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IN CLIFFORD ANALYSIS
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Abstract

New higher dimensional distributions are introduced in the framework of Clifford analysis.
They complete the picture already established in previous work, offering unity and structural

clarity. Amongst them are the building blocks of the principal value distribution, involving
spherical harmonics, considered by Horváth and Stein.

Keywords Spherical means, Distributions, Convolution operators, Clifford analysis
2000 MR Subject Classification 30G35, 46F10
Chinese Library Classification O175.24 Document Code A
Article ID 0252-9599(2003)02-0001-14

§1. Introduction

In a previous paper[2] we introduced in m-dimensional Euclidean space, three sets of dis-
tributions Tλ,p, Uλ,p and Vλ,p, with λ ∈ C and p ∈ N, in the framework of Clifford analysis.
Clifford analysis may be regarded as a direct and elegant generalization to higher dimensions
of the theory of holomorphic functions in the complex plane, centred around the notion of
monogenic function, i.e. a null solution of the Dirac operator ∂. Those distributions were
defined using the spherical co-ordinates, the fundamental distribution ”finite parts” Fp on
the real line, the so-called generalized spherical means, i.e. integrals over the unit sphere
Sm−1 of test functions and the like, and the inner and outer spherical monogenics, i.e.
restrictions to the unit sphere of monogenic homogeneous polynomials and functions respec-
tively. The spherical co-ordinates x = rω, r = |x|, ω ∈ Sm−1 really play a fundamental rôle:
firstly, they reflect the ”spherical” philosophy of our approach encompassing all dimensions
at once as opposed to a cartesian or tensorial approach with products of one dimensional
phenomena, and secondly, they enable designing a highly efficient technique where the ex-
plicit calculations are carried out in one dimension and then exported to the original setting
of Euclidean space.
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As we consider Clifford algebra valued test functions and as the multiplication in a Clif-
ford algebra is non-commutative, distributions may be regarded as left as well as right linear
functionals on these spaces of test functions. The above mentioned three families of distri-
butions are interrelated by the action of the Dirac operator ∂, which, again due to the
non-commutativity, may act from the left or from the right on those distributions. These
relationships are expressed in the general formulae:

∂ Tλ,p = λ Uλ−1,p, Tλ,p ∂ = λ Vλ−1,p,

∂ Uλ,2k = Vλ,2k ∂ = −(λ+m− 1 + 4k) Tλ−1,2k,

∂ Uλ,2k+1 = Vλ,2k+1 ∂ = −(λ+m− 1 + 4k) Tλ−1,2k+1,

disregarding some exceptional values of the parameters λ ∈ C and p ∈ N.
For specific values of the parameters λ ∈ C and p ∈ N these distributions turn into known

kernel functions in harmonic and Clifford analysis, thus illustrating the unifying character of
our approach: up to constants, U−m,0 reduces to Pv ω

rm , the higher dimensional analogue of
the ”Principal Value” distribution on the real line and the kernel for the Hilbert transform
(see [3]); U−m+1,0 reduces to a fundamental solution of the Dirac operator ∂; T−m+2,0

reduces to a fundamental solution of the Laplace operator; for λ = −p we obtain the inner
and outer spherical monogenics Pp(ω), Pp(ω)ω and ωPp(ω); etc.

By the same procedure but with a new kind of generalized spherical mean, we introduce
in this paper a fourth family of Clifford distributions Wλ,p. Our motivation is threefold.
The three generalized spherical means underlying the definition of the Tλ,p, Uλ,p and Vλ,p

distributions, were constructed as integrals over the unit sphere Sm−1 of products of scalar
valued test functions with the spherical monogenics Pp(ω), ωPp(ω) and Pp(ω)ω, where ω
may be regarded as the higher dimensional counterpart to the ”signum”-distribution on the
real line. The picture of generalized spherical means is now ”symmetrically” completed by
considering the ultimate combination ωPp(ω)ω. The second motivation is again a complete-
ness argument but now for the action of the Dirac operator. If ∂ acts from the right on
Uλ,p and from the left on Vλ,p, then the distributions of type Wλ,p are automatically gener
ated. Finally it will be shown that, while U−m−p,p and V−m−p,p are building blocks of

the principal value distribution Pv
Sp(ω)
rm , Sp(ω) being a spherical harmonic, considered by

Horváth in [7] and by Stein-Weiß in [SW], the distribution W−m−p,p is the missing term in a

similar symmetric decomposition of the principal value distribution Pv
ωSp(ω)

rm . Morover the
distributions Wλ,p intervene in the construction of new distributions generalizing the above
mentioned principal value distributions.

§2. Clifford Analysis

For the sake of completeness we first recall some basic notions and results in Clifford
analysis. Clifford analysis offers a function theory which is a higher dimensional analogue of
the theory of holomorphic functions of one complex variable. For more details concerning
this function theory and its applications to harmonic analysis we refer the reader to [1, 4,
6].

