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Abstract In this paper, the convergence of time-dependent Euler-Maxwell equations to

compressible Euler-Poisson equations in a torus via the non-relativistic limit is studied.

The local existence of smooth solutions to both systems is proved by using energy esti-

mates for first order symmetrizable hyperbolic systems. For well prepared initial data the

convergence of solutions is rigorously justified by an analysis of asymptotic expansions up

to any order. The authors perform also an initial layer analysis for general initial data and

prove the convergence of asymptotic expansions up to first order.
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1 Introduction

Let n and u be the density and velocity vector of the electric particles in a plasma, E and B

be respectively the electric field and magnetic field. They are functions of a three-dimensional

position vector x ∈ T
3 and of the time t > 0, where T = R/2π is the torus. The fields E and

B are coupled to the electron density through the Maxwell equations and act on electrons via

the Lorentz force. Let c = (ǫ0ν0)
− 1

2 be the speed of light, where ǫ0 and ν0 are the vacuum

permittivity and permeability. The dynamics of the compressible electrons for plasma physics

in a uniform background of non-moving ions with fixed density b(x) obey the (scaled) one-fluid

Euler-Maxwell system (see [1, 4, 13])

∂tn+ div(nu) = 0, (1.1)

∂t(nu) + div(nu⊗ u) + ∇p(n) = −n
(
E +

1

c
u×B

)
, (1.2)

∂tE − c∇×B = nu, ∂tB + c∇× E = 0, (1.3)

divE = b(x) − n, divB = 0 (1.4)

for x ∈ T
3 and t > 0, subject to initial conditions

t = 0 : (n, u,E,B) = (nc
0, u

c
0, E

c
0, B

c
0) (1.5)
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for x ∈ T
3. In the above equations, p = p(n) is the pressure, assumed to be smooth and

strictly increasing for n > 0, j = nu is the current density and E + 1
c
u × B represents the

Lorentz force. Equations (1.1)–(1.2) are the mass and momentum balances for the electrons,

respectively, while (1.3)–(1.4) are the classical Maxwell equations. It is a well-known fact that

equations (1.4) are redundant with equations (1.3), as soon as they are satisfied by the initial

conditions. However, we keep them in the system because this redundancy may be lost in the

asymptotic limit.

There have been a lot of studies on the Euler-Poisson equations and their asymptotic analysis

contrarily to the study on the Euler-Maxwell equations. See [2, 3, 6, 10, 11, 15, 18] and the

references therein. In particular, the convergence of compressible Euler-Poisson equations to

incompressible Euler equations is shown independently in [12, 17]. The first mathematical study

of the Euler-Maxwell equations with extra relaxation terms is due to Chen et al [5], where a

global existence result to weak solutions in one-dimensional case is established by the fractional

step Godunov scheme together with a compensated compactness argument. The paper [5]

exhibits also some applications of the model (1.1)–(1.4) in semiconductor theory. Since then

few progress have been made on the Euler-Maxwell equations.

In this paper we are interested in the non-relativistic limit c → ∞ in the problem (1.1)–

(1.5) for the Euler-Maxwell equations. In the case that the problems are confined in a torus,

we prove the existence of smooth solutions to the problem (1.1)–(1.5) and their convergences

to the solutions of the compressible Euler-Poisson equations in a time interval independent

of c. For this propose, we use the method of asymptotic expansions constructed by solving

the compressible Euler-Poisson equations and a linear curl-div system. The convergence of

the expansions is achieved through the energy estimates for error equations derived from the

asymptotic expansions and the Euler-Maxwell equations. Here we have to deal with some

coupling and singular terms. For the variables n and u, we adapt the techniques of Majda

[9] for symmetrizable hyperbolic equations. For the fields E and B we observe that from the

Maxwell equations (1.3) E and B satisfy the relation

d

dt

∫

T3

(E2 +B2)dx = 2

∫

T3

nuEdx.

Together with the Euler equations this yields uniform energy estimates for E and B with respect

to c.

This paper is organized as follows. In the next section, we derive formal asymptotic ex-

pansions of the problem (1.1)–(1.5). The existence of the expansions is proved in Section 3.

Section 4 is devoted to justify the asymptotic expansions up to any order under the condition

that the initial expansions are well prepared which exclude the formation of initial layers. In

the last section, we perform an initial layer analysis of the problem (1.1)–(1.5) for general initial

data. The constructed initial layers do not decay to zero and are even non-local with respect

to fast variables. Due to the special structure of the systems, we justify the convergence of the

expansions up to first order for general initial data. Finally, the proof of Lemma 4.1 used in

Sections 4 and 5 is given in Appendix.

2 Formal Asymptotic Expansions

For smooth solutions of the Euler-Maxwell system (1.1)–(1.5), the second equation (1.2) is
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equivalent to

∂tu+ (u · ∇)u + ∇h(n) = −
(
E +

1

c
u×B

)
,

where the enthalpy h(n) is defined by

h(n) =

∫ n

1

p′(s)

s
ds.

Thus, regarding c as a singular perturbation parameter, we can rewrite the problem (1.1)–(1.5)

as

∂tn+ div(nu) = 0, (2.1)

∂tu+ (u · ∇)u + ∇h(n) = −
(
E +

1

c
u×B

)
, (2.2)

∂tE − c∇×B = nu, ∂tB + c∇× E = 0, (2.3)

divE = b(x) − n, divB = 0, (2.4)

t = 0 : (n, u,E,B) = (nc
0, u

c
0, E

c
0, B

c
0). (2.5)

Denote by (nc, uc, Ec, Bc) the classical solutions to the problem (2.1)–(2.5). In this section,

we are going to study the formal expansions of (nc, uc, Ec, Bc) as c → ∞. To this end, we

assume that the initial data (nc
0, u

c
0, E

c
0, B

c
0) have the asymptotic expansion with respect to the

speed of light c :

(nc
0, u

c
0, E

c
0, B

c
0) =

m∑

j=0

c−j(nj , uj, Ej , Bj) +O(c−m),

with (Ej , Bj)0≤j≤m being determined by (nj , uj)0≤j≤m and b(x) (see Remark 2.1).

Take the following ansatz:

(nc, uc, Ec, Bc) =
∑

j≥0

c−j(nj , uj , Ej , Bj), (2.6)

in terms of c for the solutions to the problem (2.1)–(2.5). Substituting the expansions (2.6)

into the system (2.1)–(2.5), we obtain

(1) The leading profiles (n0, u0, E0, B0) satisfy the following problem:





∂tn
0 + div(n0u0) = 0,

∂tu
0 + (u0 · ∇)u0 + ∇h(n0) = −E0,

divE0 = b(x) − n0, ∇× E0 = 0,

div B0 = 0, ∇×B0 = 0,

t = 0 : (n0, u0) = (n0, u0).

