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ON THE SPACES OF THE MAXIMAL POINTS***
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Abstract

For a continuous domain D, some characterizations that the convex powerdomain CD is

a domain hull of Max(CD) is given in terms of compact subsets of D. And in the case, it is
proved that the set of the maximal points Max(CD) of CD with the relative Scott topology is
homeomorphic to the set of all Scott compact subsets of Max(D) with the topology induced by
the Hausdorff metric derived from a metric on Max(D) when Max(D) is metrizable.
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§1. Introduction

It is an interesting and active research direction to deal with some problems in topology

by employing appropriate domain environment. In [8], J. D. Lawson proved that each Polish

space can be arise as the set of maximal points of an ω-continuous domain; K. Martin[13]

obtained the similar results by virtue of introducing Lebesgue measurement on continuous

domains, and he investigated relations between the maximal points of D and those of the

convex powerdomain CD. In this paper a characterization that the convex powerdomain

CD is a domain hull of Max(CD) is given in terms of Scott compact subsets of D. And in

this case, it is proved that the set of the maximal points Max(CD) of CD with the relative

Scott topology is homeomorphic to the set of all Scott compact subsets of Max(D) with the

topology induced by the Hausdorff metric if Max(D) is metrizable.

A dcpo D is a partially ordered set such that every directed set E of D has a least

upper bound in D, denoted by ∨E. For x, y ∈ D,x ≪ y implies that for each directed set
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E ⊆ D with y ≤ ∨E, there exists some e ∈ E such that x ≤ e. For each x ∈ D, we denote

⇓ x = {y ∈ D : y ≪ x} and ⇑ x = {y ∈ D : x ≪ y}. A dcpo D is called a continuous

domain if ⇓ x is directed and x = ∨ ⇓ x for each x ∈ D. For a set A ⊆ D, we denote

↑ A = {y ∈ D : ∃a ∈ A, a ≤ y}. A is called an upper set if ↑ A = A. ↓ A and the lower set

can be defined dually. Also ⇑ A,⇓ A can be given similarly.

A subset U of a dcpo D is Scott open provided U is an upper set and E ∩U ̸= ∅ for each

directed set E ⊆ D with ∨E ∈ U . The topology σ(D) formed by all the Scott open sets of

D is called the Scott topology. The topology generated by taking σ(D) ∪ {D\ ↑ x : x ∈ D}
as a subbase is called the Lawson topology, denoted by λ(D).

Definition 1.1.[1] An abstract basis is given by a set B with a transitive order ≺ such

that

M ≺ x =⇒ ∃y ∈ B,M ≺ y ≺ x

for all x ∈ B and all nonempty finite sets M ⊆ B

Obviously, (D,≪) is an abstract basis for a continuous domain D.

A subset I of an abstract basis (B,≺) is called an ideal if I is a directed lower set with

respect to the transitive order ≺. The collection of ideals of (B,≺) ordered by set-theoretical

inclusion is a continuous domain, denoted by Id(B,≺) (see [1]).

Let D be a continuous domain and A,B ⊆ D. We define relations as follows:

A ≪L B ⇐⇒ ∀a ∈ A,∃b ∈ B, a ≪ b,

A ≪U B ⇐⇒ ∀b ∈ B, ∃a ∈ A, a ≪ b,

A ≪EM B ⇐⇒ A ≪L BA ≪U B.

Similarly we can define the relations ≤L,≤U and ≤EM .

Let Fin(D) be the collection of all nonempty finite subsets of D. It is easily to see that

(Fin(D),≪EM ) is an abstract basis.

Definition 1.2.[1,13] let D be a continuous domain.

(1) Id(Fin(D),≪EM ) is called the convex powerdomain of D, written CD for short.

(2) A∗ = {F ∈ Fin(D) : F ≪EM A} for each nonempty set A ⊆ D.

For a dcpo D, let Max(D) denote the set of all maximal points of D and Com(Max(D))

the collection of all Scott compact subsets of Max(D).

Proposition 1.1.[12,13] (1) K∗ ∈ CD for each Scott compact subset of D.

(2) ∀F ∈ Fin(D), I ∈ CD,F ∈ I ⇔ F ∗ ≪ I.

(3) KI = ∩{↑ F : F ∈ I} is a Scott compact upper set for each I ∈ CD, and K∗
I ⊆ I for

each I ∈ Max(CD).

Definition 1.3.[8] A continuous domain D is called a domain hull of Max(D) if equation

λ(D) |Max(D)= σ(D) |Max(D) holds, where λ(D) |Max(D) and σ(D) |Max(D) are the relative

Lawson topology and Scott topology respectively.