Let R0,m be the real vector space Rm, endowed with a non-degenerate quadratic form
of signature (0,m), let (e1, · · · , em) be an orthonormal basis for R0,m, and let R0,m be the
universal Clifford algebra constructed over R0,m. The non-commutative multiplication in
R0,m is then governed by the rules

e2i = −1, i = 1, 2, · · · ,m,

eiej + ejei = 0, i ̸= j.
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For a set A = {i1, · · · , ih} ⊂ {1, · · · ,m} with 1 ≤ i1 < i2 < · · · < ih ≤ m, we put

eA = ei1ei2 · · · eih ,
eϕ = 1,

the latter being the identity element; then (eA : A ⊂ {1, · · · ,m}) is a basis for the Clifford
algebra R0,m. Any a ∈ R0,m may thus be written as

a =
∑
A

aA eA, aA ∈ R,

or still as a =
m∑

k=0

[a]k, where [a]k =
∑

|A|=k

aA eA is a so-called k-vector (k = 0, 1, · · · ,m).

If we denote the space of k-vectors by Rk
0,m, then R0,m =

m∑
k=0

⊕Rk
0,m, leading to the

identification of R and R0,m with respectively R0
0,m and R1

0,m.
We will also identify an element x = (x1, · · · , xm) ∈ Rm with the one-vector (or vector

for short)

x =
m∑
j=1

xj ej .

For any two vectors x and y we have x y = − ⟨ x, y ⟩+ x ∧ y, where

⟨ x, y ⟩ =
m∑
j=1

xjyj = −1

2
(x y + yx)

is a scalar and

x ∧ y =
∑
i<j

eij(xiyj − xjyi) =
1

2
(x y − yx)

is a 2-vector, also called bivector.
In particular

x2 = −⟨ x, x ⟩ = −|x|2 = −
m∑
j=1

x2
j .

Conjugation in R0,m is defined as the anti-involution for which

ej = −ej , j = 1, · · · ,m.

In particular for a vector x we have x = −x. The Dirac operator in Rm is the first order
vector-valued differential operator

∂ =
m∑
j=1

ej∂xj ,

its fundamental solution being given by

Em(x) =
1

am

x

|x|m

with am the area of the unit sphere Sm−1 in Rm.
Considering functions defined in Rm and taking values in R0,m, we say that the function

f is left-monogenic in the open region Ω of Rm iff f is continuously differentiable in Ω and
satisfies in Ω :

∂ f = 0.
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As ∂ f = f ∂ = −f∂, a function f is left monogenic in Ω iff f is right monogenic in Ω.
As moreover the Dirac operator factorizes the Laplace operator

−∂2 = ∂ ∂ = ∂ ∂ = ∆,

where ∆ =
m∑
j=1

∂2
xj
, a monogenic function in Ω is harmonic and hence C∞ in Ω.

Introducing spherical co-ordinates

x = rω, r = |x|, ω ∈ Sm−1,

the Dirac operator ∂ may be written as

∂ = ω∂r +
1

r
∂ω = ω

(
∂r −

1

r
ω ∂ω

)
,

while the Laplace operator takes the form

∆ = ∂2
r +

m− 1

r
∂r +

1

r2
∆∗,

∆∗ being the Laplace-Beltrami operator on Sm−1.
In the definition of our Clifford distributions a fundamental role is played by the so-called

inner and outer spherical monogenics.
Start with a homogeneous polynomial Pp(x) of degree p which we take to be vector-valued

and left (and hence also right) monogenic.
Then the following formulae hold in Rm:

∂Pp(x) = Pp(x)∂ = 0,

∂(x Pp(x)) = (Pp(x) x)∂ = −(m+ 2p)Pp(x),

∂(Pp(x) x) = (x Pp(x))∂ = (m− 2)Pp(x), p ̸= 0,

and

∆ Pp(x) = ∆(x Pp(x)) = ∆(Pp(x) x) = 0,

since the Dirac operator ∂ factorizes the Laplace operator in Rm.
These specific polynomials Pp(x) may be realized under the action of the Dirac operator

on real-valued harmonic homogeneous polynomials Sp+1 of degree (p+ 1):

Pp(x) = ∂ Sp+1(x).

We then have

x Pp(x) = −⟨ x, ∂ ⟩Sp+1(x) + x ∧ ∂ Sp+1(x),

Pp(x) x = −⟨ x, ∂ ⟩Sp+1(x)− x ∧ ∂ Sp+1(x),

from which it follows that

x Pp(x) + Pp(x) x = −2(p+ 1)Sp+1(x)

is scalar valued.
We also have

Sp+1(x) = Rp+1(x)−
1

m+ 2k
x Pp(x),

where

Rp+1(x) = − 1

2p+ 2

( m− 2

m+ 2p
x Pp(x) + Pp(x) x

)
is a left monogenic homogeneous polynomial of degree (p+ 1).
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By taking restrictions to the unit sphere Sm−1 of the polynomials Pp(x), we obtain so-
called inner spherical monogenics Pp(ω), for which the following formulae hold:

∂ Pp(ω) = −p

r
ω Pp(ω), Pp(ω)∂ = −p

r
Pp(ω) ω,

∂ω Pp(ω) = −p ω Pp (ω), Pp(ω) ∂ω = −p Pp(ω) ω,

ω ∂ω Pp(ω) = Pp(ω)∂ω ω = p Pp(ω),

∂ω(ω Pp(ω)) = (Pp(ω)ω)∂ω = −(m+ p− 1)Pp(ω),

∂ω(Pp(ω) ω) = (ω Pp(ω))∂ω = (m− 2)Pp(ω)− (p+ 1)ω Pp(ω) ω, p ̸= 0,

∂2
ω Pp(ω) = Pp(ω) ∂

2
ω = p(m+ p− 1) Pp(ω),

∆∗ Pp(ω) = (−p)(p+m− 2) Pp(ω).