(2.7)

This is the so-called Euler-Poisson system in plasma physics because the equation ∇× E0 = 0

implies that the electric field is the gradient of some potential function.

(2) For any j ≥ 1, the profiles (nj , uj, Ej , Bj) satisfy the following problem for linearized
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equations:





∂tn
j +

j∑

k=0

div(nkuj−k) = 0,

∂tu
j +

j∑

k=0

(uk · ∇)uj−k + ∇(h′(n0)nj + hj−1((nk)k≤j−1) = −Ej −

j−1∑

k=0

uk ×Bj−1−k,

∂tE
j−1 −∇×Bj =

j−1∑

k=0

nkuj−1−k, ∂tB
j−1 + ∇× Ej = 0,

divEj = −nj, divBj = 0,

t = 0 : (nj , uj) = (nj , uj),

(2.8)

where h0 = 0 and for j ≥ 2, hj−1((nk)k≤j−1) is defined by

h
(
n0 +

∑

j≥1

c−jnj
)

= h(n0) + h′(n0)
∑

j≥1

c−jnj +
∑

j≥2

c−jhj−1((nk)k≤j−1).

The fact that hj−1 depends only on (nk)k≤j−1 can be obtained from the following relation:

hj−1((nk)k≤j−1) =
1

j!

dj

dλj
h
(
n0 +

∑

i≥1

λini
)∣∣∣

λ=0
− h′(n0)nj , with λ = c−1.

Remark 2.1 From (2.7)3,4 and (2.8)3,4, we see that each order profile of (Bc, Ec) is given

by profiles of (nc, uc) explicitly, and hence each order profile of the initial data (Bc, Ec) given

in (2.5) should be determined by (nc
0, u

c
0) and b(x) completely. Thus, in Section 4, certain well-

prepared initial value conditions are imposed for (Ec, Bc)(t = 0), i.e, (Ej , Bj)(x) = (Ej , Bj)(x,

0), j = 1, · · · ,m (refer to Remark 3.1 in Section 3 and the assumption (4.11) given in Section

4), which avoid the presence of initial layers. Of course, it is an interesting problem to study

the case of general initial data where an initial layer will occur (see Section 5).

Remark 2.2 The system (2.8) for j ≥ 2 is new in plasma physics, where the magnetic field

Bj satisfies the linear curl-div equation

−∇×Bj = f j((nk, uk, Ek)0≤k≤j−1), divBj = 0,

but the electric field is a rotational one with the rotation ∇× Ej = −∂tB
j−1 for j ≥ 2.

Remark 2.3 For the fixed integer m ≥ 1, (2.8)4 for j ≤ m− 1 can be obtained from (2.8)3
by taking div of equations (2.8)3, but when j = m, it is no longer redundant for solving Em

and Bm. This is the reason why we keep it in the system (2.1)–(2.5).

3 Determination of Formal Expansions

3.1 Preliminary

From the equations (2.8), we know that once (n0, u0, E0, B0) are solved from the problem
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(2.7), (n1, u1, E1, B1) are solutions to the following problem for a linearized equations:






∂tn
1 + div(n0u1 + n1u0) = 0,

∂tu
1 + (u0 · ∇)u1 + (u1 · ∇)u0 + ∇(h′(n0)n1) = −E1 − u0 ×B0,

divE1 = −n1, ∇× E1 = −∂tB
0,

divB1 = 0, ∇×B1 = ∂tE
0 − n0u0,

t = 0 : (n1, u1) = (n1, u1).

(3.1)

Inductively, suppose that (nk, uk, Ek, Bk)k≤j−1 are solved already for some j ≥ 2, from (2.8)

we know that (nj , uj, Ej) satisfy the following linear problem






∂tn
j + div(n0uj + nju0) = −

j−1∑

k=1

div(nkuj−k),

∂tu
j + (u0 · ∇)uj + (uj · ∇)u0 + ∇(h′(n0)nj)

= −Ej −∇(hj−1((nk)k≤j−1)) −

j−1∑

k=1

(uk · ∇)uj−k −

j−1∑

k=0

uk ×Bj−1−k,

divEj = −nj, ∇× Ej = −∂tB
j−1,

t = 0 : (nj , uj) = (nj , uj)

(3.2)

and Bj satisfies the linear curl-div equations

−∇×Bj = −∂tE
j−1 +

j−1∑

k=0

nkuj−1−k, divBj = 0. (3.3)

Thus, in order to determine the profiles of (nc, uc, Ec, Bc) we require to solve the nonlinear

problem (2.7) for (n0, u0, E0, B0), the linear system (3.2) and the linear curl-div equations

(3.3).

Remark 3.1 It follows from (3.1)–(3.3) and Remark 2.1 that for any fixed j ∈ N,

(Ej , Bj)(x, 0) will be determined by b(x) and (nk, uk)0≤k≤j .

For convenience, for a given scalar or vector function v(x, t), denote the mean value of v(x, t)

in T
3 with respect to x by

m(v) =
1

(2π)3

∫

T3

v(x, ·)dx.

In the following, we look for the profiles (nj , uj, Ej , Bj) satisfying m(Ej) = m(Bj) = 0. The

main assumptions on the data are as follows:

(H) the ion density b and the initial data (nj , uj)j≥0, satisfy the following conditions:

b, nj, uj ∈ Hs(T3) for s ≥ N + 2, N ≥ j and n0 ≥ δ, m(n0 − b) = m(nj) = 0 for j ≥ 1

for some integers s, N ≥ 1 and constant δ > 0.

3.2 Existence and uniqueness of solutions (n0, u0, E0, B0)

Let us begin with the following result.
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Lemma 3.1 Let s ≥ 0 be an integer. Assume that f( · , t) ∈ (Hs(T3))3, g( · , t) ∈ Hs(T3)

with divf( · , t) = 0 and m(g) = 0 for t ≥ 0. Then there exists a unique classical solution

z( · , t) ∈ (Hs+1(T3))3 to the following linear curl-div equations

∇× z = f, (3.4)

div z = g (3.5)

for x ∈ T
3 and t > 0, with m(z) = 0. Moreover, for all t ≥ 0, the solution z satisfies the

following estimate

‖z( · , t)‖Hs+1(T3) ≤ C1(‖f( · , t)‖Hs(T3) + ‖g( · , t)‖Hs(T3)) (3.6)

for some positive constant C1 independent of t.