Theorem 1.1.[12] For a continuous domain D, the following are equivalent:

(1) D is a domain hull of Max(D);

(2) For each x ∈ D, there is a Scott closed set Ax of D such that ↑ x ∩ Max(D) =

Ax ∩Max(D);
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(3) For each x ∈ D and each y ∈ Max(D), x ̸≤ y implies that there exist x0 ≪ x, y0 ≪ y

such that ↑ x0∩ ↑ y0 = ∅.

§2. Characterization of Max(CD)

In [12], we obtained the following results:

Theorem 2.1.[12] Let D be a continuous domain. Then

(1) K = KK∗ = ∩{↑ F : F ∈ K∗} for each Scott compact upper set K of D

(2) If D is a domain hull of Max(D), and K ∈ Com(Max(D)), then K∗ ∈ Max(CD).

Lemma 2.1. If D is a domain hull of Max(D) and KI ⊆ Max(D) for each I ∈ Max(CD),

then K ∩Max(D) is Scott compact for each Scott compact upper set K of D.

Proof. Let K0 be an arbitrary Scott compact upper set of D. Then K∗
0 ∈ CD and

hence there exists a J ∈ Max(CD) such that K∗
0 ⊆ J . Thus by Theorem 2.1(1) we have

KJ ⊆ K0 ∩Max(D). To complete the proof, it suffices to show KJ = K0 ∩Max(D).

Suppose that there is a k0 ∈ K0 ∩Max(D) \KJ . Then k0 /∈↑ F0 for some F0 ∈ J . Note

that there is a Ga ∈ K∗
0 such that a ∈ Ga for each a ≪ k0. We can take an Fa ∈ J such

that

F0 ≪EM Fa, Ga ≪EM Fa,

and hence a ≪ xa for some xa ∈ Fa. Again by Theorem 2.1,K∗
J = J , and hence xa ≪ ma

for some ma ∈ KJ . Thus the net {ma : a ≪ k0} in Max(D) has an cluster m0 ∈ KJ

with respect to the relative Scott topology on Max(D) as KJ is Scott compact. Note that

Max(D) with the relative Scott topology is Hausdorff as D is a domain hull of Max(D),

there exist u0 ≪ k0, v0 ≪ m0 such that ⇑ u0∩ ⇑ v0 ∩Max(D) = ∅. On the other hand , we

can take a u1 with u0 ≪ u1 ≪ k0 such that mu1 ∈⇑ v0 ∩Max(D) as m0 is a cluster of the

net {ma : a ≪ k0} and ⇑ v0 ∩Max(D) is a neighborhood of m0. By u1 ≪ xu1 ≪ mu1 , then

mu1 ∈⇑ u0 ∩Max(D), which is contradiction. Thus the proof is completed.

Theorem 2.2. If continuous domain D is a domain hull of Max(D), then the following

statements are equivalent.

(1) CD is a domain hull of Max(CD);

(2) KI ⊆ Max(D) for each I ∈ Max(CD);

(3) K ∩Max(D) is Scott compact for each Scott compact upper set K of D and I = K∗
I

for each I ∈ Max(CD).

Proof. (1)⇒(2): Suppose KI ̸⊆ Max(D) for some I ∈ Max(CD).Then there exists a

k0 ∈ KI\Max(D). We can take m0 ∈ KI ∩Max(D) with k0 < m0. For each k ∈ KI\ ↓ k0,

take an ak with ak ≪ k and ak ̸≤ k0, and for each s ∈↓ k0 ∩KI , take an arbitrary bs with

bs ≪ s. We obtain a Scott open cover {⇑ ak : k ∈ KI\ ↓ k0} ∪ {⇑ bs : s ∈↓ k0 ∩KI} of KI ,

hence there is a finite subcover {⇑ aki : i = 1, 2, · · · , n1} ∪ {⇑ bsj : j = 1, 2, · · · , n2}. Then

G = {aki : i = 1, 2, · · · , n1} ∪ {bsj : j = 1, 2, · · · , n2} ≪EM KI .

Again we take a b0 with {bsj : j = 1, 2, · · · , n2} ≪ b0 ≪ m0 and b0 ̸≤ k0 and let F = {aki :

i = 1, 2, · · · , n1} ∪ {b0}. Then it is easy to see F ∗ ̸⊆ I. By Theorem 1.1, it suffice to show

that ↑ F ∗∩ ↑ H∗ ̸= ∅ for each H ∈ I.
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For each H ∈ I, take an H ∈ I with G ≪ H and H ≪ H. Since k0 ∈ KI ,

H1 = {h ∈ H : ∃k ∈ KI∩ ↓ m0, h ≪ k} ̸= ∅.

