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Abstract

The author considers the life-span of classical solutions to Cauchy problem for general first

order quasilinear strictly hyperbolic systems in two independent variables with “slow” decay
initial data. By constructing an example, first it is illustrated that the classical solution to this
kind of Cauchy problem may blow up in a finite time, even if the system is weakly linearly

degenerate. Then some lower bounds of the life-span of classical solutions are given in the case
that the system is weakly linearly degenerate. These estimates imply that, when the system is
weakly linearly degenerate, the classical solution exists almost globally in time. Finally, it is
proved that Theorems 1.1–1.3 in [2] are still valid for this kind of initial data.
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§1. Introduction

Consider the following quasilinear system

∂u

∂t
+A(u)

∂u

∂x
= 0, (1.1)

where u = (u1, · · · , un)T is the unknown vector function of (t, x) and A(u) = (aij(u)) is an
n× n matrix with suitably smooth elements aij(u) (i, j = 1, · · · , n).

Suppose that the system (1.1) is strictly hyperbolic in a neighbourhood of u = 0, namely,
for any given u in this domain, A(u) has n distinct real eigenvalues λ1(u), λ2(u), · · · , λn(u)
such that

λ1(u) < λ2(u) < · · · < λn(u). (1.2)

For i = 1, · · · , n, let li(u) = (li1(u), · · · , lin(u)) (resp. ri(u) = (ri1(u), · · · , rin(u))T ) be a
left (resp. right) eigenvector corresponding to λi(u):

li(u)A(u) = λi(u)li(u) (resp. A(u)ri(u) = λi(u)ri(u)). (1.3)
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We have

det |lij(u)| ̸= 0 (resp. det |rij(u)| ̸= 0). (1.4)

All λi(u), lij(u) and rij(u) (i, j = 1, · · · , n) have the same regularity as aij(u) (i, j =
1, · · · , n).

Without loss of generality, we may suppose that

li (u) rj (u) ≡ δij (i, j = 1, · · · , n), (1.5)

rTi (u) ri (u) ≡ 1 (i = 1, · · · , n), (1.6)

where δij stands for the Kronecker’s symbol.
For the following initial data

t = 0 : u = φ(x), (1.7)

where φ(x) is a “small” C1 vector function of x with certain decay properties as |x| → +∞,
we shall investigate the life-span and the breakdown of C1 solution to the Cauchy problem
(1.1) and (1.7).

In the case that there exists a constant µ > 0 such that

θ
△
= sup

x∈IIR

{
(1 + |x|)1+µ

(|φ (x) |+ |φ′ (x) |)
}
<∞, (1.8)

Li, Zhou and Kong presented a complete result in [1] for the global existence and the
blow-up phenomenon of C1 solution u = u(t, x) to the Cauchy problem (1.1) and (1.7).
Recently, in [2] Li and Kong gave an asymptotic behaviour of the life-span of C1 solution
as an improvement of Theorem 1.2 in [1] and proved that the singularity is produced by
the envelope of characteristics of the same family. The results given in [1,2] were obtained
under the assumption that µ > 0. It is natural to propose the following question: what will
happen when µ = 0? This paper is devoted to the study of this problem.

Precisely speaking, in this paper we consider the following initial data

t = 0 : u = εψ(x), (1.9)

where ε > 0 is a small parameter and ψ (x) is a C1 vector function satisfying

sup
x∈IIR

{(1 + |x|) (|ψ (x) |+ |ψ′ (x) |)} <∞. (1.10)

By constructing an example, we first illustrate that the classical solution to the Cauchy
problem (1.1) and (1.9) may blow up in a finite time, even if the system (1.1) is weakly
linearly degenerate and ε > 0 is small enough. That is to say, Theorem 1.1 in [1], the result
on the global existence of classical solutions, might be false in the present situation. This
shows that the condition µ > 0 is essential and sharp for Theorem 1.1 in [1]. We further
give some lower bounds of the life-span of classical solutions in the case that the system is
weakly linearly degenerate. On the other hand, we will prove that Theorems 1.1–1.3 in [2],
the results on the breakdown of classical solutions, are still valid for this kind of initial data,
i.e., the initial data (1.9) with (1.10).