Proof Uniqueness

Let z1, z2 be any two solutions of the equations. Then z̃ = z1 − z2 solves

∇× z̃ = 0, (3.7)

div z̃ = 0, (3.8)

m(z̃) = 0. (3.9)

Acting ∇× on (3.7) and using (3.8) and the vector analysis formula

∇× (∇× z̃) = ∇divz̃ − ∆z̃,

we get

−∆z̃ = 0,

which, together with (3.9), yields z̃ = 0. This proves the uniqueness.

Existence

The proof of existence is constructive. Since the system (3.4)–(3.5) is linear, it suffices to

prove the existence of smooth solutions of the following two linear systems:

∇× z1 = f, div z1 = 0, (3.10)

∇× z2 = 0, div z2 = g (3.11)

for x ∈ T
3 and t > 0, with m(z1) = m(z2) = 0.

First, let p be the unique periodic solution of the Poisson equation

−∆p = f, x ∈ T
3, t ≥ 0, m(p) = 0.

Then it follows from the Poisson equation that div p = r(t) for some r(t) independent of x due

to divf = 0 and the periodicity of the vector potential p, and hence z1 = ∇ × p − m(∇ × p)

solves the linear system (3.10).

Next, let q solve the system

−∆q = g, x ∈ T
3, t ≥ 0, m(q) = 0.

Then z2 = −∇q − m(−∇q) solves the system (3.11).



Convergence of Euler-Maxwell Equations 589

Finally, noting that

‖∇z‖2
L2(T3) = ‖∇× z‖2

L2(T3) + ‖div z‖2
L2(T3),

we can easily establish the estimate (3.6) by using (3.4)–(3.5) and the Poincare’s inequality due

to m(z) = 0. Notice that C1 does not depend upon f(x, t) and g(x, t). Hence C1 is independent

of t.

The proof of Lemma 3.1 is complete.

Now we turn to the existence and uniqueness of smooth solutions to the nonlinear problem

(2.7). Using Lemma 3.1, we get

B0 = 0,

due to ∇×B0 = 0, divB0 = 0 and m(B0) = 0.

Since ∇× E0 = 0 with m(E0) = 0, we get

E0 = −∇ψ0 + m(∇ψ0), (3.12)

and hence

−∆ψ0 = b− n0. (3.13)

By Green’s formulation, it follows from (3.13) and (2.7)1 that

∇ψ0(x, t) = −∇∆−1(b(x) − n0(x)) −∇∆−1div

∫ t

0

(n0u0)(x, s)ds. (3.14)

Hence, together with (3.12), (3.14) and B0 = 0, the system (2.7) can be reduced to the equiv-

alent form of the following equations with a non-local source term

∂tn
0 + div(n0u0) = 0, (3.15)

∂tu
0 + (u0 · ∇)u0 + ∇h(n0) = −

(
∇∆−1(b(x) − n0(x))+∇∆−1div

∫ t

0

(n0u0)(x, s)ds
)

+m
(
∇∆−1(b(x) − n0(x))+∇∆−1div

∫ t

0

(n0u0)(x, s)ds
)
, (3.16)

t = 0 : (n0, u0) = (n0, u0). (3.17)

Thus, to solve the system (2.7), it suffices to solve the system (3.15)–(3.17). Since the

non-local source term ∇∆−1div
∫ t

0
(n0u0)(x, s)ds is a sum of products of Riesz transforms of∫ t

0 (n0u0)(x, s)ds, we have, by the L2 boundedness of the Riesz transformation (see [16]),

∥∥∥∇∆−1div

∫ t

0

(n0u0)( · , s)ds
∥∥∥

Hs(T3)
≤ C2

∥∥∥
∫ t

0

(n0u0)( · , s)ds
∥∥∥

Hs(T3)

for some constant C2 > 0 independent of t.

Also, since ∇∆−1 is a linear bounded operator from V = {v ∈ L2(T3) | m(v) = 0} into

H1(T3), we have

‖∇∆−1(b − n0)‖Hs+1(T3) ≤ C3‖b− n0‖Hs(T3)

for some constant C3 > 0. Noticing the above two crucial facts, using the standard iteration

techniques of local existence theory for symmetrizable hyperbolic systems (see [9]), we have
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Proposition 3.1 Under the assumption (H), the periodic problem (3.15)–(3.17) has a

unique smooth solution (n0, u0) with n0 ≥ δ
2 , well-defined on T

3× [0, T0) for some 0 < T0 ≤ +∞

depending only on n0 and u0. Hence the nonlinear periodic problem (2.7) admits a unique so-

lution (n0, u0, E0, B0) satisfying

n0, u0 ∈

N⋂

l=0

Cl([0, T0), H
s−l(T3)), E0 ∈

N+1⋂

l=0

Cl([0, T0), H
s+1−l(T3)), m(E0) = B0 = 0.

The regularity of (n0, u0) stated above is easily obtained from (3.15)–(3.17) while the reg-

ularity of E0 is easily obtained from the Poisson equations (3.12)–(3.14), which improves the

regularity of E0 with respect to the time t.

3.3 Existence and uniqueness of solutions (nj, uj, Ej, Bj) for j ≥ 1

Now, let us briefly describe the solvability of (nj , uj , Ej , Bj) for any j ≥ 1 from the problems

(3.1)–(3.3) provided that we have known (nk, uk, Ek, Bk)k≤j−1 already. Obviously, from (3.1)

and B0 = 0 we know that (n1, u1, E1) satisfy the following linearized Euler-Poisson system




∂tn
1 + div(n0u1 + n1u0) = 0,

∂tu
1 + (u0 · ∇)u1 + (u1 · ∇)u0 + ∇(h′(n0)n1) = −E1,

divE1 = −n1, ∇× E1 = 0,

t = 0 : (n1, u1) = (n1, u1)

(3.18)

and B1 satisfies

−∇×B1 = −∂tE
0 + n0u0, divB1 = 0. (3.19)

Similarly to Lemma 3.1 and Proposition 3.1, we have

Proposition 3.2 Let T1 ∈ (0, T0) and the assumption (H) hold. Then the periodic problem

(3.18)–(3.19) or the periodic problem (3.1) has a unique smooth solution (n1, u1, E1, B1), well-

defined on [0, T1], satisfying

n1, u1 ∈

N⋂

l=0

Cl([0, T1], H
s−l−1(T3)),

E1 ∈

N+1⋂

l=0

Cl([0, T1], H
s−l(T3)), B1 ∈

N⋂

l=0

Cl([0, T1], H
s+1−l(T3))

in the class m(E1) = m(B1) = 0.

