3 , where f(k) is the distribution

function. Because our theory is accurate up to second
order in external fields, it allows us to evaluate the non-
linear current response. Here we focus on the intrinsic
contribution to the Hall current which is purely from the
band structure effects without disorder scattering [28–
34]. Under fixed temperature and uniform electromag-
netic fields, we obtain the intrinsic current j′ that is sec-
ond order in external fields:

j′ = E ×
∫

[v × a′ + Ω(B ·m)]
∂f0
∂ε0

d3k

(2π)3
. (12)

FIG. 6. Magnetoelectric effect (Panel a) and the related nonlin-
ear anomalous Hall induced by the electric field (Panel b). From
Ref. [69].

correction to both the Berry curvature and band energy, we
have nonlinear anomalous Hall current.

We first consider systems with both time reversal and inver-
sion symmetry. In this case, a net magnetization can be in-
duced through the magnetic susceptibility by a magnetic field,
hence leading to a Hall-type current. The analytical expression
for this correction can be obtained by keeping the magnetic-
field-dependent part inΩt and the mangetic-field-correction to
the band energy in Eq. (133). The result reads [69]

J =
e2

~
E ×

∫
[~u ×A′(B) +Ω(B · m)] f ′0

dk
8π3 , (134)

whereA′(B) stands for the part ofA′ solely dependent on B.
We note that the ordinary Hall current is also linear in elec-

tric field and magnetic field. However, it has different ori-
gins from the one in Eq. (134). The ordinary Hall current is
due to the Lorentz force and the second order solution to the
distribution function in the Boltzmann equation. In compari-
son, the current in Eq. (134) is due to a nontrivial geometric
structure (Berry curvature, magnetic moment and the quantum
metric tensor) in the momentum space and is independent of
the relaxation time. This difference can be most easily seen
through the ratio of the resistivity ρ′xy from Eq. (134) and the
ordinary Hall resistivity ρord

xy

ρ′xy

ρord
xy
=

(
ρxx

e2

4h

)2

S (µ) , (135)

where the first factor reflects the different dependence on
the relaxation time and is universal, and S (µ) is a model-

dependent factor but independent of the relaxation time. when,
In dirty metals/semiconductors with relatively small relaxation
time, ρxx is large, and ρ′xy will dominate the ordinary Hall ef-
fect. In a typical Hall-bar measurement set-up, both ρ′xy and
ρord

xy should contribute to the Hall current. They should be dif-
ferentiated by changing the universal scaling factor through
temperature, film thickness, or doping, and measure the scal-
ing behaviour based on Eq. (135).

We now consider systems that simultaneously break the
time reversal and inversion symmetry but preserve the com-
bined symmetry. This symmetry allows the magnetoelectric
effect, such that a magnetization can be induced by an elec-
tric field through the magnetoelectric coefficient [97]. This
induced magnetization can further lead to a Hall-type cur-
rent. The analytical expression can be obtained by keep-
ing the electric-field-dependent part in the Berry curvature in
Eq. (133). The result reads [69]

J = e2E ×
∫

[u ×A′(E)] f ′0
dk
8π3 , (136)

where A′(E) stands for the part of A′ solely dependent on
E. This current is connected to the magnetoelectric effect,
as shown in Fig. 6. The mirror-y symmetry can forbid the
anomalous Hall current but not this nonlinear anomalous Hall
current, i.e. by going from the linear to nonlinear anomalous
Hall current, although the time-reversal symmetry still needs
to be broken, we can relax the constraint on the mirror sym-
metry.

As a concrete example, we consider the following two-band
toy model

Ĥ = v′kx + vkxσxτy + vkyσy + ∆σz , (137)

where σ stands for the pseudospin in the orbital space, τy is
the spin Pauli matrix, v′ and v are two velocity parameters,
and ∆ gives a finite band gap. The energy spectrum of this

model is ε± = v′kx ± ε with ε =
√
v2k2

x + v
2k2
y + ∆

2. When
v′ = 0, this model describes a two-dimensional Dirac model.
The v′ adds a tilting to the Dirac cone. The spin component τy
breaks mirror-x and mirror-z symmetry but respects mirror-y
symmetry. This will forbid the anomalous Hall current in the
xy plane.