If H1 = H, then it is not difficult to show {m0}∗ ∈↑ F ∗∩ ↑ H∗ ̸= ∅ and hence the proof is

completed.

We now suppose H\H1 ̸= ∅. For each h ∈ H\H1, then there is a kh ∈ KI\ ↓ m0 such

that h ≪ kh. Note G ≪EM KI , then Ah = {aki
∈ G : aki

≪ kh} ̸= ∅ and we can take a

uh such that Ah ∪ {h} ≪ uh ≪ kh. For each h ∈ H1, take a uh with {h, b0} ≪ uh ≪ m0.

Thus we can show H ≪EM UH and F ≪EM UH for UH = {uh : h ∈ H}, and hence

U∗
H ∈↑ F ∗∩ ↑ H∗ ̸= ∅.
(2) ⇒ (3): Follows from Lemma 2.1, Proposition 1.1 and Theorem 2.1.

(3) ⇒ (1): Take an arbitrary I ∈ CD, J ∈ Max(CD) with I ̸⊆ J . It suffice to show that

there exists a G, G ∈ J such that ⇑ I∩ ⇑ G∗ = ∅ by Theorem 1.1 and Proposition 1.1.

By I ̸⊆ J and Proposition 1.1(3), we can take an F ∈ I\J with F ̸≤EM KJ , which implies

F ̸≤U KJ or F ̸≤L KJ .

(i) If F ̸≤L KJ , then there exists an x1 ∈ F such that x1 ̸≤ m for each m ∈ KJ , thus by

Theorem 1.1 we can take xm ≪ x1, am ≪ m such that ↑ xm∩ ↑ am = ∅. For each m ∈ KJ ,

take an am satisfying am ≪ am ≪ m, then obtain an open cover {⇑ am : m ∈ KJ} of KJ .

Suppose that {⇑ ami : i = 1, 2, · · · , n} is a finite subcover of KJ . Then G = {ami : i =

1, 2, · · · , n} ≪EM KJ , and hence G ∈ J by Proposition 1.1(3). In the following we show

that ⇑ I∩ ⇑ G∗ = ∅.
Firstly take an x1 with {xmi : i = 1, 2, · · · , n} ≪ x1 ≪ x1, then take an arbitrary yx with

yx ≪ x for each x ∈ F\{x1}. Then F = {yx : x ∈ F\{x1}} ∪ {x1} ≪EM F , hence F ∈ I.

Suppose I0 ∈⇑ I∩ ⇑ G∗, then F ∈ I0 and G = {ami : i = 1, 2, · · · , n} ∈ I0, hence there

is an H ∈ I0 such that G ≪EM H,F ≪EM H. Thus there is an h, h ∈ H such that

x1 ≪ h and ami ≪ h for some ami ∈ G, which contradicts to ↑ x1∩ ↑ ami = ∅. Hence

⇑ I∩ ⇑ G∗ = ∅.
(ii) If F ̸≤U KJ , then there exists an m0 ∈ KJ such that x ̸≤ m0 for each x ∈ F . From

Theorem 1.1, it follows that there are ax ≪ x, bx ≪ m0 such that ↑ ax∩ ↑ bx = ∅ for each

x ∈ F . now we can take bF and bF with {bx : x ∈ F} ≪ bF ≪ bF ≪ m0 by the finiteness of

F , and take a G ∈ J with bF ∈ G. For each y ∈ G\{bF }, take an arbitrary by with by ≪ y,

then

G = {by : y ∈ G\{bF } ∪ {bF } ≪EM G.

Suppose I0 ∈⇑ I∩ ⇑ G∗. Then F1 = {ax : x ∈ F} ∈ I0, G ∈ I0. Take an H ∈ I0 with

{F1, G} ≪EM H, it will, similarly to the proof of (i), induce a contradiction.

In view of the above, the proof is completed.

§3. Metric Topology on Max(CD)

From the characterization theorem above and Theorem 2.1(1), it follows that the mapping

g : Com(Max(D)) → Max(CD),

K 7−→ K∗
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is a bijection when D and CD are domain hulls of Max(D) and Max(CD) respectively. In

addition if Max(D) with the relative Scott topology is metrizable, then a interesting question

is posed[13]:

Is Max(CD) with the relative Scott topology homeomorphic to Com(Max(D) with the

topology induced by the Hausdorff metric derived from a metric on Max(D)?