The rest is to solve (3.2) and (3.3) with j ≥ 2. For (3.3), we get from Lemma 3.1 that (3.3)

has a unique smooth solution Bj = Bj(Ej−1, (nk, uk)0≤k≤j−1) satisfying

‖Bj‖Cl−1(0,T1;Hs+1−l(T3))≤C4(T1)
(
‖Ej−1‖Cl(0,T1;Hs−l(T3))+

∥∥∥
j−1∑

k=0

nkuj−1−k
∥∥∥

Cl−1(0,T1;Hs−l(T3))

)

in the class m(Bj) = 0 provided that we have known Ej−1 and (nk, uk)0≤k≤j−1, where C4 > 0

is a constant.

Notice that the system (3.2) with j ≥ 2 is no longer the linearized Euler-Poisson system

because, generally speaking, Ej is not the gradient of some potential function due to the fact
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Bj−1 6= 0. But the existence of the smooth solution to (3.2) can be constructed by so-called

Hodge decomposition and some techniques as same as those to establish the well-posed theory

for the Euler-Poisson system. Let us outline some main ideas.

First, recall the Hodge decomposition as follows. For any vector field Ej ∈ (L2(T3))3,

denote by PEj and QEj respectively the divergence-free part and gradient part of Ej . Then

QEj = ∇∆−1(divEj) and PEj = Ej −QEj .

Thus, using the Hodge decomposition, we can rewrite (3.2) as





∂tn
j + div(n0uj + nju0) = −

j−1∑

k=1

div(nkuj−k),

∂tu
j + (u0 · ∇)uj + (uj · ∇)u0 + ∇(h′(n0)nj)

= −QEj − PEj −∇(hj−1(nk)k≤j−1)) −

j−1∑

k=1

(uk · ∇)uj−k −

j−1∑

k=0

uk ×Bj−1−k,

divQEj = −nj , ∇×QEj = 0,

divPEj = 0, ∇×PEj = ∂tB
j−1,

t = 0 : (nj , uj) = (nj , uj).

(3.20)

Since the equation of PEj is independent of the others in the system (3.20), it follows from

Lemma 3.1 that (3.20)4 has a unique smooth solution PEj = PEj(∂tB
j−1) satisfying

‖PEj‖Cl−1([0,T1];Hs+1−l(T3)) ≤ C5(T1)‖B
j−1‖Cl([0,T1];Hs−l(T3)) (3.21)

in the class m(PEj) = 0 provided that Bj−1 ∈ Cl([0, T1];H
s−l(T3)), where C5 > 0 is a

constant.

Only if PEj is determined, (3.20) becomes a linear Euler-Poisson system for the unknown

variables (nj , uj,QEj). Thus, as for Euler-Poisson system (3.1), it is easy to prove that the

problem (3.20) has a unique smooth solution (nj , uj ,QEj) satisfying

nj , uj ∈

N2⋂

l=0

Cl([0, T1], H
s−l−1(T3)),

QEj ∈

N2−1⋂

l=0

Cl([0, T1], H
s−l(T3)) ∩ CN2([0, T1], H

s−N2−1(T3))

in the class m(QEj) = 0 provided that we have, for all k ≤ j − 1 and N1 ≥ N2, that

nk, uk ∈

N1⋂

l=0

Cl([0, T1], H
s−l(T3)),

Bk ∈

N2⋂

l=0

Cl([0, T1], H
s−1−l(T3)), PEj ∈

N2−1⋂

l=0

Cl([0, T1], H
s−l(T3)).

In summary, we obtain

Proposition 3.3 Let T1 ∈ (0, T0) and the assumption (H) hold. Then the problem (3.2)–

(3.3) with j ≥ 2 or the problem (2.8) with j ≥ 2 has a unique smooth solution (nj , uj , Ej , Bj)
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satisfying




nj , uj ∈

N−(j−2)⋂

l=0

Cl([0, T1], H
s−l−j(T3)),

Ej ∈

N−(j−2)⋂

l=0

Cl([0, T1], H
s−l−(j−1)(T3)),

Bj ∈

N−(j−1)⋂

l=0

Cl([0, T1], H
s−l−(j−2)(T3)), if j is an odd number;





nj , uj ∈

N−(j−1)⋂

l=0

Cl([0, T1], H
s−l−j(T3)),

Ej ∈

N−(j−1)⋂

l=0

Cl([0, T1], H
s−l−(j−1)(T3)),

Bj ∈

N−(j−2)⋂

l=0

Cl([0, T1], H
s−l−(j−2)(T3)), if j is an even number

in the class m(Ej) = m(Bj) = 0.

4 Justification of the Expansions

In this section, we rigorously justify the asymptotic expansions of solutions (nc, uc, Ec, Bc)

to the periodic problem (2.1)–(2.5) developed in Section 2 under the assumption of well-prepared

initial data. As a consequence, we obtain the existence of exact solutions (nc, uc, Ec, Bc) to

(2.1)–(2.5) in a time interval independent of c, and the convergence of (nc, uc, Ec, Bc) to the

solution (n0, u0, E0, B0) of the compressible Euler-Poisson equations (2.7) as the light speed c

goes to infinity.

In the following, we denote by C various generic constants independent of the light speed

c, which can be different from one line to another one.

4.1 Derivation of error equations

For any fixed integers m ≥ 1 and s0 >
5
2 , let the assumption (H) hold with N = m and

s = m+ s0 + 3. Set

(nc
a,m, u

c
a,m, E

c
a,m, B

c
a,m) =

m∑

j=0

c−j(nj , uj, Ej , Bj),

with (nj , uj , Ej, Bj) being given by Propositions 3.1–3.3. From the asymptotic analysis in

Sections 2–3, we know that (nc
a,m, u

c
a,m, E

c
a,m, B

c
a,m) satisfy the following problem:






∂tn
c
a,m + div(nc

a,mu
c
a,m) = Rc

n,

∂tu
c
a,m + (uc

a,m · ∇)uc
a,m + ∇h(nc

a,m) = −Ec
a,m − c−1uc

a,m ×Bc
a,m +Rc

u,

∂tE
c
a,m − c∇×Bc

a,m = nc
a,mu

c
a,m +Rc

E , divEc
a,m = b(x) − nc

a,m,

∂tB
c
a,m + c∇× Ec

a,m = Rc
B, divBc

a,m = 0,

m(Ec
a,m) = m(Bc

a,m) = 0,

t = 0 : (nc
a,m, u

c
a,m, E

c
a,m, B

c
a,m) =

m∑

j=0

c−j(nj , uj, E
j( · , 0), Bj( · , 0)),

(4.1)
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where the remainders Rc
n, Rc

u, Rc
E and Rc

B satisfy

divRc
E = −Rc

n, divRc
B = 0 (4.2)

and for any 0 ≤ s1 ≤ s0,

sup
0≤t≤T1

‖(Rc
n, R

c
u, R

c
E , R

c
B)( · , t)‖Hs1 (T3) ≤ Cc−m. (4.3)

