首页 | 官方网站   微博 | 高级检索  
     

高效外腔倍频产生426 nm激光的实验研究
引用本文:田龙,王庆伟,姚文秀,李庆回,王雅君,郑耀辉.高效外腔倍频产生426 nm激光的实验研究[J].物理学报,2020(4):103-109.
作者姓名:田龙  王庆伟  姚文秀  李庆回  王雅君  郑耀辉
作者单位:山西大学光电研究所;山西大学
基金项目:国家自然科学基金(批准号:11654002,11874250,11804207);国家重点研发计划(批准号:2016YFA0301401);山西省三晋学者特聘教授项目;山西省重点研发计划(201903D11001);山西省“1331”重点建设学科;山西省高等学校中青年拔尖创新人才;山西省应用基础研究计划(批准号:201801D221006)资助的课题~~
摘    要:利用与铯原子吸收线对应的852 nm半导体激光作为基频光,泵浦基于周期极化磷酸钛氧钾(PPKTP)晶体的环形腔,进行高效外腔谐振倍频并产生426 nm激光.在理论分析小角度环形腔内的热透镜效应基础上,发现晶体中等效热透镜中心位置并非在晶体的几何中心.在理论分析的基础上,实验上通过精密平移台精细调节PPKTP晶体在腔内位置,使得等效热透镜中心位置与谐振腔的腰斑位置重合,进而减小晶体热透镜效应导致的模式失配对倍频效率的影响.在泵浦功率为515 mW时产生了428 mW的426 nm激光输出,对应的倍频转换效率为83.1%.此高效倍频过程为制备与铯原子吸收线相匹配的非经典光场提供有效泵浦光,为推动量子非经典光场的应用以及量子信息科学的发展奠定基础.

关 键 词:倍频  铯原子  周期极化磷酸钛氧钾晶体  热透镜效应

Experimental realization of high-efficiency blue light at 426 nm by external frequency doubling resonator
Tian Long,Wang Qing-Wei,Yao Wen-Xiu,Li Qing-Hui,Wang Ya-Jun,Zheng Yao-Hui.Experimental realization of high-efficiency blue light at 426 nm by external frequency doubling resonator[J].Acta Physica Sinica,2020(4):103-109.
Authors:Tian Long  Wang Qing-Wei  Yao Wen-Xiu  Li Qing-Hui  Wang Ya-Jun  Zheng Yao-Hui
Affiliation:(State Key Laboratory of Quantum Optics and Quantum Optics Devices,Institute of Opto-Electronics,Shanxi University,Taiyuan 030006,China;Collaborative Innovation Center of Extreme Optics,Shanxi University,Taiyuan 030006,China)
Abstract:Second harmonic generation(SHG)is used to get continuous wave laser with a lot of applications,it is a major way to provide pump power for generating nonclassical states,especially for squeezed states and entanglement states.High-efficiency SHG resonant on atoms lines also provides laser sources for atomic entanglement generation,light-atom interaction and high-speed quantum memory.For the frequency-doubling process at 426 nm,the major challenge of increasing the conversion efficiency is the thermal effect caused by the absorption in crystal.The degradation of mode-match efficiency induced by the severely thermal effect limits the conversion efficiency of the second harmonic generator.Furthermore,the blue light induced infrared absorption(BLIIRA)in the nonlinear crystal intensifies the thermal effect,it makes the conversion efficiency of the frequency-doubling cavity and the stability of the output blue laser worse,and it is more serious at high input power.Based on the theoretical analysis of thermal lens,we find that the thermal lens should not be placed at the center of the crystal,the location of the equivalently thermals lens has a deviation from the center of the crystal.Follow the theoretical analysis of thermal lens,we design a ring cavity with a 10 mm-long periodically poled potassium titanyle phosphate(PPKTP)crystal to reduce the thermal lens effect induced mode-mismatch.The location of nonlinear crystal is adjusted precisely to reduce the mode-mismatch caused by the thermal lens under our theoretical analysis.Finally,we realized a high conversion efficiency blue laser at 426 nm with the conversion efficiency up to 83.1%with an output power of 428 mW after the adjustment of the crystal location,corresponding to our theoretical analysis well.The measured beam quality factors(M^2 value)of the generated blue laser are M^2(x)=1.05 and M^2(y)=1.02,respectively.The measured power stability of Generated Blue laser in 15 mins is 1.25%.The output power of the SHG is strong enough to provide pump power for the generation of the continuous variable squeezed vacuum state at 852 nm and the long-term stability of the output blue laser is also measured to be fine.To the best of our knowledge,the conversion efficiency is the highest-reported one at this wavelength.We believe that such high-performance frequency doubling system is a fundamental building block for quantum information science based non-classical states.
Keywords:frequency doubling  cesium atom  periodically poled potassium titanyle phosphate  thermal lens effect
本文献已被 CNKI 维普 等数据库收录!
点击此处可从《物理学报》浏览原始摘要信息
点击此处可从《物理学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号