For the nonlinear anomalous Hall current, according to
Fig. 6, we apply the electric field along y direction. We also as-
sume that the Fermi energy falls in the conduction band. Then
the current in Eq. (136) becomes

Jx = 2e3E2
yRe

∫
vx(Ay)0n(Ay)n0 − vy(Ax)0n(Ay)n0

ε0 − εn
f ′0

dk
4π2 . (138)

We can use the toy model in Eq. (137) to calculate the above
current. The result reads

Jx = v
2e3E2

y

∫
dk
4π2

1
4ε3

v′ 1 − v2k2
y

ε2

 + v2kx

ε

 f ′0 . (139)

In the limit that ∆ = 0, the above integration can be easily

calculated:

Jx =
v3e3E2

y

16π2µ3

∫
dθ

(
1 +

v′

v
cos θ

)2 (
cos θ +

v′

v
cos3 θ

)
=
v′v2e3E2

y

8π2µ3

∫
dθ

(
cos2 θ +

v′

v
cos4 θ

)
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=
v′v2e3E2

y

4π2µ3

(
1 +

3v′

8v

)
. (140)

This clearly demonstrate the existence of the nonlinear anoma-
lous Hall current. We can also find that the tilting plays an
important role. In fact, if we set v′ = 0, the nonlinear anoma-
lous Hall current vanishes. This current also decays quickly to
zero when the chemical potential moves away from the Dirac
point.

We now consider the nonlinear anomalous Hall current due
to the contribution from f1. The current reads

J2 = −
e2τ

~

∫
dk
8π3 (u0 + eE ×Ωt)E · u0 f ′0 . (141)

It is easy the check that the first term in the bracket does not
contribute to an antisymmetric component of the conductivity.
Therefore, we are left with

J2 = −
e3τ

~
E ×

∫
dk
8π3Ω

tE · u0 f ′0 . (142)

Due to the transformation property of Ω and u0, this current
can appear in noncentrosymmetric but time-reversal-invariant
materials. It is due to the net magnetization induced in the
nonequilibrium steady state through the Edelstein effect. Inter-
estingly, the requirement of the mirror symmetry in Fig. 6(b)
also works for this current. But one should keep in mind that
for the current in Eq. (136), as the time reversal symmetry is
broken, the inherent spin texture in the sample is also subject
to the mirror operation. The observation of this nonlinear Hall
current has been reported in several recent experiments [10–
12]. We comment that in Eq. (142), uΩ together constitutes
a pseudotensor which represents the first order moment of the
Berry curvature in the momentum space. Hence it is referred
to as the Berry curvature dipole.

A concrete example of this nonlinear anomalous Hall cur-
rent is provided in Ref. [9]. At low temperature, the surface
state of the three-dimensional topological insulator can enter
into a ferroelectric state which meets the symmetry require-
ment. The model Hamiltonian is given by

Ĥ = vxkxσy − svykyσx + sαky + βσz , (143)

where s = ±1, β opens a band gap, and α tilts the Dirac
cone. This model breaks the mirror-x symmetry but keeps the
mirror-y symmetry. As a result, the nonlinear anomalous Hall
current along x direction should exist, when the electric field
is applied along y direction, i.e. we should have

Jx = −
e3τ

~
E2
y

∫
dk
4π2Ωzvy f ′0 . (144)

For the conduction band, the Berry curvature reads

Ωz =
1
2

svxvyβ

(β2 + v2
xk2

x + v
2
yk2
y)3/2 . (145)

For s = ±1, the Berry curvature has the same magnitude but
opposite signs. However, the tilting is also a odd function of
s. This indicates that vyΩz is an even function of s and hence
can be nonzero. The final result is

Jx =
e3τ

~
E2
y

3vxvynβαµ(1 + u2)
[µ2(1 + u2)(1 + 2u2) − u2β2]5/2 , (146)

where u = α′/
√
v2 − α′2, α′ = α

√
vx/vy, n =

γ2/(4πv
√
v2 − α′2), and γ =

√
µ2 + µ2α′2/(v2 − α′2) − β2.