For the completeness of statement, we first recall the concepts of the weak linear degen-
eracy and the normalized coordinates (see [3]).

The i-th characteristic λi (u) is weakly linearly degenerate, if, along the i-th characteristic
trajectory u = u(i) (s) passing through u = 0, defined by{

du
ds = ri (u) ,
s = 0 : u = 0,

(1.11)

we have

∇λi (u) ri (u) ≡ 0, ∀ |u| small,
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namely,

λi

(
u(i) (s)

)
≡ λi (0) , ∀ |s| small. (1.12)

If all characteristics are weakly linearly degenerate, then the system (1.1) is called to be
weakly linearly degenerate.

Suppose that A (u) ∈ Ck, where k is an integer ≥ 1. By Lemma 2.5 in [3], there exists
an invertible Ck+1 transformation u = u (ũ) (u (0) = 0) such that in ũ-space, for each
i = 1, · · · , n, the i-th characteristic trajectory passing through ũ = 0 coincides with the
ũi-axis at least for |ũi| small, namely,

r̃i (ũiei) ≡ ei, ∀ |ũi| small (i = 1, · · · , n) , (1.13)

where

ei = (0, · · · , 0,
(i)

1 , 0, · · · , 0)T . (1.14)

Such a transformation is called the normalized transformation and the corresponding un-
known variables ũ = (ũ1, · · · , ũn) are called the normalized variables or normalized coor-
dinates.

As in [2], we can always find suitable normalized coordinates ũ such that

∂u

∂ũ
(0) = R(0), (1.15)

where R(u) is the matrix composed by the right eigenvectors ri(u) (i = 1, · · · , n). Hence,
noting (1.5) we have

∂ũ

∂u
(0) = L(0), (1.16)

where L(u) is the matrix composed by the left eigenvectors li(u) (i = 1, · · · , n).
The main results in this paper are given in Theorems 1.1–1.5.
Theorem 1.1. Suppose that A (u) ∈ C2 and (1.2) holds in a neighbourhood of u = 0.

Suppose furthermore that ψ (x) is a C1 vector function satisfying (1.10). Suppose finally that
the system (1.1) is weakly linearly degenerate. Then there exists ε0 > 0 so small that for any
fixed ε ∈ (0, ε0], there exists a positive constant κ independent of ε such that the life-span

T̃ (ε) of the classical solution u = u(t, x) to the Cauchy problem (1.1) and (1.9) satisfies

T̃ (ε) ≥ exp
(
κε−1

)
. (1.17)

Definition 1.1. If there exists a positive constant κ independent of ε such that the life-

span T̃ (ε) satisfies (1.17), then the classical solution u = u(t, x) is called an almost global
solution.

Theorem 1.2. Under the hypotheses of Theorem 1.1, suppose furthermore that ψ (x)
satisfies that there exists a constant ν ≥ 1 such that

sup
x∈IIR

{
(1 + |x|)1+ν |ψ′ (x) |

}
<∞. (1.18)

Then there exists ε0 > 0 so small that for any fixed ε ∈ (0, ε0], there exists a positive constant

κ̃ independent of ε such that the life-span T̃ (ε) of the classical solution u = u(t, x) to the
Cauchy problem (1.1) and (1.9) satisfies

T̃ (ε) ≥ exp
(
κ̃ε−2

)
. (1.19)

Remark 1.1. In Section 2 we will show that the estimate (1.19) is sharp (see Theorem
2.2). However, it is still open whether the estimate (1.17) is sharp or not.

When the system (1.1) is not weakly linearly degenerate, there exists a nonempty set
J ⊆ {1, 2, · · · , n} such that λi (u) is not weakly linearly degenerate if and only if i ∈ J .
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Noting (1.12), we see that, for any fixed i ∈ J , either there exists an integer αi ≥ 0 such
that

dlλi(u
(i)(s))

dsl

∣∣∣
s=0

= 0 (l = 1, · · · , αi) but
d

αi+1

λi(u
(i)(s))

dsαi+1

∣∣∣
s=0

̸= 0 (1.20)

or

dlλi(u
(i)(s))

dsl

∣∣∣
s=0

= 0 (l = 1, 2, · · · ), (1.21)

where u = u(i) (s) is defined by (1.11). In the case that (1.21) holds, we define αi = +∞.
Theorem 1.3. Suppose that (1.2) holds and A (u) is suitably smooth in a neighbourhood

of u = 0. Suppose furthermore that ψ (x) is a C1 vector function satisfying (1.10). Suppose
finally that the system (1.1) is not weakly linearly degenerate and