Let (nc, uc, Ec, Bc) be the unknown solutions to the problem (2.1)–(2.5), and denote by

(N c, U c, F c, Gc) = (nc − nc
a,m, u

c − uc
a,m, E

c − Ec
a,m, B

c −Bc
a,m). (4.4)

Obviously, (N c, U c, F c, Gc) satisfy the following problem:






∂tN
c + div(N c(U c + uc

a,m) + nc
a,mU

c) = −Rc
n,

∂tU
c+[(U c + uc

a,m) · ∇]U c + (U c · ∇)uc
a,m+F c + ∇(h(N c+nc

a,m)−h(nc
a,m))

= −c−1((U c + uc
a,m) ×Gc + U c ×Bc

a,m) −Rc
u,

∂tF
c − c∇×Gc = (N c + nc

a,m)U c +N cuc
a,m −Rc

E , divF c = −N c,

∂tG
c + c∇× F c = −Rc

B, divGc = 0,

t = 0 : (N c, U c, F c, Gc) =
(
nc

0 −

m∑

j=0

c−jnj , u
c
0 −

m∑

j=0

c−juj , E
c
0

−

m∑

j=0

c−jEj(·, 0), Bc
0 −

m∑

j=0

c−jBj( · , 0)
)
.

(4.5)

Set

W c =

(
N c

U c

)
, W c

0 =




nc
0 −

m∑

j=0

c−jnj

uc
0 −

m∑

j=0

c−juj



,

(F c
0 , G

c
0) =

(
Ec

0 −

m∑

j=0

c−jEj( · , 0), Bc
0 −

m∑

j=0

c−jBj( · , 0)
)
,

Ai(W
c) = (U c + uc

a,m)iI +

(
0 (N c + nc

a,m)eT
i

h′(N c + nc
a,m)ei 0

)
,

H1(W
c) =

(
(U c · ∇)nc

a,m +N cdivuc
a,m

(U c · ∇)uc
a,m + (h′(N c + nc

a,m) − h′(nc
a,m))∇nc

a,m

)
,

Rc =

(
−Rc

n

−Rc
u

)
, H2(F

c) =

(
0

F c

)
, H3(W

c, Gc) =

(
0

(U c + uc
a,m) ×Gc + U c ×Bc

a,m

)
,

where (e1, e2, e3) is the canonical basis of R
3 and yi denotes the i-th component of y ∈ R

3.

Also, note that from (4.2) and (4.5)1, the redundant equations divF c = −N c and divGc = 0

in the system (4.5) hold only if they are satisfied by the initial conditions. Thus the problem
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(4.5) for the unknowns (W c, F c, Gc) can be rewritten as





∂tW
c +

3∑

i=1

Ai(W
c)∂xi

W c +H1(W
c) +H2(F

c) = −c−1H3(W
c, Gc) +Rc,

∂tF
c − c∇×Gc = (N c + nc

a,m)U c +N cuc
a,m −Rc

E ,

∂tG
c + c∇× F c = −Rc

B,

t = 0 : (W c, F c, Gc) = (W c
0 , F

c
0 , G

c
0),

(4.6)

with divF c(x, 0) = −N c(x, 0) and divGc(x, 0) = 0.

It is not difficult to see that the equations of W c in (4.6) are symmetrizable hyperbolic, i.e.

if we introduce

A0(W
c) =

(
h′(N c + nc

a,m) 0

0 (N c + nc
a,m)I3×3

)
,

which is positively definite when N c +nc
a,m ≥ C > 0 for c≫ 1, then Ãi(W

c) = A0(W
c)Ai(W

c)

are symmetric for all 1 ≤ i ≤ 3. Here the condition N c + nc
a,m ≥ C for c ≫ 1 follows from

n0 ≥ δ
2 (see Proposition 3.1) and the estimate (4.15) (see Theorem 4.1 below).

4.2 Convergence of the expansions

It is clear that the existence and uniqueness of smooth solutions of (2.1)–(2.5) is equivalent

to that of (4.5) or (4.6). Then in order to rigorously justify the asymptotic expansion (2.6),

it suffices to prove the existence of the smooth solutions to (4.5) or (4.6) and to obtain their

uniform estimates with respect to the light speed c. This will be done by the iteration techniques

for symmetrizable hyperbolic problems.

More precisely, we solve the nonlinear problem (4.6) by the following iteration for linear

problems (see [9]):






∂tW
c,k+1+

3∑

i=1

Ai(W
c,k)∂xi

W c,k+1+H1(W
c,k)+H2(F

c,k)=Rc − c−1H3(W
c,k, Gc,k),

∂tF
c,k+1 − c∇×Gc,k+1 = (N c,k + nc

a,m)U c,k +N c,kuc
a,m −Rc

E ,

∂tG
c,k+1 + c∇× F c,k+1 = −Rc

B,

t = 0 : (W c,k+1, F c,k+1, Gc,k+1) = (W c
0 , F

c
0 , G

c
0), k = 0, 1, · · ·

(4.7)

with

W c,0(t, x) = W c
0 (x), (F c,0, Gc,0)(x, t) = (F c

0 , G
c
0)(x).

For studying the problems (4.6) and (4.7), we introduce the Sobolev’s norms

‖W (t)‖l =
( ∑

|α|≤l

‖∂α
xW (t)‖2

L2(T3)

) 1
2

, ‖W‖l,T = sup
0≤t≤T

‖W (t)‖l, l ∈ N
∗.

The key point for proving the existence of smooth solutions and the convergence of the expan-

sions as c→ ∞ is the following a priori estimate.
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Lemma 4.1 Let s0 and l be two integers such that 5
2 < l ≤ s0. Assume (H) holds with

N = m, s = m+ s0 + 3 and

‖(W c
0 , F

c
0 , G

c
0)‖l ≤ D1c

−m (4.8)

for some integer m ≥ 1 and constant D1 > 0 independent of c. Then there are constants D2 > 0,

D3 > 0, c0 > 0 and T2 ∈ (0, T1], such that for all c ≥ c0 the solutions (W c,k, F c,k, Gc,k) of (4.7)

satisfy

‖(W c,k, F c,k, Gc,k)‖l,T2
≤ D2c

−m, ∀ k ∈ N, (4.9)

‖∂tW
c,k‖l−1,T2

≤ D3c
−m, ∀ k ∈ N. (4.10)

As the proof of Lemma 4.1 involves only elementary calculations it is postponed to Appendix.