From this expression, we can find that both the band gap and
the tilting are important for the nonlinear anomalous Hall cur-
rent. The former will make the Berry curvature nonzero, while
the latter makes the Berry curvature has a dipolar structure in
the momentum space. Moreover, right at the conduction band
bottom, γ = 0 and so is the current Jx. When the chemical po-
tential is high in the conduction band, Jx goes to zero as 1/µ2.
As a result, the current Jx as a function of the chemical poten-
tial should start at zero, reach a peak, and then fall to zero as
1/µ2.

Finally, we comment that if the time reversal and inversion
symmetry, as well as their combined symmetry are all broken,
the anomalous Hall and its two nonlinear versions in Eq. (136)
and (142) should all be present. Since they depend on different
band properties, they may have maximum at different chem-
ical potentials, indicating potential tuning possibility for lin-
ear/nonlinear behaviour in the anomalous Hall current. More-
over, there are methods to distinguish them. One can first per-
form a scaling of the relaxation time to distinguish the intrinsic
contribution (i.e. independent of τ) from the extrinsic contri-
bution (i.e. linear in τ) in Eq. (142). This is similar to ex-
tracting intrinsic, skew-scattering and side-jump contribution
from the total anomalous Hall signal [98–103]. The nonlinear
part can be further extracted by reversing the direction of the
electric field and finding the difference in the Hall signal.

D. Spatially dispersive phenomenon: circular dichroism in
noncentrosymmetric materials

As discussed in Sect. III F, in ferromagnetic materials, the
left/right handed light is responded differently. In reality, there
is a large family of materials that shares the same optical
properties, but that breaks the inversion symmetry instead of
the time reversal symmetry, such as quartz, RNA and DNA
molecules, etc. In such materials, σxy vanishes identically as
dictated by the time reversal symmetry. Their unique opti-
cal response to the light chirality is ascribed to the first order
correction to σxy due to the coupling between the light wave
vector to the anisotropy of the material in space [97].

In general, the light wave length is much larger than the unit
cell length scale. As a result, the light wave vector is much
smaller than the crystal momentum. In this regard, we can
expand the optical conductivity with respect to the light wave
vector q:

σi j(ω, q) = σi j(ω, 0) + σi jk(ω, 0)qk + · · · . (147)

Without loss of generality, we assume that the light propagates
along z direction. In noncentrosymmetric materials, the opti-
cal current is given by

J =
(

σxx σxyzqz
−σxyzqz σyy

)
E . (148)

The equation for the refractive index and the electric field
component will satisfy(

n2 − n2
0 −ic2µ0σxyzqz/ω

ic2µ0σxyzqz/ω n2 − n2
0

)
E = 0 , (149)
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We can then solve the refractive index

n± = n0 ±
cµ0

2
σxyz . (150)

The component of the optical conductivity σxyz can be cer-
tainly derived using the linear response theory [18, 19, 104].
However, here we will adopt the semiclassical theory at low
frequency range (frequency is much smaller than the band
gap), which is more intuitive and has clear physical interpre-
tation for the result [18]. We will start with the current in
Eq. (127). By plugging in the velocity in Eq. (128), we have

J1 = −e
∫

dk
8π3

[
ũ + eE ×Ωt +

e
~

(ũ ·Ωt)B
]

f . (151)

Since B ∝ qzE, we should keep terms in the current that is
either linear in the electric field or the magnetic field. The
result reads

J1 = −e
∫

dk
8π3

[
u − ∂(B · m) + eE ×Ω + e

~
(u ·Ω)B

]
f .

(152)

There is another contribution to the current due to the spatial
average discussed in Sect. III E. The above current is only an
accurate account for the first term in Eq. (87). The second

term reads

J2 = ∇ ×
∫

dk
(2π)3 f m . (153)

Under the optical electric field, we can still use the Boltz-
mann equation to solve the distribution function, i.e.

∂ f
∂t
+ k̇ · ∂ f

∂k
+ ṙ · ∂ f

∂r
= − f − f0

τ
. (154)

Up to first order in the electric field, we can use the following
ansatz for the distribution function

f = f0 + f1e−iωt+iq·r . (155)

The coefficient f1 can then be solved through the Boltzmann
equation. The result reads

f1 = −
eE · u

iω − iq · u − 1/τ
f ′0

= i
eE · u
ω

f ′0 + i
eE · u
ω2 q · u f ′0 + · · · . (156)

In the second equality, we have absorbed the relaxation time
into the imaginary part of the frequency, i.e. ω + i/τ → ω.
The expansion is valid when the electron velocity u0 is much
smaller than the speed of light.