Given an inner spherical monogenic Pp(ω), then obviously rp Pp(ω) = Pp(x) is a left and
right monogenic homogeneous polynomial, the restriction to the unit sphere of which is
precisely Pp(ω).

At the same time the functions
1

rm+p−1
ω Pp(ω) =

1

rm+2p
x Pp(x) = Q(l)

p (x),

1

rm+p−1
Pp(ω) ω =

1

rm+2p
Pp(x) x = Q(r)

p (x)

are left, respectively right, monogenic homogeneous functions of order −(m+ p− 1) in the
complement of the origin. Their restrictions to the unit sphere Sm−1:

Q(l)
p = ω Pp(ω) and Q(r)

p = Pp(ω) ω

are called outer spherical monogenics.
With the above notations we have

ω Pp(ω) + Pp(ω) ω = −2(p+ 1) Sp+1(ω),

Sp+1(ω) = Rp+1(ω)−
1

m+ 2p
ω Pp(ω).

Also note that the inner spherical monogenics Pp(ω) and the outer spherical monogenics
ω Pp(ω) and Pp(ω) ω are special cases of spherical harmonics.

Denoting by D and S the space of the compactly supported, respectively rapidly de-
creasing, real-valued test functions in Rm, we will consider the modules of testfunctions∏
A⊂{1,··· ,m}

D and
∏

A⊂{1,··· ,m}
S; any such test function φ may be written as

φ =
∑

A⊂{1,··· ,m}

eA ϕA, ϕA ∈ D or S.

In most cases we will even use real-valued test functions.
A left Clifford distribution T (l) is then a bounded left R0,m-linear functional for which

there exist bounded real-linear functionals TB(B ⊂ {1, · · · ,m}) such that

⟨ φ, T (l) ⟩ =
∑
A,B

eA eB⟨ TB , ϕA⟩,

and a similar definition for a right Clifford distribution T (r):

⟨ T (r), φ ⟩ =
∑
A,B

eB eA⟨ TB , ϕA ⟩.
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§3. The Picture Thus Far

In [2] we already introduced in m-dimensional Euclidean space, three families of Clifford
ditributions: Tλ,p, Uλ,p and Vλ,p, with λ ∈ C and p ∈ N. In order to make this paper
selfcontained we recall their construction and basic properties.

Let µ be a complex parameter, let x be a real variable and consider the function

xµ
+ =

{
xµ, x > 0,
0, x < 0.

For Reµ > −1, this function xµ
+ is a regular distribution. For each n ∈ N and for µ ∈ C

such that −n−1 < Reµ < −n, the classical one-dimensional distribution Fp xµ
+—where Fp

stands for “finite part”—is defined by

⟨ Fp xµ
+, ϕ ⟩ =

∫ +∞

0

xµ
(
ϕ(x)− ϕ(0)− ϕ′(0)

1!
x− · · · − ϕ(n−1)(0)

(n− 1)!
xn−1

)
dx

= lim
ε→

>
0

∫ +∞

ε

(
xµϕ(x) + ϕ(0)

εµ+1

µ+ 1
+ · · ·+ ϕ(n−1)(0)

(n− 1)!

εµ+n

µ+ n

)
dx.

As a function of µ, xµ
+ is holomorphic in Reµ > −1, and by analytic continuation Fp xµ

+

is holomorphic in C\{−1,−2,−3, · · · }; the singular points −n, n ∈ N, are simple poles with

residue (−1)n−1

(n−1)! δ
(n−1)
x .

The derivative of Fp xµ
+ is given by

d

dx
Fp xµ

+ = µ Fp xµ−1
+ , µ ̸= 0,−1,−2,−3, · · · ,

and multiplication with powers of the variable x follows the rule

x Fp xµ
+ = Fp xµ+1

+ , µ ̸= −1,−2,−3, · · · .
By slightly changing the above definition of Fpxµ

+, it may be defined for negative entire

exponents, leading to the so-called monomial pseudofunctions Fpx−n
+ , n ∈ N, (see e.g.

[8,5]) given by

⟨ Fpx−n
+ , ϕ(x) ⟩

= lim
ε→

>
0

∫ +∞

ε

(
x−nϕ(x) dx+ ϕ(0)

ε−n+1

−n+ 1
+ · · ·+ ϕ(n−2)(0)

(n− 2)!

ε−1

(−1)
+

ϕ(n−1)(0)

(n− 1)!
ln ε

)
dx.

Their derivatives are given by

d

dx
Fp x−n

+ = (−n)Fp x−n−1
+ + (−1)n

1

n!
δ(n)x , n ∈ N,

and they satisfy the multiplication rule

x Fp x−1
+ = Y (x),

x Fp x−n
+ = Fp x−n+1

+ , n = 2, 3, 4, · · · ,

where Y (x) stands for the Heaviside distribution, which is identified with Fp x0
+.

