ON A PROBLEM OF WHITNEY"

GAN DANYAN (千丹岩)*

Abstract

In 1944 H. Whitney raised a problem: Let M be an open smooth n-manifold. Does there exist an imbedding of M into \mathbb{R}^{2n} with no limit point set? Introducing a sort of Morse number for open manifolds and using Whitney trick, the author gives a direct proof of the affirmative answer to it.

In [8] H. Whitney proved the famous harder imbedding theorem: every smooth n-dimensional manifold M can be imbedded in 2n-dimensional Euclidean space \mathbb{R}^{2n} . And he raised the following

PROBLEM: Does there exist an imbedding, for *M* open, with no limit set?

It is regarded to be solved^[6] as a corollary of a theorem of M. W. Hirsch^[2].

But J. Milnor^[5], p.120] still reminds us to prove it.

Using Morse theory and Whitney trick we will give a direct proof of it. And as a byproduct and a preparation we will obtain a necessary and sufficient condition for an open manifold to be bounded.

§ 1. Morse Function and Being Bounded

Every smooth manifold in question is assumed to be probably with boundary, and we suppose the boundary is compact except for § 4.

Let M be a connected open n-dimensional smooth manifold. Take the one-point-compactification of M, it will be denoted by $\overline{M} = M \cup \{*\}$, where * is the infinite point. Since M has countable basis, its one-point-compactification \overline{M} is metrizable, and $\{*\}$ is a closed subset and hence a G_{δ} set in \overline{M} . By Urysohn lemma^[1], there exists a continuous function $f:\overline{M} \to [0, 1]$ with $f^{-1}(0) = \partial M$ and $f^{-1}(1) = *$.

Define $\varepsilon: M \rightarrow [0, 1)$ by

$$s(x) := \frac{1}{2} \min \{f(x), 1-f(x)\}.$$

Manuscript received May 27, 1988. Revised October 20, 1988.

Department of Mathematics, Zhejiang University, Hangzhou, Zhejiang, China.

^{**} The project supported by National Natural Science Foundation of China.

Taking a smooth $\varepsilon/2$ —approximation of f on M, and then extending it to $\{*\}$ — $\{1\}$, we obtain $g: \overline{M} \rightarrow [0, 1]$. g is continuous on \overline{M} and smooth on M with $g^{-1}(0) = \partial M$ and $g^{-1}(1) = *$. By Theorem 3.1.2 of [3] we can take a smooth $\varepsilon/2$ —approximation of g over M with no degenerate critical points, and extending it to \overline{M} continuously we then obtain $h: \overline{M} \rightarrow [0, 1]$ with $h^{-1}(0) = \partial M$ and $h^{-1}(1) = *$. Since nondegenerate critical points are isolated critical points, function h has at most countably many critical points. Therefore, we have

Lemma 1. For every connected open smooth manifold M, there exists a function $f: \overline{M} \rightarrow [0, 1]$, such that

- (a) f is continuous;
- (b) f M is smooth over M;
- (c) f has no degenerate critical points and at most countably many nondegenerate critical points;
 - (d) $f^{-1}(0) = \partial M$ and $f^{-1}(1) = *$.

A function satisfying the conditions in Lemma 1 is called a Morse function on \overline{M} . The Morse number μ of M is the minimum over all Morse functions f on \overline{M} of the number of critical points of f. If $\mu(M)$ is finite, M is said to be of finite type; otherwise M is said to be of infinite type.

An open smooth n-dimensional manifold M is said to be boundable, if there exists a compact smooth n-dimensional manifold N and a smooth imbedding i: $M \hookrightarrow N$ such that $N \setminus i(M) \subset \partial N$. Such a manifold N is unique up to h-cobordism and is called a bounded manifold of M. For simplicity we regard M as a submanifold of its bounded manifold by identifying M and i(M). Thus we have $N \setminus M \subset \partial N$.

Theorem 2. A connected open smooth manifold is boundable if and only if it is of finite type.

Proof Clearly every boundable manifold is of finite type.

Let M be a connected open smooth n-dimensional manifold and let M be of finite type. Take the one-point-compactification \overline{M} of M and a Morse function f on \overline{M} with only finitely many non-degenerate critical points. Let a be a regular value of f with 0 < a < 1. Denote $M^a = f^{-1}[0, a]$ and $L^a = f^{-1}(a)$. M^a is a compact submanifold of M; L^a is an (n-1)-dimensional submanifold of M; and $\partial M^a = \partial M$ $\|L^a$. We need a lemma.