By plugging the distribution function in Eq. (155) into the
current in Eq. (152) and (153), we obtain

J = −e
∫

dk
8π3

[
iu(q · u)eE · u

ω
f ′0 + u(B · m) f ′0 +

e
~

(u ·Ω)B f0 + q × m
E · u
ω

f ′0

]
= − e

ω

∫
dk
8π3

[
u(q × E · m) f ′0 +

e
~

(u ·Ω)q × E f0 + q × m(E · u) f ′0
]
. (157)

The equality holds as we only concern with the antisymmetric
part of the optical conductivity and the first term in the original
expression only contributes to the symmetric part. We also use

the identity B = q× E/ω. This current can also be derived us-
ing the linear response theory under appropriate limit [18, 19].
This current corresponds to the following optical conductivity

σi jk = −
e
ω

∫
dk
8π3

[
−ϵ jkℓvimℓ f ′0 − ϵi jk

e
~

(u ·Ω) f0 + ϵikℓmℓv j f ′0
]
. (158)

It is evident that the above conductivity is antisymmetric about
the indices i and j. The essential ingredient in the above ex-
pression takes the form of the dipole of Berry curvature (in
the form of uΩ) and magnetic moment (in the form of um).
Since the velocity, Berry curvature and magnetic moment all

change sign under time reversal operation, and the velocity
also change sign under inversion operation, the above current
will require the system to break inversion symmetry instead of
time reversal symmetry to become nonzero. Due to the anti-
symmetry between the indices i and j in σi jk, one can define a
gyrotropic pseudotensor

gi j =
1
2
ϵkℓiσkℓ j =

e
ω

∫
dk
8π3

[
e
~

(u ·Ω) f0δi j −
1
2

(miv j + m jvi) f ′0 + (m · u)δi j f ′0

]
. (159)
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The trace of the gyrotropic tensor is a useful quantity as it
corresponds to the conductivity that is proportional to ϵi jk, i.e.
the optical current is always flowing in the direction of the
magnetic field. Therefore, this is a robust contribution to the
circular dichroism. Based on the above result, we have

Trg =
e
ω

∫
dk
8π3

[
3

e
~

(u ·Ω) f0 + 2(m · u) f ′0
]
. (160)

In the following, we consider an interesting scenario in the
Weyl semimetal. The Weyl semimetal contains pairs of Weyl
points near the Fermi level. Without loss of generality, we only
consider one pair, described by the following Hamiltonian

Ĥ = v(kxσxτz + kyσy + kzσz) , (161)

where σ are pseudospin Pauli matrices and τz = ±1 labels
Weyl points with opposite chirality. We assume that the Fermi
level falls in the conduction band. Then the Berry curvature
and the magnetic moment reads

Ω = −τz k
2k3 , m = −τzevk

2~k2 . (162)

We then find that

Trg = −
∑
τz

e2τzµ(τz)
4π2~ω

, (163)

where µ(τz) is the chemical potential for the Weyl node with
the chirality τz, measured from the Weyl point.

This corresponds to the following current

J = −
∑
τz

e2τzµ(τz)
12π2~

B . (164)

In equilibrium, the noncentrosymmetric Weyl semimetal has
the two Weyl points with the same energy, as a result µ(+1) =

µ(−1) and the above current vanishes. However, it can be
nonzero in two cases: (i) the system can be driven out of equi-
librium by applying the parallel electric and magnetic field
simultaneously, which will create a finite difference between
µ(+1) and µ(−1) due to the chiral anomaly [7, 8, 105–107];
(ii) in Weyl semimetals that simultaneously break the time re-
versal and inversion symmetry, the two Weyl points can sit
on different energies, such that the same absolute value of the
chemical potential can still result in different µ(+1) and µ(−1)
when measured from Weyl points. However, in the latter case,
one has to keep in mind this current only exists out of equilib-
rium with the optical fields applied.