In the sequel we will also make use of the following technical lemma.
Lemma 3.1. If the test function ϕ is such that ϕ(0) = ϕ′(0) = · · · = ϕ(k−1)(0) = 0, then

⟨ xµ
+,

1

xk
ϕ(x) ⟩ = ⟨ xµ−k

+ , ϕ(x)⟩, µ ∈ C\{k − 1, k − 2, k − 3, · · · },

⟨ Fp xn
+,

1

xk
ϕ(x)⟩ = ⟨ Fp xn−k

+ , ϕ(x)⟩, n = k − 1, k − 2, k − 3, · · · .
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Next define the so-called generalized spherical means Σ
(0)
p [ϕ], Σ

(1)
p [ϕ] and Σ

(3)
p [ϕ] as follows

(see also [10]).

Let ϕ(x) be a scalar valued test function in Rm, and let Pp(x) be a vector valued, mono-
genic, homogeneous polynomial of degree p ̸= 0 as introduced in the previous section. Then

(i) Σ
(0)
2k [ϕ] = Σ(0)[P2k(ω)ϕ(x)] =

1

am

∫
Sm−1

P2k(ω)ϕ(x) dS(ω),

(ii) Σ
(0)
2k+1[ϕ] = Σ(0)[r P2k+1(ω)ϕ(x)] =

r

am

∫
Sm−1

P2k+1(ω)ϕ(x) dS(ω),

(iii) Σ
(1)
2k [ϕ] = Σ(0)[ω P2k(ω)ϕ(x)] =

1

am

∫
Sm−1

ω P2k(ω)ϕ(x) dS(ω),

(iv) Σ
(1)
2k+1[ϕ] = Σ(0)[r ω P2k+1(ω)ϕ(x)] =

r

am

∫
Sm−1

ω P2k+1(ω)ϕ(x) dS(ω),

(v) Σ
(3)
2k [ϕ] = Σ(0)[P2k(ω) ω ϕ(x)] =

1

am

∫
Sm−1

P2k(ω) ω ϕ(x) dS(ω),

(vi) Σ
(3)
2k+1[ϕ] = Σ(0)[P2k+1(ω) r ω ϕ(x)] =

r

am

∫
Sm−1

P2k+1(ω) ω ϕ(x) dS(ω).

Finally define the distributions Tλ,p, Uλ,p and Vλ,p, where λ ∈ C and p ∈ N, as follows.
Let ϕ be a scalar valued test funtion, let µ = λ + m − 1 and introduce the notation pe

(“even part of p”) by pe = p if p is even, and pe = p− 1 if p is odd; then put

(i) ⟨ Tλ,p, ϕ ⟩ = am ⟨ Fp rµ+pe

+ ,Σ(0)
p [ϕ] ⟩,

(ii) ⟨ Uλ,p, ϕ ⟩ = am⟨ Fp rµ+pe

+ ,Σ(1)
p [ϕ] ⟩,

(iii) ⟨ Vλ,p, ϕ ⟩ = am⟨ Fp rµ+pe

+ ,Σ(3)
p [ϕ] ⟩.

These three families of distributions are interrelated by the action of the Dirac operator.
In the next proposition we only mention the general case; for the exceptional cases we refer
the reader to [2].

Proposition 3.1. For λ ∈ C and p ∈ N such that λ +m − 1 + pe ̸= 0,−1,−2,−3, · · · ,
we have

(i) ∂ Tλ,p = λ Uλ−1,p,

(ii) Tλ,p ∂ = λ Vλ−1,p,

(iii) ∂ Uλ,p = Vλ,p ∂ = −(λ+m− 1 + 2pe) Tλ−1,p.

§4. The Generalized Spherical Mean Σ
(2)
p

We introduce the new generalized spherical mean Σ
(2)
p in which the higher dimensional

“signum distribution” ω plays a symmetrical rôle, in contrast to the generalized spherical

means Σ
(1)
p nad Σ

(3)
p where the position of ω is non-symmetrical. It is defined by

Σ
(2)
2k [ϕ] =

1

am

∫
Sm−1

ω P2k(ω) ω ϕ(x) dS(ω), k = 1, 2, 3, · · · ,

Σ
(2)
2k+1[ϕ] =

r

am

∫
Sm−1

ω P2k+1(ω) ω ϕ(x) dS(ω) , k = 0, 1, 2, · · · ,

ϕ being a scalar valued test function.

The generalized spherical mean Σ
(2)
p is vector valued, it is an even function of r with all

odd order derivatives vanishing at the origin r = 0. As to the even order derivatives we have
the following proposition.
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Proposition 4.1. For a scalar valued test function we have{
∂2l
r Σ

(2)
2k [ϕ]

}
r=0

=
(2l)!

(2k + 2l + 2)!

(−1)k+l+1

C(k + l + 1)

{
∂2k+2l+2(x P2k(x) x ϕ(x))

}
x=0

=
(2l)!

(2k + 2l + 2)!

1

C(k + l + 1)

{
∆k+l+1

m (x P2k(x) x ϕ(x))
}
x=0

=
(2l)!

(2k + 2l + 2)!

1

C(k + l + 1)
⟨ x P2k(x) x ∆k+l+1

m δ(x) , ϕ(x))⟩,{
∂2l
r Σ

(2)
2k+1[ϕ]

}
r=0

=
(2l)!