Returning to the problem (2.1)–(2.5) or (4.5), we conclude

Theorem 4.1 For any fixed integers s0 >
5
2 and m ≥ 1, let the assumption (H) with N = m

and s = m+ s0 + 3 hold. Furthermore, suppose that

(Ej , Bj)(x) = (Ej , Bj)(x, 0), 0 ≤ j ≤ m (4.11)

with ((Ej , Bj)(x, 0))0≤j≤m being given as in Sections 2–3,

divEc
0 = b− nc

0, divBc
0 = 0, x ∈ T

3, (4.12)
∥∥∥(nc

0, u
c
0, E

c
0, B

c
0) −

m∑

j=0

c−j(nj , uj , Ej , Bj)
∥∥∥

s0

≤ Cc−m. (4.13)

Then the problem (2.1)–(2.5) has a unique solution

(nc, uc, Ec, Bc) ∈ C([0, T2], H
s0(T3)) ∩ C1([0, T2], H

s0−1(T3)) (4.14)

satisfying
∥∥∥(nc, uc, Ec, Bc) −

m∑

j=0

c−j(nj , uj, Ej , Bj)
∥∥∥

s0,T2

≤ Cc−m, (4.15)

where (nj , uj , Ej , Bj)0≤j≤m are solutions to the problems (2.7)–(2.8) and C > 0 is a constant

independent of c.

Proof First, the uniform estimates (4.9)–(4.10) together with (4.7) yield the bounded-

ness of the sequence (W c,k, F c,k, Gc,k)k∈N in L∞([0, T2], H
s0(T3)) ∩W 1,∞([0, T2], H

s0−1(T3)),

since m ≥ 1. Or the injection Hs0(T3) ⊂ C1(T3) is compact due to s0 >
5
2 . Then Aubin’s

lemma (see [14]) implies that (W c,k, F c,k, Gc,k)k∈N is compact in C([0, T2], C
1(T3)). Conse-

quently, up to a subsequence, (W c,k, F c,k, Gc,k)k∈N converges to some (W c, F c, Gc) in the space

C([0, T2], C
1(T3)) as k → +∞. Combining this with the boundedness results (4.9)–(4.10), we

obtain (W c, F c, Gc) ∈ C([0, T2], H
s0(T3)) ∩ Lip([0, T2], H

s0−1(T3)). In addition, a similar ar-

gument as in [9, Theorem 2.1(b)] gives (W c, F c, Gc) ∈ C1([0, T2], H
s0−1(T3)). Passing to the

limit k → ∞ in the system (4.7) shows that (W c, F c, Gc) is a classical solution to the problem

(4.6). By the transform (4.4), this shows the existence and uniqueness of smooth solutions

(nc, uc, Ec, Bc) ∈ C([0, T2], H
s0(T3)) ∩ C1([0, T2], H

s0−1(T3)) to the problem (2.1)–(2.5). The

uniqueness of smooth solutions follows from a standard argument, and implies the convergence

of the whole sequence (W c,k, F c,k, Gc,k)k∈N to (W c, F c, Gc).
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Next, from (4.3), we know that to have the estimate (4.15), we need

(nc
a,m, u

c
a,m, E

c
a,m, B

c
a,m) =

m∑

j=0

c−j(nj , uj , Ej , Bj) ∈ C1([0, T1], H
s0+1(T3)),

which can be guaranteed by the assumption s = m+s0+3 and Propositions 3.1–3.3. Moreover,

the assumptions (4.11) and (4.13) imply (4.8) while the assumptions (4.11) and (4.12) give

divF c(x, 0) = −N c(x, 0) and divGc(x, 0) = 0 according to the transform (4.4). Finally, the

estimate (4.15) can be easily derived from the estimate (4.9). This ends the proof of Theorem

4.1.

5 A Study of Initial Layers

5.1 Asymptotic expansions

In Theorem 4.1, the compatibility condition (4.11) is made on the initial data (Ec
0, B

c
0). This

condition means that the initial profiles (Ej , Bj)( · , 0) are determined through the resolution

of the problems (2.7)–(2.8) for (nj , uj , Ej , Bj). Then (Ec
0, B

c
0) are not given explicitly. If the

condition (4.11) does not hold, the phenomenon of initial layers occurs. In this section, we

consider the limit c→ 0 in the problem (2.1)–(2.5) with general initial data. We show that the

condition (4.11) can be removed by constructing a first correction of the initial conditions.

Let the initial data (nc
0, u

c
0, E

c
0, B

c
0) have the asymptotic expansion of the form:

(nc
0, u

c
0, E

c
0, B

c
0) = (n0, u0, E0, B0) + c−1(n1, u1, E1, B1) +O(c−1). (5.1)

In view of the Euler equations, there do not exist first order initial layers on the variables (n, u).

Then we may take the following ansatz:

(nc, uc)(x, t) = (n0, u0)(x, t) + c−1[(n1, u1)(x, t) + (n1
I , u

1
I)(x, τ)] +O(c−1), (5.2)

(Ec, Bc)(x, t) = (E0, B0)(x, t) + (E0
I , B

0
I )(x, τ)

+c−1[(E1, B1)(x, t) + (E1
I , B

1
I )(x, τ)] +O(c−1), (5.3)

where τ = ct ∈ R is the fast variable and the subscript “I” stands for the initial layer variables.

Notice that the Maxwell equations (2.3)–(2.4) are linear for E and B. Then the profiles (Ej , Bj)

and (Ej
I , B

j
I) can be treated separately for j = 0, 1.

Substituting the expressions (5.1)–(5.3) into the problem (2.1)–(2.5), we have

(1) The leading profiles (n0, u0, E0, B0) satisfy the problem (2.7) in which B0 = 0, i.e.,





∂tn
0 + div (n0u0) = 0,

∂tu
0 + (u0 · ∇)u0 + ∇h(n0) = −E0,

divE0 = b(x) − n0, ∇× E0 = 0,

B0 = 0,

t = 0 : (n0, u0) = (n0, u0).

(5.4)
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(2) The leading initial layers (E0
I , B

0
I ) satisfy






∂τE
0
I −∇×B0

I = 0,

∂τB
0
I + ∇× E0

I = 0,

divE0
I = 0, divB0

I = 0,

t = 0 : (E0
I , B

0
I ) = (E0 − E0( · , 0), B0)

(5.5)

for which we need

divE0
I (x, 0) = divB0

I (x, 0) = 0.