Finally, we comment that the meaning of Trg and hence
σi jk can be viewed from a different aspect. The last Maxwell
equation can be put in the following form:

∇ × B =
1
c2

∂E
∂t
+ µ0

(
∂P
∂t
+ ∇ × M + êi∂ j

∂Qi j

∂t

)
, (165)

where Qi j is the electric quadrupole moment. We can then
identify the current as

J =
∂P
∂t
+ ∇ × M + êi∂ j

∂Qi j

∂t
. (166)

The material property P, M, and Qi j can respond to the
optical fields, through appropriate response functions. For the
part responsible for the circular dichroism, we have

Pi = α
em
i j B j ,

M j = α
me
i j Ei ,

Ṗi = βi jk(∂ jEk + ∂kE j) ,

Q̇i j = θi jkEk . (167)

As a result, we find that

Ji = −iαem
i j ϵ jkℓqkEℓ + iϵi jkq jα

me
kℓ Eℓ + iβi jk(q jEk + qkE j) + iq jθi jkEk . (168)

For the trace of g, the last two terms do not contribute due to
the anti-symmetrization of indices. We finally find that

Trg = 2iTr(αem
i j − αme

i j ) . (169)

This suggests that the circular dichroism is a measure of the
difference between different types of dynamical magnetoelec-
tric couplings [104].

E. Spatially dispersive phenomenon: nonreciprocal directional
dichroism in multiferroics

In multiferroics where both the time-reversal symmetry and
the inversion symmetry are broken, there is a unique spa-
tially dispersive phenomenon known as nonreciprocal direc-
tional dichroism (NDD) [108]. It refers to different refrac-
tive indices for counter-propagating lights. Since it requires

both broken time-reversal and inversion symmetry, which ren-
ders the co-existence of the polarization and magnetization,
NDD can probe the dynamical coupling between electricity
and magnetism in multiferroics [109–117]. Previously, we
have shown that the circular dichroism in noncentrosymmetric
materials is determined by the dipole of Berry curvature and
magnetic moment. It is interesting to explore the geometrical
quantities that determine NDD.

We begin with a brief phenomenological derivation of NDD
in the electromagnetic theory. We still consider the wave equa-
tion for the electric field

∇ × (∇ × E) = −µ0
∂J
∂t
− 1

c2

∂2E
∂t2 . (170)

We will assume that a monochromatic light is involved, which
is linearly polarized along the x-direction and propagating
along the z-direction.
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𝒙𝒙

FIG. 7. The electric quadrupolar current. The electric field in red
arrows has the quadrupolar profile. The resulting quadrupolar current
is in purple arrows. From Ref. [20].

Without loss of generality, we can exert the following sym-
metry constraints to simplify the result. First, we can as-
sume the mirror-z symmetry is broken but mirror-x symme-
try is present. This forbids the existence of σxy. We fur-
ther assume that there is rotational symmetry about the z-
axis, so that σxxz = σyyz. Then the above symmetry as-
sumptions yield the following equation for the refractive in-
dex: n2

z = n2
0 + icµ0nzσxxz. The subscript z in nz is added to

distinguish the direction of propagation. The solution is

nz = icµ0σxxz/2 +
√

n2
0 − c2µ2

0σ
2
xxz/4 . (171)

By reversing the propagation direction, the first term in
Eq. (171) flips sign and we can then solve n−z. The difference
is

∆n = nz − n−z = icµ0σxxz . (172)

We will consider the static transport part in σxxz. By defini-
tion, it corresponds to the following current Jx ∝ qzEx ∝ ∂zEx,
i.e. the current driven by a spatially varying but static electric
field in metals. In the static case, ∇ × E = −∂B/∂t = 0,
the electric field must have a quadrupolar profile as shown in
Fig. 7. This can be depicted by the semiclassical transport the-
ory in Sect. III C. Moreover, the band geometry will enter nat-
urally in the semiclassical equations of motion. The equations
of motion for Bloch electrons in the m-th band under slowly
varying electric field read

ṙ =
1
~
∂kε̃m − k̇ ×Ωm −Ωkr,m · ṙ , (173)

~ k̇ = −eE +Ωrk,m · ~ k̇ , (174)

where Ωm = −2Im⟨∂kum| × |∂kum⟩ is the momentum-space
Berry curvature, and (Ωkr,m)i j = −2Im⟨∂ki um|∂r j um⟩ is the
mixed Berry curvature with (Ωkr,m)i j = −(Ωrk,m) ji. Ωkr,m
arises as the inhomogeneous electric field modifies the Bloch
wave function.