(2k + 2l + 2)!

(−1)k+l+1

C(k + l + 1)

{
∂2k+2l+2(x P2k+1(x) x ϕ(x))

}
x=0

=
(2l)!

(2k + 2l + 2)!

1

C(k + l + 1)

{
∆k+l+1

m (x P2k+1(x) x ϕ(x))
}
x=0

=
(2l)!

(2k + 2l + 2)!

1

C(k + l + 1)
⟨ x P2k+1(x) x ∆k+l+1

m δ(x) , ϕ(x))⟩,

where the constants C(l), l = 0, 1, 2, . . . are given by

C(l) =
22ll!

(2l)!

(m
2

+ l − 1
)
. . .

(m
2

)
.

Proof. First consider the case where p = 2k and observe that

Σ(0)[x P2k(x) x ϕ(x)] = r2k+2 Σ(0)[ω P2k(ω) ω ϕ] = r2k+2 Σ
(2)
2k [ϕ],

whence {
∂2k+2+j
r Σ(0)[x P2k(x) x ϕ(x)]

}
r=0

=
(2k + 2 + j)!

j!

{
∂j
rΣ

(2)
2k [ϕ]

}
r=0

.

If j = 2l + 1, then {
∂2l+1
r Σ

(2)
2k [ϕ]

}
r=0

= 0,

while for j = 2l we get{
∂2l
r Σ

(2)
2k [ϕ]

}
r=0

=
(2l)!

(2k + 2l + 2)!

{
∂2k+2l+2
r Σ(0)[x P2k(x) x ϕ(x)]

}
r=0

=
(2l)!

(2k + 2l + 2)!

(−1)k+l+1

C(k + l + 1)

{
∂2k+2l+2(x P2k(x)) x ϕ(x)

}
x=0

.

In the case where p = 2k + 1, start with

Σ(0)[x P2k+1(x) x ϕ(x)] = r2k+2 Σ(0)[r ω P2k+1(ω) ω ϕ(x)] = r2k+2 Σ
(2)
2k+1[ϕ]

to obtain, in a similar way, the desired result.

We expect the newly introduced generalized spherical mean Σ
(2)
p to be related to the

other generalized spherical means Σ
(0)
p , Σ

(1)
p and Σ

(2)
p , by an action of the Dirac operator.

This is indeed the case as shown in the next proposition.

Proposition 4.2. For a scalar valued test function ϕ we have

r Σ(1)
p [∂ ϕ] = (r ∂r + (m+ pe))Σ

(2)
p [ϕ]− (m− 2) Σ0

p[ϕ],

r Σ(3)
p [ϕ ∂] = (r ∂r + (m+ pe))Σ

(2)
p [ϕ]− (m− 2) Σ0

p[ϕ].

Proof. We only prove the first formula in the case where p = 2k, the proofs of the other
formulae running along similar lines.
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We have consecutively

r Σ
(1)
2k [∂ ϕ] =

r

am

∫
Sm−1

ω P2k(ω) ∂ϕ dS(ω)

=
1

am
r ∂r

∫
Sm−1

ω P2k(ω) ω ϕ dS(ω) +
1

am

∫
Sm−1

ω P2k(ω) ∂ωϕ dS(ω)

= r ∂rΣ
(2)
2k [ϕ] +

1

am

∫
Sm−1

(ω P2k(ω) ϕ) ∂ω dS(ω)

− 1

am
(m− 2)

∫
Sm−1

P2k(ω) ϕ dS(ω)

+
1

am
(2k + 1)

∫
Sm−1

ω P2k(ω) ω ϕ dS(ω).

But
1

am

∫
Sm−1

(ω P2k(ω) ϕ(x)) ∂ω dS(ω) = Σ(0)[(ω P2k(ω) ϕ) ∂ω]

= (m− 1) Σ(0)[ω P2k(ω) ω ϕ] = (m− 1) Σ
(2)
2k [ϕ],

and hence

r Σ
(1)
2k [∂ϕ] = r ∂r Σ

(2)
2k [ϕ] + (m+ 2k) Σ

(2)
2k [ϕ]− (m− 2) Σ

(0)
2k [ϕ].

§5. The Distributions Wλ,p

The definition of the distributions Wλ,p, λ ∈ C, p ∈ N, is similar to that of the distribu-
tions Tλ,p, Uλ,p and Vλ,p:

⟨ Wλ,2k, ϕ ⟩ = am ⟨ Fp rµ+2k
+ ,Σ

(2)
2k [ϕ] ⟩,

⟨ Wλ,2k+1, ϕ ⟩ = am ⟨ Fp rµ+2k
+ ,Σ

(2)
2k+1[ϕ] ⟩,

where we have put µ = λ+m− 1. Note that the distributions Wλ,p are vector valued.

We have three motivations for introducing the generalized spherical mean Σ
(2)
p and the

corresponding distributions Wλ,p. The first motivation is a symmetry and completeness
argument. In [2], considering spherical monogenics Pp(ω) led to the generalized spherical

mean Σ
(0)
p and the corresponding distributions Tλ,p . Multiplication of Pp with the higher

dimensional “signum distribution” ω at the left hand side gave rise to the generalized spher-

ical mean Σ
(1)
p and the distributions Uλ,p , whereas multiplication at the right hand side

led to the generalized spherical mean Σ
(3)
p and the distributions Vλ,p (see Section 3). Now

multiply ω Pp(ω) by ω at the right, or multiply Pp(ω) ω by ω at the left to obtain the

”symmetric form” ω Pp(ω) ω, which is at the basis of the definition of Σ
(2)
p and Wλ,p. As

ω2 = −1 no other combinations are possible so that the list of generalized spherical means
and distributions of the type under consideration is complete now.