Therefore

divE0 = b− n0, divB0 = 0. (5.6)

(3) The second order profiles (n1, u1, E1, B1) satisfy the equations in (3.1). Since B0 = 0,

we may take

n1 = 0, u1 = 0, E1 = 0. (5.7)

Then B1 is determined by

divB1 = 0, ∇×B1 = ∂tE
0 − n0u0. (5.8)

(4) The second order initial layers (n1
I , u

1
I , E

1
I , B

1
I ) satisfy

n1
I = 0, ∂τu

1
I + E0

I = 0, u1
I( · , 0) = u1, (5.9)





∂τE
1
I −∇×B1

I = 0,

∂τB
1
I + ∇× E1

I = 0,

divE1
I = 0, divB1

I = 0,

t = 0 : (E1
I , B

1
I ) = (E1, B1 −B1( · , 0))

(5.10)

for which we need

divE1 = 0, divB1 = 0. (5.11)

5.2 Convergence

According to the asymptotic expansions discussed above, set





nc
a(x, t) = n0(x, t), uc

a(x, t) = u0(x, t) + c−1u1
I(x, ct),

Ec
a(x, t) = E0(x, t) + E0

I (x, ct) + c−1E1
I (x, ct),

Ba
c (x, t) = B0(x, t) +B0

I (x, ct) + c−1(B1(x, t) +B1
I (x, ct)).

(5.12)

Then a straightforward computation gives




∂tn
c
a + div (nc

au
c
a) = Rc

n,

∂tu
c
a + (uc

a · ∇)uc
a + ∇h(nc

a) = Ec
a + c−1uc

a ×Bc
a + Rc

u,

∂tE
c
a − c∇×Bc

a = nc
au

c
a +Rc

E , divEc
a = b− nc

a,

∂tB
c
a + c∇× Ec

a = Rc
B, divBc

a = 0,

m(Ec
a) = m(Bc

a) = 0,

t = 0 : (nc
a, u

c
a, E

c
a, B

c
a) = (n0, u0 + c−1u1, E0 + c−1E1, B0 + c−1B1),

(5.13)
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where the expressions of the remainders Rc
n, Rc

u, Rc
E and Rc

B are given by

Rc
n = c−1div(n0u1

I) = c−1∇n0 · u1
I , (5.14)

Rc
u = c−1[(u0 · ∇)u1

I + (u1
I · ∇)u0 + E1

I + u0 ×B0
I ]

+c−2[(u1
I · ∇)u1

I + (u0 + c−1u1
I)(B

1 +B1
I ) + u1

I ×B0
I ], (5.15)

Rc
E = −c−1n0u1

I , Rc
B = c−1∂tB

1. (5.16)

Now we seek for an error estimate similar to (4.3) for (Rc
n, R

c
u, R

c
E , R

c
B). To this end, let us

interpret the regularity assumptions made in Theorem 4.1 as

(H′) s > 7
2 , n1 = 0 and

b, n0, u0, E0, B0, u1, E1, B1 ∈ Hs(T3), n0 ≥ δ in T
3, m(b− n0) = 0.

Then Proposition 3.1 and Lemma 3.1 show that there are unique functions (n0, u0, E0, B0) with

B0 = 0 and B1, such that






n0, u0 ∈ C([0, T0], H
s(T3)) ∩C1([0, T0], H

s−1(T3)),

E0 ∈ C([0, T0], H
s+1(T3)) ∩ C1([0, T0], H

s(T3)),

B1 ∈ C([0, T1], H
s+1(T3)) ∩ C1([0, T1], H

s(T3)),

(5.17)

with m(E0) = m(B1) = 0 and n0 ≥ δ
2 in T

3× [0, T0]. Note that the assumption s > 7
2 is needed

to guarantee that the injection Hs−1(T3) ⊂ C1(T3) is compact (see the proof of Theorem 4.1).

On the other hand, the initial layers (E0
I , B

0
I ) and (E1

I , B
1
I ) satisfy the same linear Maxwell

equations. Then there exist global solutions (E0
I , B

0
I ) and (E1

I , B
1
I ) of the problems (5.5) and

(5.10). They satisfy the energy estimates

∫

T3

(|∂αEj
I (x, τ)|2 + |∂αBj

I (x, τ)|2)dx =

∫

T3

(|∂αEj
I (x, 0)|2 + |∂αBj

I(x, 0)|2)dx, ∀ τ > 0

for j = 0, 1 and all α ∈ N
3 with |α| ≤ s. Then we deduce that

(Ej
I , B

j
I) ∈ C([0,+∞), Hs(T3)), j = 0, 1, (5.18)

with the uniform estimate

‖Ej
I ( · , τ)‖Hs(T3) + ‖Bj

I( · , τ)‖Hs(T3) ≤ K1, ∀ τ > 0, j = 0, 1, (5.19)

where K1 > 0 is a constant independent of τ .

Finally, from (5.9) we obtain

u1
I(x, τ) = u1(x) −

∫ τ

0

E0
I (x, s)ds, (5.20)

which is non-local with respect to the fast variable τ . In order to establish a uniform estimate

of u1
I with respect to τ > 0, we set

ξ(x, τ) =

∫ τ

0

E0
I (x, s)ds, η(x, τ) =

∫ τ

0

B0
I (x, s)ds. (5.21)
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From (5.5), it is easy to verify that ξ and η solve the problem on T
3 × [0,+∞)





∂τξ −∇× η = E0
I ( · , 0),

∂τη + ∇× ξ = B0
I ( · , 0),

div ξ = div η = 0,

t = 0 : ξ = η = 0.

Since

divE0
I (x, 0) = divE0

I (x, 0) = 0,

there exist functions φ, ψ ∈ C([0,+∞), Hs+1(T3)) such that

E0
I (x, 0) = ∇× φ(x), B0

I (x, 0) = −∇× ψ(x).

Therefore, ξ and η satisfy, in T
3 × [0,+∞)





∂τ (ξ + ψ(x)) −∇× (η + φ(x)) = 0,

∂τ (η + φ(x)) + ∇× (ξ + ψ(x)) = 0,

div ξ = div η = 0,

t = 0 : ξ = η = 0.

This yields the energy estimate
∫

T3

(|∂α(ξ(x, τ) + ψ(x))|2 + |∂α(η(x, τ) + φ(x))|2)dx =

∫

T3

(|∂αφ(x))|2 + |∂αψ(x))|2)dx

for all τ > 0 and α ∈ N
3 with |α| ≤ s+ 1, from which we deduce a uniform estimate of ξ with

respect to τ . Thus, from (5.20) we have

‖u1
I( · , τ)‖Hs(T3) ≤ K2, ∀ τ > 0, (5.22)

where K2 > 0 is a constant independent of τ .

From (5.14)–(5.19), (5.22) and Moser-type inequalities (see [9, p. 43]), we obtain the fol-

lowing error estimate.

Lemma 5.1 Let the assumptions (H′), (5.6) and (5.13) hold. Then we have

sup
0≤t≤T1

‖(Rc
n, R

c
u, R

c
E , R

c
B)( · , t)‖s−1 ≤ K3c

−1, (5.23)

where K3 > 0 is a constant independent of c.