Lemma 3. For a < 1 and bigger than all critical values of f, $f^{-1}[a, 1)$ is diffeomorphic to $L^a \times [a, 1)$.

Proof For every b with a < b < 1. Theorem 3.4 of [4] implies $f^{-1}[a, b]$ is diffeomorphic to $L^a \times [a, b]$. Extending this diffeomorphism as $b \to 1$ we obtain the required diffeomorphism, written $f^{-1}[a, 1) \xrightarrow{\text{DIFF.}} L^a \times [a, 1)$.

Corollary 4. For a as assumed above $f^{-1}[a, 1]$ is homeomorphic to the cons $C(*, L^a)$ with vertex * and base L^a .

Continue the proof of Theorem 2. Using Lemma 3, we have

$$f^{-1}[a, b) \stackrel{\text{DIFF.}}{=\!=\!=\!=} L^a \times [a, b) \stackrel{\text{DIFF.}}{=\!=\!=\!=} L^a \times [a, 1) \stackrel{\text{DIFF.}}{=\!=\!=\!=} f^{-1}[a, 1).$$

Thus $f^{-1}[0, b] \stackrel{\text{DIFF.}}{=\!=\!=\!=} f^{-1}[0, 1)$. Therefore $M^b = f^{-1}[0, b]$ can be considered as the bounded manifold of $M = f^{-1}[0, 1)$, i. e. M is boundable.

§ 2. Closed Imbedding of Finite Type Manifolds

An *n*-dimensional cobordism is a triple (W, V_0, V_1) , where W is a compact *n*-dimensional smooth manifold, V_0 and V_1 are two compact boundaryless (n-1) -dimensional smooth manifolds, such that $\partial W = V_0 \coprod V_1$.

Lemma 5. Let (W, V_0, V_1) be an n-dimensional cobordism. Let i_{α} ($\alpha = 0, 1$) be a smooth imbedding $V_{\alpha} \hookrightarrow \mathbb{R}^{2n-1} \times \{\alpha\}$ provided $n \neq 2$ and a smooth imbedding $V_{\alpha} \hookrightarrow \mathbb{R}^2 \times \{0\} \times \{\alpha\}$ such that each component (topological circle) of $i_{\alpha}(V_{\alpha})$ contains no other component in its interior region, provided n = 2. Then the imbedding $i_0 \coprod i_1$ can be extended to a neat smooth imbedding $(W, V_0, V_1) \hookrightarrow (\mathbb{R}^{2n-1} \times \{0, 1], \mathbb{R}^{2n-1} \times \{0\}, \mathbb{R}^{2n-1} \times \{1\})$, which is perpendicular to $\mathbb{R}^{2n-1} \times \{0\} \coprod \mathbb{R}^{2n-1} \times \{1\}$ over $V_0 \coprod V_1$.

Proof For n=1, the lemma is trivial.

For n=2, we assume that W is connected without loss of generality. W can be considered as the result of puncturing finite holes on a connected closed surface \widehat{W} . The boundaries of the holes are circles and constitute $V_0 \perp V_1$. We assume that V_0 and V_1 are contained in discs D_0 and D_1 of \widehat{W} respectively. Using the results in section 5 of [7], we imbed the sphere, projective plane, Klein bottle and add the necessary number of handles to obtain \widehat{W} . We may get an imbedding of \widehat{W} into $\mathbf{R}^3 \times (0, 1)$ perpendicular to $\mathbf{R}^3 \times \left\{\frac{1}{3}\right\}$ and $\mathbf{R}^3 \times \left\{\frac{2}{3}\right\}$ such that the portions in $\mathbf{R}^3 \times [0, \frac{1}{3}]$ and $\mathbf{R}^3 \times \left[\frac{2}{3}, 1]$ are D_0 and D_1 respectively, and with $\partial D_0 \subset \mathbf{R}^2 \times \{0\} \times \left\{\frac{1}{3}\right\}$ and $\partial D_1 \subset \mathbf{R}^2 \times \{0\} \times \left\{\frac{2}{3}\right\}$. The restriction of this imbedding to $\widehat{W} \setminus \mathrm{Int}(D_0 \perp D_1)$ is a neat imbedding into $\mathbf{R}^3 \times \left[\frac{1}{3}, \frac{2}{3}\right]$ and perpendicular over $\partial D_0 \perp \partial D_1$. Furthermore, we can extend it over W and obtain a required imbedding. Since the domain $D_a \cap W$ ($\alpha = 0$, 1) of the extension is a punctured sphere, one of the boundary circles of which is ∂D_a and the others constitute V_a .