The second motivation points at the action of the Dirac operator. In [2] the action of ∂
from the left on Uλ,p considered as a left distribution and from the right on Vλ,p considered
as a right distribution, yielded, in the general case and up to constants, the distribution
Tλ−1,p (see Proposition 3.1). The following propositions in this section will show that the
action of the Dirac operator from the right on Uλ,p and from the left on Vλ,p automatically
generates, next to the distributions Tλ−1,p, the new distributions Wλ−1,p.

The third motivation for introducing the distributions Wλ,p is fully explained in the next
section 6.
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Proposition 5.1. For λ ∈ C and p ∈ N such that λ+m− 1+ pe ̸= 0,−1,−2,−3, · · · we
have

Uλ,p ∂ = ∂ Vλ,p = (λ− 1) Wλ−1,p + (m− 2) Tλ−1,p.

Proof. In the case where p = 2k we have for a scalar valued test function ϕ:

⟨ Uλ,2k ∂ , ϕ ⟩ = − ⟨ Uλ,2k , ∂ϕ⟩

= − am⟨ Fp rµ+2k−1
+ , r Σ

(1)
2k [∂ ϕ]⟩

= − am⟨ Fp rµ+2k−1
+ , (r∂r + (m+ 2k)) Σ

(2)
2k [ϕ]− (m− 2) Σ

(0)
2k [ϕ]⟩

= am⟨ ∂r Fp rµ+2k
+ , Σ

(2)
2k [ϕ] ⟩ − (m+ 2k)am⟨ Fp rµ+2k−1

+ , Σ
(2)
2k [ϕ]⟩

+ (m− 2)am⟨ Fp rµ+2k−1
+ , Σ

(0)
2k [ϕ]⟩,

whence

Uλ,2k ∂ = (λ− 1) Wλ−1,2k + (m− 2) Tλ−1,2k.

In the case where p = 2k + 1 we get

⟨ Uλ,2k+1 ∂ , ϕ ⟩ = − ⟨ Uλ,2k+1 , ∂ϕ⟩

= − am⟨ Fp rµ+2k−1
+ , r Σ

(1)
2k+1[∂ ϕ]⟩

= − am⟨ Fp rµ+2k−1
+ , (r∂r + (m+ 2k)) Σ

(2)
2k+1[ϕ]− (m− 2) Σ

(0)
2k+1[ϕ]⟩

= am⟨ ∂r Fp rµ+2k
+ , Σ

(2)
2k+1[ϕ] ⟩ − (m+ 2k)am⟨ Fp rµ+2k−1

+ , Σ
(2)
2k+1[ϕ]⟩

+ (m− 2)am⟨ Fp rµ+2k−1
+ , Σ

(0)
2k+1[ϕ]⟩,

whence

Uλ,2k+1 ∂ = (λ− 1) Wλ−1,2k+1 + (m− 2) Tλ−1,2k+1.

The calculations for the distribution Vλ,p are completely similar.

Example 5.1. We verify the above formula in the specific case where λ = −2k, p = 2k
and thus λ+m− 1 + pe = m− 1, for which

T−2k−1,2k =
1

r
P2k(ω),

W−2k−1,2k =
1

r
ω P2k(ω) ω,

U−2k,2k = ω P2k(ω).

A direct calculation yields

U−2k,2k ∂ = (m− 2)
1

r
P2k(ω)− (2k + 1)

1

r
ω P2k(ω) ω,

while

(λ− 1) Wλ−1,2k + (m− 2) Tλ−1,2k = − (2k + 1)
1

r
ω P2k(ω) ω + (m− 2)

1

r
P2k(ω).

A similar verification goes through in the case where λ = −2k − 1 and p = 2k + 1.
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Proposition 5.2. For λ ∈ C and p ∈ N such that λ+m− 1 + pe = 0, we have

U−m−2k+1,2k ∂ = ∂ V−m−2k+1,2k

= (m− 2) T−m−2k,2k − (m+ 2k) W−m−2k,2k

+ am
1

(2k + 2)!

1

C(k + 1)
x P2k(x) x ∆k+1 δ(x),

U−m−2k+1,2k+1 ∂ = ∂ V−m−2k+1,2k+1

= (m− 2) T−m−2k,2k+1 − (m+ 2k) W−m−2k,2k+1

+ am
1

(2k + 2)!

1

C(k + 1)
x P2k+1(x) x ∆k+1 δ(x).

