首页 | 官方网站   微博 | 高级检索  
     

环形磁场金属等离子体源冷却流场的数值模拟与优化
引用本文:陈国华,石科军,储进科,吴昊,周池楼,肖舒.环形磁场金属等离子体源冷却流场的数值模拟与优化[J].物理学报,2021(7):223-230.
作者姓名:陈国华  石科军  储进科  吴昊  周池楼  肖舒
作者单位:华南理工大学机械与汽车工程学院;香港城市大学物理与材料科学系;寰球工程项目管理公司(北京)有限公司
基金项目:国家自然科学基金(批准号:52005187,51705157,51905177);广东省基础与应用基础研究基金(批准号:2019A1515110065);中国博士后科学基金(批准号:2019M662909);中央高校基本科研业务费专项资金(批准号:2019MS063)资助的课题.
摘    要:环形磁场金属等离子体源作为一种全新的等离子体源结构,可用于产生高度离化、无大颗粒、高密度的离子束流,但传统流道结构不能保证其高效、均匀散热,大功率工作时可能引起密封胶圈的烧蚀失效,需对其冷却流场进行优化设计.利用Solidworks Flow Simulation软件对等离子体源冷却流道进行模拟,分析出入水孔分布角度、孔数、孔径以及入水孔高度对冷却效果的影响规律,并对流道结构参数进行优化.结果表明,增大水孔的周向分布范围,有利于提高散热的均匀性;入水孔设置在结构上层有利于减少冷却水的温度分层现象,使铜套和密封胶圈都处于较好的冷却状态;适当减小孔径有利于增大冷却水射流速度,增大湍流程度强化传热,提高换热效率.优化后的流场结构可以提高冷却水的利用率,在相同流量条件下获得更好的冷却效果,改善等离子体源的放电稳定性,为环形磁场金属等离子体源的冷却结构设计提供理论依据.

关 键 词:环形磁场金属等离子体源  数值模拟  冷却  流场优化

Numerical simulation and optimization of cooling flow field of cylindrical cathode with annular magnetic field
Chen Guo-Hua,Shi Ke-Jun,Chu Jin-Ke,Wu Hao,Zhou Chi-Lou,Xiao Shu.Numerical simulation and optimization of cooling flow field of cylindrical cathode with annular magnetic field[J].Acta Physica Sinica,2021(7):223-230.
Authors:Chen Guo-Hua  Shi Ke-Jun  Chu Jin-Ke  Wu Hao  Zhou Chi-Lou  Xiao Shu
Affiliation:(School of Mechanical and Automotive Engineering,South China University of Technology,Guangzhou 510641,China;Department of Physics and Materials Science,City University of Hong Kong,Hong Kong 999077,China;Huan Qiu Project Management(Beijing)Co.Ltd.,Beijing 100029,China)
Abstract:In order to solve the problems of unstable discharge,low deposition rate and large difference in ionization rate between different targets in high power impulse magnetron sputtering,a novel cylindrical cathode with annular magnetic field based on hollow cathode effect is proposed,which can be used to produce ion beam with high ionization rate,high plasma density and no large particles.However,the traditional channel structure could not guarantee its high efficiency and uniform heat dissipation.The sealing ring may be damaged by ablation due to high power density,which restricts the further improvement of power density.Therefore,it is necessary to optimize the design of the channel structure.SolidWorks flow simulation software is used to simulate the cooling channel of plasma source.The influence of water hole structure parameters on cooling effect is analyzed,including distribution angle,hole number,diameter and inlet hole height.And the channel structure parameters are optimized.The results show that the increasing of the circumferential distribution range of the water hole is beneficial to the uniformity of heat dissipation,ensuring a large temperature difference between cooling water and copper sleeve,and strengthening heat exchange.The water inlet hole set in the upper layer of the structure is conducive to alleviating the temperature stratification phenomenon of the cooling water,so that the copper sleeve and sealing ring are in good cooling condition.Appropriately reducing the aperture is beneficial to increasing the cooling water jet velocity,enhancing the jet impact effect,and then increasing the turbulence degree,strengthening the heat transfer and improving the heat transfer efficiency.By systematically studying the influencing factors,the optimized cooling flow field structure of cylindrical cathode with an annular magnetic field is obtained.The distribution angle is 30°,the number of holes is 6,the aperture is 4 mm,and the height of water inlet hole is 36 mm.The optimized channel structure can improve the utilization rate of cooling water,obtaining better cooling effect at the same flow rate,and improving the discharge stability of the plasma source,which provides a basis for designing the cooling structure of the cylindrical cathode with annular magnetic field.
Keywords:cylindrical cathode with annular magnetic field  numerical simulation  cooling  optimized design for the flow channel structure
本文献已被 CNKI 维普 等数据库收录!
点击此处可从《物理学报》浏览原始摘要信息
点击此处可从《物理学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号