Now we suppose n>2. Take collars (for simplicity, we omit the symbol of smooth imbeddings) $V_0 \times [0, \delta]$ and $V_1 \times [1-\delta, 1]$ of V_0 and V_1 in W respectively, where $\delta>0$ is small enough. Map $V_0 \times [0, \delta]$ and $V_1 \times [1-\delta, 1]$ into $\mathbb{R}^{2n-1} \times [0, \delta]$

 $\delta/2$] and $\mathbf{R}^{2n-1} \times [1-\delta/2, 1]$ parameter-preservingly with respect to the parameter t for $t \in [0, \delta/2]$ and $[1-\delta/2, 1]$ respectively, into two cones in $\mathbf{R}^{2n-1} \times [\delta/2, \delta]$ and $\mathbf{R}^{2n-1} \times [1-\delta, 1-\delta/2]$ with bases the imbedding images $i_0(V_0) \times \{\delta/2\}$ in $\mathbf{R}^{2n-1} \times \{\delta/2\}$ and $i_1(V_1) \times \{1-\delta/2\}$ in $\mathbf{R}^{2n-1} \times \{1-\delta/2\}$ and vertices in $\mathbf{R}^{2n-1} \times \{\delta\}$ and $\mathbf{R}^{2n-1} \times \{1-\delta\}$ parameter-preservingly for $t \in [\delta/2, \delta]$ and $[1-\delta, 1-\delta/2]$ respectively. Then extend the map defined on $V_0 \times [0, \delta] \parallel V_1 \times [1-\delta, 1]$ to a continuous map $W \to \mathbf{R}^{2n-1} \times [0, 1]$ such that the image of $W \setminus (V_0 \times [0, \delta] \parallel V_1 \times [1-\delta, 1])$ is contained in $\mathbf{R}^{2n-1} \times (\delta, 1-\delta)$. By Theorem 6 of [9], there is a sufficiently close smooth approximation leaving fixed on $V_0 \times [0, \delta_1] \parallel V_1 \times (1-\delta_1, 1]$ for some δ_1 with $0 < \delta_1 < \delta$, which is an immersion. Then delete the selfintersections as in Theorem 5 of [8], we obtain a smooth imbedding, which leaves fixed and maps parameter-preservingly on $V_0 \times [0, \delta_1] \parallel V_1 \times (1-\delta_1, 1]$. Therefore this imbedding is neat and perpendicular over $V_0 \parallel V_1$.

Using this lemma we can prove

Threoem 6. Let M be a connected open smooth n-manifold of finite type. Then M can be imbedded in \mathbb{R}^{2n} with empty limit set.

Proof By Theorem 2, M is boundbale, and let W be the bounded manifold of M, which is compact and connected. Denote $V_0 = \partial M$ and $V_1 = \partial W \setminus \partial M$, we obtain an n-dimensional cobordism (W, V_0, V_1) . We imbed V_0 and V_1 into $\mathbf{R}^{2n-1} \times \{0\}$ and $\mathbf{R}^{2n-1} \times \{1\}$ respectively satisfying the hypotheses in Lemma 5. Lemma 5 implies that W can be imbedded smoothly into $\mathbf{R}^{2n-1} \times \{0, 1\}$, so that the imbedding is perpendicular to $\mathbf{R}^{2n-1} \times \{1\}$ over V_1 . Then pushing the hyperplane $\mathbf{R}^{2n-1} \times \{1\}$ in \mathbf{R}^{2n} along the 2n-th axis to the infinity, we obtain a smooth neat imbedding from M into $\mathbf{R}^{2n-1} \times \{0, \infty\}$. This imbedding has no limit point in \mathbf{R}^{2n} .