Proof. In the case where p = 2k we have

⟨ U−m−2k+1,2k ∂ , ϕ ⟩ = − ⟨ U−m−2k+1,2k , ∂ ϕ ⟩

= − am ⟨ Fp r−1
+ , r Σ

(1)
2k [∂ ϕ] ⟩

= − am ⟨ Fp r−1
+ , (r ∂r + (m+ 2k)) Σ

(2)
2k [ϕ]− (m− 2) Σ

(0)
2k [ϕ] ⟩

= am ⟨ δ(r) , Σ
(2)
2k [ϕ] ⟩ − (m+ 2k) am ⟨ Fp r−1

+ , Σ
(2)
2k [ϕ] ⟩

+ (m− 2) am ⟨ Fp r−1
+ , Σ

(0)
2k [ϕ] ⟩

= am

{
Σ

(2)
2k [ϕ]

}
r=0

− (m+ 2k) ⟨ W−m−2k,2k , ϕ ⟩

+ (m− 2) ⟨ T−m−2k,2k , ϕ ⟩,

from which the formula follows in view of the result of Proposition 4.1 for l = 0.

In the case where p = 2k + 1 we have

⟨ U−m−2k+1,2k+1 ∂ , ϕ ⟩
= − ⟨ U−m−2k+1,2k+1 , ∂ ϕ ⟩

= − am ⟨ Fp r−1
+ , r Σ

(1)
2k+1 [∂ ϕ] ⟩

= − am ⟨ Fp r−1
+ , (r ∂r + (m+ 2k)) Σ

(2)
2k+1 [ϕ]− (m− 2) Σ

(0)
2k+1 [ϕ] ⟩

= am ⟨ δ(r) , Σ
(2)
2k+1 [ϕ] ⟩ − (m+ 2k) am ⟨ Fp r−1

+ , Σ
(2)
2k+1 [ϕ] ⟩

+ (m− 2) am ⟨ Fp r−1
+ , Σ

(0)
2k+1 [ϕ] ⟩

= am

{
Σ

(2)
2k+1 [ϕ]

}
r=0

− (m+ 2k) ⟨ W−m−2k,2k+1 , ϕ ⟩

+ (m− 2) ⟨ T−m−2k,2k+1 , ϕ ⟩,

from which the formula follows in view of the result of Proposition 4.1 for l = 0.

The formulae for the distributions Vλ,p are proved in a completely similar manner.

Proposition 5.3. For λ ∈ C and p ∈ N such that λ +m − 1 + pe = −s, s = 1, 2, 3, · · · ,
we have

(i) for l = 1, 2, 3, · · · ,

U−m−2k−2l+1,2k ∂ = ∂ V−m−2k−2l+1,2k

= (m− 2) T−m−2k−2l,2k − (m+ 2k + 2l) W−m−2k−2l,2k

+ am
1

(2k + 2l + 2)!

1

C(k + l + 1)
x P2k(x) x ∆k+l+1 δ(x),
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(ii) for l = 0, 1, 2, · · · ,
U−m−2k−2l,2k ∂ = ∂ V−m−2k−2l,2k

= (m− 2) T−m−2k−2l−1,2k − (m+ 2k + 2l + 1) W−m−2k−2l−1,2k,

(iii) for l = 1, 2, 3, · · · ,
U−m−2k−2l+1,2k+1 ∂ = ∂ V−m−2k−2l+1,2k+1

= (m− 2) T−m−2k−2l,2k+1 − (m+ 2k + 2l) W−m−2k−2l,2k+1

+ am
1

(2k + 2l + 2)!

1

C(k + l + 1)
x P2k+1(x) x ∆k+l+1 δ(x),

(iv) for l = 0, 1, 2, · · · ,
U−m−2k−2l,2k+1 ∂ = ∂ V−m−2k−2l,2k+1

= (m− 2) T−m−2k−2l−1,2k+1 − (m+ 2k + 2l + 1) W−m−2k−2l−1,2k+1.

Proof. We only prove the formulae for the distributions Uλ,p in the case where p = 2k,
the proofs of the other formulae running along similar lines.

We have consecutively

⟨ U−m−2k+1−s,2k ∂ , ϕ ⟩
= − ⟨ U−m−2k+1−s,2k , ∂ ϕ ⟩

= − am ⟨ Fp r−s−1
+ , r Σ

(1)
2k [∂ ϕ] ⟩

= − am ⟨ Fp r−s−1
+ , (r ∂r + (m+ 2k)) Σ

(2)
2k [ϕ]− (m− 2) Σ

(0)
2k [ϕ] ⟩

= am ⟨ −s Fp r−s−1
+ + (−1)s

1

s!
δ(s)(r) , Σ

(2)
2k [ϕ] ⟩

− (m+ 2k) am ⟨ Fp r−s−1
+ , Σ

(2)
2k [ϕ] ⟩+ (m− 2) am ⟨ Fp r−s−1

+ , Σ
(2)
2k [ϕ] ⟩

= − (s+m+ 2k) am ⟨ Fp r−s−1
+ , Σ

(2)
2k [ϕ] ⟩ + am (−1)s

1

s!
⟨ δ(s) , Σ

(2)
2k ⟩

+ am (m− 2) ⟨ Fp r−s−1
+ , Σ2k

(0) ⟩,
from which the formulae (i) and (ii) follow in view of the results of Proposition 4.1.

§6. Convolution Operators

Let k(ω), ω ∈ Sm−1 be either of the following functions: Pp(ω) (p = 1, 2, . . . ); ω Pp(ω)
and Pp(ω) ω (p = 0, 1, 2, · · · ); ω Pp(ω) ω (p = 1, 2, · · · ). Then k ∈ L2(S

m−1) and∫
Sm−1

k(ω) dS(ω) = 0.