We now calculate the modified band energy, i.e. ε̃m = εm +

δε. The electrostatic potential ϕ(r) can be expanded around
the center of mass position of the wave packet

ϕ(r) = ϕ(rc) + eE(rc) · (r − rc)

+
1
2

e[∂iE j(rc)](r − rc)i(r − rc) j + · · · , (175)

where i and j label the spatial directions. The energy correc-
tion can be obtained by calculating the expectation value of
the third term in Eq. (175) under the wave packet state:

δε =
e
2
∂iE j

∫
dkdk′C⋆

m(k′)Cm(k)⟨um(k′)|(i∂k′i − rci)e−ik′·r(−i∂k j − rc j)eik·r|um⟩

=
e
2
∂iE j

∫
dkdk′ (−i∂k′i − rci)C⋆

m(k′)(i∂k j − rc j)Cm(k)⟨um(k′)|e−ik′·reik·r|um⟩

+
e
2
∂iE j

∫
dkdk′C⋆

m(k′)(−i∂k j − rc j)Cm(k)(−i)⟨∂k′i um(k′)|e−ik′·reik·r|um⟩

+
e
2
∂iE j

∫
dkdk′ (−i∂k′i − rci)C⋆

m(k′)Cm(k)⟨um(k′)|e−ik′·reik·ri|∂k j um⟩

+
e
2
∂iE j

∫
dkdk′C⋆

m(k′)Cm(k)(−i)⟨∂k′i um(k′)|e−ik′·reik·ri|∂k j um⟩

=
e
2
∂iE j

∫
dk C⋆

m(k)Cm(k)
n,m∑

n

(−i)⟨∂ki um|un⟩⟨un|i|∂k j um⟩

=
e
2
∂iE jgi j,m . (176)

Here gi j,m is the quantum metric tensor for band m defined
in Eq. (24). As the quantum metric couples to ∂iE j in the
energy, it can be viewed as the electric quadrupole of Bloch
states, similar to the definition of the electric quadrupole in
the electromagnetic theory.

Based on the discussion in Sect. III E, the local current in
the semiclassical theory in inhomogeneous systems are given
by

Jtr = −e
∑

m

∫
dk
8π3 Dṙ fm
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− ∇r ×
e
~

∑
m

∫
dk
8π3 kBTΩm log

(
1 + e

µ−εm
kBT

)
, (177)

where fm is the Fermi function, and D = 1+TrΩkr
m is modified

density of states. Here we have discounted the magnetization
current ∇ × M.

To evaluate Eq. (177) at the order ∂E, we need carefully
evaluate all components in the correct order. The velocity
should contain the band velocity from δε and the anomalous
velocity due to Ωkr

m . The former one is easy to implement.
For the latter one, we have Ωkr

m = −∂rAk. To evaluate this
quantity at the order of ∂E, we need to use the field correc-
tion to the Berry connection, i.e. the positional shift given in
Eq. (107). The result is

(Ωkr
m )i j = −2e∂ jEℓRe

n,m∑
n

(Ai)mn(Aℓ)nm

εm − εn
. (178)

We also need the response of the Berry curvature to the electric
field, i.e. the curl of the positional shift given in Eq. (107)

δΩ′m = ∇ ×A′

= 2e∇k × Re
∑
n,m

Amn(Anm · E)
ωmn

. (179)

where ωmn = εm − εn.