§ 3. Closed Imbedding of Infinfte Type Manifolds

Lemma 7. Let M be a connected open n-manifold of infinite type. Let \overline{M} be the one-point-compactification of M. Then there exists a Morse function f on \overline{M} such that f has distinct values at distinct critical points, and all critical points can be numbered: $x_1, x_2, \dots, x_k, \dots$, so that

$$f(x_1) < f(x_2) < \cdots < f(x_k) < \cdots > 1.$$

Proof Since the critical points of a Morse function on \overline{M} are isolated critical and countably many, and have no limit point in M, we see that the critical values of a Morse functon constitute a sequence converging to 1, and each critical value corresponds to only finite many critical points in M.

Take a Morse function on M. By means of the method in Lemma 2.8 of [4], we can modify it slightly and obtain a new Morse function with the same critical

points such that each critical value corresponds to only one critical point. Denote it by f. Then we can label all critical points $\{x_k\}$ according to the order of their critical values, so $f(x_1) < f(x_2) < \cdots < f(x_k) < \cdots > 1$.

As a corollary, we have

Lemma 8. Let M be a connected open smooth n-manifold of infinite type. Then M can be expressed as a composition of countably many cobordisms $c_1, c_2, \dots, c_k, \dots$:

$$M = c_1 c_2 \cdots c_k \cdots$$

where each ck has only one critical point.

Proof Take the Morse function f in Lemma 7. Then take $\{a_k\}$ such that $a_0 = 0$; $f(x_k) < a_k < f(x_{k+1})$, for $k = 1, 2, \dots$. Set $W_k = f^{-1}[a_{k-1}, a_k]$, $V_k = f^{-1}(a_k)$, $c_k = (W_k, V_{k-1}, V_k)$, $k = 1, 2, \dots$. Similarly to § 4 of [4] we can then prove Lemma 8.

Theorem 9. Let M be a connected open smooth n-manifold of infinite type. Then M is imbeddable in \mathbb{R}^{2n} with empty limit set.

Proof Take c_k , $k=1, 2, \cdots$ in Lemma 8. For each $k \ge 0$, choose a smooth imbedding $V_k \hookrightarrow \mathbb{R}^{2n-1} \times \{k\}$ satisfying the hypotheses in Lemma 5. By Lemma 5 then take a smooth imbedding j_k : $c_k = (W_k, V_{k-1}, V_k) \hookrightarrow (\mathbb{R}^{2n-1} \times [k-1, k], \mathbb{R}^{2n-1} \times \{k-1\}, \mathbb{R}^{2n-1} \times \{k\})$ which is perpendicular to $\mathbb{R}^{2n-1} \times \{k-1\}$ and $\mathbb{R}^{2n-1} \times \{k\}$ on V_{k-1} and V_k respectively. Define

$$j \colon M = c_1 c_2 \cdots c_k \cdots \to \mathbf{R}^{2n}$$

$$j \mid c_k = j_k, \ k = 1, 2, \cdots$$

Then j is a smooth imbedding with no limit ponits.

§ 4. The Case of Noncompact Boundary

Let M be a connected open smooth n-manifold with noncompact boundary ∂M . Doubling M we obtain an open manifold without boundary. The preceding results imply that the doubled manifold can be imbedded into \mathbb{R}^{2n} with no limit points, the restriction of this imbedding to M is desired.

References

- [1] Dugundji, J., Topology, Allyn & Bacon, Inc., Boston, 1966.
- [2] Hirsch, M., On imbedding differentiable manifolds in Euclidean space, Annals Math., 73 (1961), 566-571.
- [3] Hirsch, M., Differential Topology, Springer-Verlag, 1976.
- [4] Milnor, J., Lectures on the h-cobordism theorem, Princeton Univ. Press, 1965.
- [5] Milnor, J., & Stasheff, J., Characteristic classes, Princeton Univ. Press, 1974.
- [6] Narasimhan, R. Analysis on real and complex manifolds, North-Holland Publishing Company, 1968.
- [7] Whitney, H., On the topology of differentiable manifolds, in Lectures in Topology, Univ. of Michigan Press, 1941, 101-141.
- [8] Whitney, H., The selfintersections of smarth n-manifold in 2n-space, Ann. Math., 45 (1944), 220-246.
- [9] Whitney, H., The singularities of a smooth n-manifold in (2n-1)-space, Ann. Math., 45 (1944), 247-293.