首页 | 官方网站   微博 | 高级检索  
     

第一性原理方法研究N-Pr共掺杂ZnO的电子结构和光学性质
引用本文:张丽丽,夏桐,刘桂安,雷博程,赵旭才,王少霞,黄以能.第一性原理方法研究N-Pr共掺杂ZnO的电子结构和光学性质[J].物理学报,2019,68(1):17401-017401.
作者姓名:张丽丽  夏桐  刘桂安  雷博程  赵旭才  王少霞  黄以能
作者单位:1. 南京大学物理学院, 固体微结构物理国家重点实验室, 南京 210093; 2. 伊犁师范学院物理科学与技术分院, 新疆凝聚态相变与微结构实验室, 新疆伊宁 835000
基金项目:国家自然科学基金(批准号:11664042)和新疆十三五重点学科开放课题(批准号:XJZDXK-PHY-201806)资助的课题.
摘    要:作为一种稳定性好、抗辐射能力强、原材料丰富的宽禁带半导体, ZnO在光催化的研究领域中成为热点材料,但是其仅能吸收可见光中的紫光,因此如何扩大ZnO对可见光的响应范围是一个值得研究的问题.掺杂改性是解决这个问题的常用方法.基于以上考量,本文应用第一性原理计算方法研究了N与Pr掺杂对ZnO的电子结构和光学性质的影响.研究结果表明:共掺体系比单掺体系更容易形成,且共掺体系的稳定性随Pr浓度的增加先增强后变弱;同一体系的最短Zn—O键与最长Zn—O键的布居数比例随杂质浓度的增大先增大后减小,说明杂质的掺入对体系的晶格畸变有很大的影响,有利于光生空穴-电子对的分离,从而提高材料的光催化活性. N 2p态与Pr 4f态发生杂化对晶体的完整性产生了破坏,在杂质原子周围形成晶场,造成能级劈裂,带隙减小;介电函数虚部的主峰位均向低能区域移动,吸收光谱中各掺杂体系发生红移,各共掺体系随着杂质原子Pr浓度的增加,在可见光区的响应范围依次扩大,吸收能力也依次增加,说明N与Pr的共掺杂对提高ZnO的光催化性是有利的.

关 键 词:电子结构  光学性质  ZnO
收稿时间:2018-08-14

Electronic and optical properties of n-pr co-doped anatase TiO2 from first-principles
Zhang Li-Li,Xia Tong,Liu Gui-An,Lei Bo-Cheng,Zhao Xu-Cai,Wang Shao-Xia,Huang Yi-Neng.Electronic and optical properties of n-pr co-doped anatase TiO2 from first-principles[J].Acta Physica Sinica,2019,68(1):17401-017401.
Authors:Zhang Li-Li  Xia Tong  Liu Gui-An  Lei Bo-Cheng  Zhao Xu-Cai  Wang Shao-Xia  Huang Yi-Neng
Affiliation:1. National Laboratory of Solid State Microstructures, School of Physics, Nanjing University, Nanjing 210093, China; 2. Xinjiang Laboratory of Phase Transitions and Microstructures in Condensed Matter, College of Physical Science and Technology, Yili Normal University, Yining 835000, China
Abstract:ZnO is a wide bandgap semiconductor with the advantages of good stability, strong radiation resistance, and low cost. It has become a hot material in the field of photocatalysis, but it can only absorb purple light. Therefore, it is a valuable problem to study how to expand the response range of ZnO to visible light. Doping modification is a common method to solve this problem. In order to carry out the relevant research, the calculation in this paper are carried out by the CASTEP tool in Materials Studio software based on the first-principles of ultrasoft pseudopotential of density functional theory, the geometric structures of ZnO, Zn0.875Pr0.125O, ZnO0.875N0.125, Zn0.875Pr0.125O0.875N0.125, Zn0.75Pr0.25O0.875N0.125, Zn0.625Pr0.375O0.875N0.125 are constructed. All the models are based on the optimization of the geometry structure. By using the method of generalized gradient approximation plus U, we calculate the band structure, density of states, population, absorption spectra and dielectric functions of the models. The results show Co-doped system is easier to form than single-doped system, and the stability of the co-doped system increases first and then decreases with the increase of Pr concentration. The population ratio of the shortest Zn-O bond to the longest Zn-O bond in the same system increases first and then decreases with the impurity concentration, which shows that the doping of impurities has a great influence on the lattice distortion of the system, and the distortion is benefit for the separation of photogenerated hole-electron pairs. Therefore, the photocatalytic activity of the materials can be improved. Hybridization of N-2p and Pr-4f states destroys the integrity of crystals and forms crystal fields around impurity atoms, which results in splitting of energy levels and narrowing of bandgap. Compared with intrinsic ZnO, the static dielectric constant of all doped systems increases, especially the constant of Pr-N co-doped systems increases with the increase of doped Pr concentration, which indicates that the polarization ability of the co-doped systems increases with the increase of doped Pr atomic concentration. The main peaks of the dielectric function imaginary part of the doping systems move to the low energy region, and the absorption spectrums are red-shifted. As the concentration of impurity Pr atom increases, in the visible region, the absorption capacity of each co-doped system increases, their response range is enlarged in turn, showing the co-doping of N and Pr is benefit for improving the photocatalytic activity of ZnO.
Keywords:electronic structure  optical properties  ZnO
本文献已被 CNKI 等数据库收录!
点击此处可从《物理学报》浏览原始摘要信息
点击此处可从《物理学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号