In the following we will show that the answer to the question is yes. Now suppose that

d is a metric on Max(D), then the Hausdorff metric d on Com(Max(D)) derived from d as

follows:

d(K1,K2) = inf{r : K1 ⊆ Br
d(K2),K2 ⊆ Br

d(K1)},

where Br
d(K1) = {x ∈ Max(D) : d(x,K1) < r} and d(x,K1) = inf{d(x, y) : y ∈ K1}.

Theorem 3.1. Let continuous domain D and its convex powerdomain CD be domain

hulls of Max(D) and Max(CD) respectively, and Max(D) metrizable. Then

g : (Com(Max(D), Td) → (Max(CD), σ(CD)|Max(CD))

is a continuous and open mapping and hence is a homeomorphism, where Td is the topology

induced by the Hausdorff metric d.

Proof. (i) g is continuous. Suppose that J ∈ Max(CD) and ⇑ I ∩ Max(CD) is an

arbitrary Scott open neighborhood of J . By I ≪ J , there are G1, G2 ∈ Fin(D) with

G1 ≪EM G2 such that I ⊆ G∗
1 ⊆ G∗

2 ⊆ J , which implies G1 ≪EM KJ , and hence KJ ⊆⇑ G1

by Theorem 2.3(3). Since KJ is compact subset of metric space Max(D), there exists a

positive real number r such that for each k ∈ KJ ,

Br
d(k) ⊆⇑ xik ∩Max(D)

for some xik ∈ G1. By G1 ≪EM KJ , for each x ∈ G1 there is a kx ∈ KJ such that

Brx
d (kx) ⊆⇑ x ∩Max(D) ⊆⇑ x

for some positive real number rx. Let r0 = min{r, rx : x ∈ G1}/2, we claim

Br0
d
(KJ ) = {K ∈ Com(Max(D) : d(KJ ,K) < r0} ⊆ g−1[⇑ I ∩Max(CD)],

hence g is continuous.

In fact, from K ∈ Br0
d
(KJ ), it follows that for each k ∈ K there is a yk ∈ KJ such

that k ∈ Br0
d (yk) ⊆⇑ G1, hence G1 ≪U K. Now let x ∈ G1. From KJ ⊆ Br0

d (K) , it

follows that there is a ux ∈ K such that d(kx, ux) < r0, which implies ux ∈ Br0
d (kx) ⊆⇑ x.

Thus we have x ≪ ux, and hence G1 ≪L K. By G1 ≪EM K and I ⊆ G∗
1, we know that

K ∈ g−1[⇑ I ∩Max(CD)]. Hence g is continuous.

(ii) To prove that g is an open mapping, it suffices to prove that for each K ∈ Max(D) and

for r > 0, g[Br
d
(K)] is an open set. Suppose K1 ∈ Br

d
(K), then K1 ⊆ Br0

d (K),K ⊆ Br0
d (K1)

for some r0 < r. For each k ∈ K1 there is an xk ∈ K such that d(k, xk) < r0. We can take

an sk with 0 < sk < inf{(r − r0)/3, r0} such that Bsk
d (k) ⊆ Br0

d (xk), and take an ak ≪ k

such that

k ∈⇑ ak ∩Max(D) ⊆ Bsk
d (k).

Thus we obtain an open cover {⇑ ak : k ∈ K1} of K1 which has a finite subcover {⇑ aki :
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i = 1, 2, · · · , n}, then F = {ak1 , ak2 , · · · , akn} ∈ K∗
1 , i.e. K∗

1 ∈ U =⇑ F ∗ ∩ Max(CD). To

complete the proof, it suffices to show U ⊆ g[Br
d
(K)].

Suppose K∗
2 ∈ U , then F ≪EM K2 and hence

K2 ⊆⇑ F ∩Max(D) ⊆ ∪{Bski

d (ki) : i = 1, 2, · · · , n}
⊆ ∪{Br0

d (xki) : i = 1, 2, · · · , n}
⊆ Br0

d (K).

For each u ∈ K, again by K ⊆ Br0
d (K1) and F ≪EM K1, there is a yu ∈ K1 such that

d(u, yu) < r0, and there is a akiu
∈ F such that akiu

≪ yu, which means d(yu, kiu) < skiu
.

Again by F ≪EM K2, there is a zu ∈ K2 such that akiu
≪ zu, which implies d(kiu , zu) <

skiu
. Thus we have

d(u, zu) ≤ d(u, yu) + d(yu, kiu) + d(kiu , zu)

< r0 + 2skiu
< r0 + 2(r − r0)/3 < r,

which means d(K,K2) < r, hence K∗
2 ∈ g[Br

d
(K)].
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