As a consequence, the distributions

T−m−p,p = Fp
1

r
Pp(ω) = Pv

Pp(ω)

rm
,

U−m−p,p = Fp
1

r
ω Pp(ω) = Pv

ω Pp(ω)

rm
,

V−m−p,p = Fp
1

r
Pp(ω) ω = Pv

Pp(ω) ω

rm
,

W−m−p,p = Fp
1

r
ω Pp(ω) ω = Pv

ω Pp(ω) ω

rm
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are so-called principal value distributions (see [7, 9]) leading to convolution operators of the
form

K ∗ ϕ = lim
ε→

>
0

∫
Rm\B(0,ε)

K(y − x) ϕ(x) dV (x), ϕ ∈ S(Rm),

where K(x) = k(ω)
rm (see [9, Theorem VI.3.1]).

Note that for p = 0 and P0(ω) = 1 the distributions U−m,0 = V−m,0 = Pv ω
rm are nothing

else but the higher dimensional “Principal Value”-distribution studied by Delanghe in [3].
In [2] we showed that

U−m−p,p + V−m−p,p = Pv
ω Pp(ω)

rm
+ Pv

Pp(ω) ω

rm
= −2(p+ 1) Pv

Sp+1(ω)

rm
,

where Sp+1(ω) is the spherical harmonic for which

ω Pp(ω) + Pp(ω) ω = − 2(p+ 1) Sp+1(ω)

(see Section 2). This means that the R⊕R(2)
0,m-valued distributions U−m−p,p and V−m−p,p are

building blocks for the scalar valued principal value distribution Pv 1
rm Sp+1(ω) considered

in [7] and [9].
As

Sp+1(ω) = Rp+1(ω)−
1

m+ 2p
ω Pp(ω)

(see Section 2) we could also have decomposed Pv 1
rm Sp+1(ω) using the distributions

T−m−p−1,p+1 and U−m−p,p but then vector valued and R⊕R(2)
0,m-valued distributions would

get mixed up, different spherical monogenics would be involved and the symmetry in the
indices would be broken down.

The above symmetrical decomposition inspires the definition of more general, scalar val-

ued, distributions T
(h)
λ,p for λ ∈ C and p ∈ N:

T
(h)
λ,p = − 1

2p
(Uλ+1,p−1 + Vλ+1,p−1) = Fp rλ+p Sp(ω),

which in terms of a scalar valued test function ϕ respectively read:

⟨ T (h)
λ,2k , ϕ ⟩ = − am

4k
⟨ Fp rλ+m+2k−2

+ , Σ
(1)
2k−1[ϕ] + Σ

(3)
2k−1[ϕ]⟩,

and

⟨ T (h)
λ,2k+1 , ϕ ⟩ = − am

2(2k + 1)
⟨ Fp rλ+m+2k

+ , Σ
(1)
2k [ϕ] + Σ

(3)
2k [ϕ]⟩.

They include the above scalar valued principal value distribution for λ = −m− p:

T
(h)
−m−p,p = Pv

Sp(ω)

rm
.

Now as

− 2p ω Sp(ω) = ω Pp−1(ω) ω − Pp−1(ω),

we obtain that

Pv
ω Sp(ω)

rm
= − 1

2p

(
Pv

ωPp−1(ω) ω

rm
− Pv

Pp−1(ω)

rm

)
,

or

Pv
ω Sp(ω)

rm
= − 1

2p
(W−m−p+1,p−1 − T−m−p+1,p−1) .
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This means that the distributions W−m−p+1,p−1 and T−m−p+1,p−1 are building blocks for

the vector valued principal value distribution Pv
ω Sp(ω)

rm .
Note that as

ω Sp(ω) = ω Rp(ω) +
1

m+ 2p− 2
Pp−1(ω),

we also could have decomposed Pv
ω Sp(ω)

rm by means of the distributions T−m−p+1,p−1 and
U−m−p,p however showing again the non-symmetrical and non-elegant features mentioned
above.

In its turn the symmetrical decomposition inspires the definition of the more general,

vector valued, distributions U
(h)
λ,p for λ ∈ C and p ∈ N:

U
(h)
λ,p = − 1

2p
(Wλ+1,p−1 − Tλ+1,p−1) = Fp rλ+p ω Sp(ω),

which in terms of a scalar valued test function ϕ read

⟨ U (h)
λ,2k , ϕ ⟩ = − am

4k
⟨ Fp rλ+m+2k−2

+ , Σ
(2)
2k−1[ϕ]− Σ

(0)
2k−1[ϕ]⟩

and

⟨ U (h)
λ,2k+1 , ϕ ⟩ = − am

2(2k + 1)
⟨ Fp rλ+m+2k

+ , Σ
(2)
2k [ϕ] + Σ

(0)
2k [ϕ]⟩.

Amongst them is the above vector valued principal value distribution for λ = −m− p:

U
(h)
−m−p,p = Pv

ω Sp(ω)

rm
.
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[ 7 ] Horváth, J., Singular integral operators and spherical harmonics, Trans. Amer. Math. Soc., 82(1950),

52–63.
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