Repeating the same arguments as in Section 4, we obtain finally

Theorem 5.1 Under the assumptions of Lemma 5.1 and

‖(nc
0, u

c
0, E

c
0, B

c
0) − ((n0, u0, E0, B0) + c−1(0, u1, E1, B1))‖s−1 ≤ K4c

−1, (5.24)

there is T2 ∈ (0, T1] such that the problem (2.1)–(2.5) has a unique solution (nc, uc, Ec, Bc) ∈

C([0, T2];H
s−1(T3)) ∩ C1([0, T2];H

s−2(T3)) satisfying

‖(nc, uc, Ec, Bc) − (nc
a, u

c
a, E

c
a, B

c
a)‖s−1,T2

≤ K5c
−1, (5.25)

where K4 > 0 and K5 > 0 are constants independent of c.
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Appendix Proof of Lemma 4.1

Let α ∈ N
3 with |α| ≤ l, from (4.7) we know that

(W c,k+1
α , F c,k+1

α , Gc,k+1
α ) = ∂α

x (W c,k+1, F c,k+1, Gc,k+1)

satisfies the following problem




A0(W
c,k)∂tW

c,k+1
α +

3∑

i=1

Ãi(W
c,k)∂xi

W c,k+1
α = Rc,k

1,α,

∂tF
c,k+1
α − c∇×Gc,k+1

α = Rc,k
2,α,

∂tG
c,k+1
α + c∇× F c,k+1

α = −∂α
xR

c
B,

t = 0 : (W c,k+1
α , F c,k+1

α , Gc,k+1
α ) = ∂α

x (W c
0 , F

c
0 , G

c
0),

(A1)

where

Rc,k
1,α = A0(W

c,k)∂α
x

(
Rc −H1(W

c,k) −H2(F
c,k) −

1

c
H3(W

c,k, Gc,k)
)

+

3∑

i=1

A0(W
c,k)(Ai(W

c,k)∂xi
W c,k+1

α − ∂α
x (Ai(W

c,k)∂xi
W c,k+1)),

Rc,k
2,α = ∂α

x ((N c,k + nc
a,m)U c,k +N c,kuc

a,m −Rc
E).

Estimates (4.9)–(4.10) are obviously true for k = 0 with any T2 > 0. By induction on k, suppose

(4.9)–(4.10) hold for some k ≥ 1 where D2 > 0 and T2 > 0 are to be fixed, and we want to

prove (4.9) for k + 1, i.e.,

‖(W c,k+1, F c,k+1, Gc,k+1)‖l,T2
≤ D2c

−m,

which implies, together with (4.7)1, that

‖∂tW
c,k+1‖l−1,T2

≤ D3c
−m.

In what follows we let Di (i ≥ 4) be various positive constants independent of c, k ∈ N, D2 and

D3.

First, (4.9) implies that the matrix A0(W
c,k) is positively definite uniformly with respect

to c, k and D2 and

‖(W c,k, F c,k, Gc,k)‖l,T2
≤ 1, ‖∂tW

c,k‖l−1,T2
≤ 1

for all c ≥ c0 with some c0 > 0. It follows that,

divA(W c,k) = ∂tA0(W
c,k) +

3∑

i=1

∂xi
Ãi(W

c,k)

satisfies

‖divA(W c,k)‖L∞([0,T2]×T3) ≤ D4,

since l > 5
2 . Employing the classical energy estimate of symmetric hyperbolic equations to the

problem (A1)1, we obtain

sup
0≤t≤T2

‖W c,k+1
α (t)‖L2(T3) ≤ D5e

D5T2

(
‖∂α

xW
c
0 ‖L2(T3) +

∫ T2

0

‖Rc,k
1,α(τ)‖L2(T3)dτ

)
. (A2)
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Next, by the vector analysis formula

div(f × g) = (∇× f) · g − (∇× g) · f,

the singular term O(c) appearing in Sobolev’s energy estimates vanishes, i.e.,

∫

T3

(−c∇×Gc,k+1
α · F c,k+1

α + c∇× F c,k+1
α ·Gc,k+1

α )dx = c

∫

T3

div (F c,k+1
α ×Gc,k+1

α )dx = 0.

Hence, we get from (A1)2,3 that

sup
0≤t≤T2

‖(F c,k+1
α , Gc,k+1

α )(t)‖L2(T3)

≤ D6

(
‖∂α

x (F c
0 , G

c
0)‖L2(T3) +

∫ T2

0

‖(Rc,k
2,α, ∂

α
xR

c
B)(τ)‖L2(T3)dτ

)
. (A3)

Combining (A2) and (A3) together, we get

sup
0≤t≤T2

‖(W c,k+1
α , F c,k+1

α , Gc,k+1
α )(t)‖L2(T3)

≤ D6

(
‖∂α

x (F c
0 , G

c
0)‖L2(T3) +

∫ T2

0

‖(Rc,k
2,α, ∂

α
xR

c
B)(τ)‖L2(T3)dτ

)

+D5e
D5T2

(
‖∂α

xW
c
0 ‖L2(T3) +

∫ T2

0

‖Rc,k
1,α(τ)‖L2(T3)dτ

)
. (A4)

By the definition of Rc,k
i,α (i = 1, 2), (4.3), the classical Moser-type inequality (see [7, 8]) and

Sobolev’s embedding lemma with l > 5
2 , we deduce

∫ T2

0

‖(Rc,k
2,α, ∂

α
xR

c
B)(τ)‖L2(T3)dτ ≤ C(D2)T2c

−m, (A5)

∫ T2

0

‖Rc,k
1,α(τ)‖L2(T3)dτ ≤ D7T2c

−m + C(D2)T2(c
−m + ‖W c,k+1‖l,T2

). (A6)

Here the constant C(D2) > 0 may depend on D2. Substituting (A5)–(A6) into (A4) and using

(4.8), we get

‖(W c,k+1, F c,k+1, Gc,k+1)‖l,T2
≤ (D8(1 + eD5T2) +D5D7e

D5T2T2)c
−m +D6C(D2)T2c

−m

+D5e
D5T2C(D2)T2(c

−m + ‖W c,k+1‖l,T2
).

Now we choose T2 > 0 such that

eD5T2 ≤ 2, eD5T2T2 ≤ 1, C(D2)T2 ≤ 1, D5e
D5T2C(D2)T2 ≤

1

2
.

Then

‖(W c,k+1, F c,k+1, Gc,k+1)‖l,T2
≤ D2c

−m,

with D2 = 2(3D8 +D5D7 +D6 + 1). This completes the proof of Lemma 4.1.
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