These are the all ingredients required to obtain the current
at the order of ∂E. The derivation can be done as follows

−e
∑

m

∫
dk
8π3 Dṙi fm =2

e2

~
∂ jEℓ

∑
m

∫
dk
8π3 fm

n,m∑
n

Re
vi,m(A j)mn(Aℓ)nm − v j,m(Ai)mn(Aℓ)nm

εm − εn

− e2

2~

∑
m

∂ jEk

∫
dk
8π3 fm∂ig jk,m ,

=2
e2

~
∂zEx

∑
m

∫
dk
8π3

n,m∑
n

Re
vx,m(Az)mn(Ax)nm − vz,m(Ax)mn(Ax)nm

εm − εn
fm

+
e2

~
∂zEx

∑
m

∫
dk
8π3 f ′mvx,mgxz,m . (180)

Since our purpose is to obtain the xxz component of the con- ductivity, we assign i jk to xxz and xzx and use the fact that
∂zEx = ∂xEz for static electric fields. Then we have

e
~

∇r ×
∑

m

∫
dk
8π3FmδΩm


x

= −2
e2

~
∂zEx

∑
m

∫
dk
8π3Fm

∇k × Re
n,m∑

n

Amn(Ax)nm

εm − εn


y

= −2
e2

~
∂zEx

∑
m

∫
dk
8π3 fmRe

n,m∑
n

vx,m(Az)mn(Ax)nm − vz,m(Ax)mn(Ax)mn

εm − εn
,

(181)

where Fm = −kBT log[1 + exp((µ − εm)/kBT )] and we have
used integration by parts in the second line.

We find that Eq. (181) cancels the first term in Eq. (180).
Therefore, only the contribution from δε remains in trans-
port [20, 118]:

Jtr
x = −2e

∫
dk
8π3 fm∂kxδε = γxxz∂zEx , (182)

where

γ jik =
e2

~

∑
m

∫
dk
8π3 Gi jk,m f ′m , (183)

Here Gi jk,m = vi,mg jk,m is the quantum metric dipole, defined
similarly to the Berry curvature dipole [9]. The factor 2 in

Eq. (182) is due to ∂zEx = ∂xEz. As discussed previously,
the quantum metric is the Bloch state quadrupole. Therefore,
Gi jk,m can also be viewed as the momentum space dipole of
the electric quadrupole.

Equation (182) is independent of the transport relaxation
time, i.e. it is an intrinsic current. The quantum metric does
not change under either the time reversal or inversion opera-
tion but the velocity will change sign in both cases. As a re-
sult, the quantum metric dipole flips sign under time reversal
and inversion operation. Moreover, the quantum metric dipole
Gxxz,m contains one derivative along z direction, and hence it
flips sign under the mirror-z operation. Therefore, the current
in Eq. (182) is only nonzero only when the time reversal sym-
metry, the inversion symmetry, and the mirror-z symmetry are
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FIG. 8. The electric quadrupolar current in the low-energy model.
The parameters are chosen as follows: ∆1 = ∆, ∆2 = 2∆, v′1 = −v′2 =
v′, 1

2 m(v′)2 = 0.95∆. The system has a small global band gap 0.1∆.
γxxz is in units of e2/(16π2~). From Ref. [20].

all broken. Due to the appearance of f ′m, this current is also
a Fermi surface property and will be important in metals and
semiconductors. Since this current is proportional to the vari-
ation of the electric field not the electric field itself, it can exist
even when there is no net voltage applied across the sample,
i.e. no net electric field.

As a concrete example, we consider the following Hamilon-
tian

Ĥ = v′ikz + vτikxσx + vkyσy +
(
∆i +

k2
z

2mi

)
σz , (184)

where i is the valley index, τi = ±1, 2∆i is the band gap, v is
the in-plane Fermi velocity, and mi > 0 is the effective mass
along the z-direction. The first term introduces a tilting and
breaks the mirror-z symmetry for each valley. This model can
be realized by stacking certain 2D magnets [119, 120] along
the z-direction and make the stacking order break the mirror-z
symmetry.

In Fig. 8, we can see the behavior of the relevant conductiv-
ity γxxz as a function of the chemical potential at zero tempera-
ture. When µ lies in the global band gap, γxxz = 0 as there is no
Fermi surface. As µ crosses the conduction band of one val-
ley but is still inside the gap of the other valley, γxxz increases
because of the increasing density of states. When µ further in-
creases to intersect the conduction bands of both valleys, the
other valley will also contribute but with opposite signs. As
a result γxxz begins to decrease. When µ is far away from
the band edge, γxxz approaches 0, because the quantum metric
dipole decays faster than the increasing density of states.
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