α = min {αi | i ∈ J} <∞, (1.22)

where αi is defined by (1.20)–(1.21). Let

J1 = {i | i ∈ J, αi = α} . (1.23)

If there exists i0 ∈ J1 such that

li0 (0)ψ (x) ̸≡ 0, (1.24)

where li0 (u) stands for the i0-th left eigenvector, then there exists ε0 > 0 so small that for
any fixed ε ∈ (0, ε0] the first order derivatives of the C1 solution u = u (t, x) to the Cauchy

problem (1.1) and (1.9) must blow up in a finite time and the life-span T̃ (ε) satisfies

lim
ε→0

(
εα+1T̃ (ε)

)
=M0, (1.25)

where

M0 =
(
max
i∈J1

sup
x∈IIR

{
− 1

α!

dα+1λi
(
u(i)(s)

)
dsα+1

∣∣∣
s=0

[li(0)ψ(x)]
αli(0)ψ

′(x)
})−1

, (1.26)

in which u = u(i)(s) is defined by (1.11).
Theorem 1.4. Under the assumptions of Theorem 1.3, on the existence domain 0 ≤ t <

T̃ (ε) of the C1 solution u = u(t, x) to the Cauchy problem (1.1) and (1.9), the solution itself

remains bounded, but the first order derivatives of u = u(t, x) tend to the infinity as t↗ T̃ (ε).
Moreover, the singularity occurs at the starting point of the envelope of characteristics of
the same family, i.e., the point with minimum t-value on the envelope.

Theorem 1.5. Under the assumptions of Theorem 1.4, for each i /∈ J1, the family of

i-th characteristics never forms any envelope on the domain 0 ≤ t ≤ T̃ (ε). In particular,
each family of weakly linearly degenerate characteristics and then each family of linearly

degenerate characteristics never form any envelope on 0 ≤ t ≤ T̃ (ε).
Remark 1.2. Theorems 1.3–1.5 generalize Theorems 1.1–1.3 in [2] respectively to the

case µ = 0.
Remark 1.3. Theorems 1.1–1.5 still hold if

φ(x) = εψ(x) + ψ1(x, ε), (1.27)

in which

ψ1(x, ε),
∂ψ1(x, ε)

∂x
= O(ε2).

The arrangement of this paper is as follows: In Section 2 we will construct an example
to illustrate the necessity and sharpness of the condition µ > 0 for Theorem 1.1 in [1].
Theorems 1.1 and 1.2 will be proved in Section 3 and Section 4 respectively; Theorem 1.3
will be shown in Section 5 and Theorems 1.4–1.5 in Section 6.
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§2. An Example

Consider the following Cauchy problem{
rt + (1 + rs)rx = 0,
st = 0,

(2.1)

t = 0 : r = εr0(x), s = εs0(x), (2.2)

where r0(x) and s0(x) are C
1 functions with bounded C1 norm, ε > 0 is a small parameter.

Obviously, in a neighbourhood of (r, s) = (0, 0), (2.1) is a strictly hyperbolic system with
two distinct real eigenvalues

λ1(r, s)
△
= 1 + rs > λ2(r, s)

△
= 0. (2.3)

On the other hand, it is easy to check that the system (2.1) is weakly linearly degenerate.
Therefore, by Theorem 1.1 in [1] we have

Theorem 2.1. Under the hypotheses mentioned above, if there exists a constant µ > 0
such that

sup
x∈IIR

{
(1 + |x|)1+µ (|r0(x)|+ |s0(x)|+ |r′0(x)|+ |s′0(x)|)

}
<∞, (2.4)

then there exists ε0 > 0 so small that for any given ε ∈ [0, ε0], the Cauchy problem (2.1)–(2.2)
admits a unique global C1 solution u = u(t, x) for all t ∈ IIR.

Now we consider the following initial data

t = 0 : r = εr0(x)
△
= ε(1 + x2)−1, s = εs0(x), (2.5)

where s0(x) is a C
1 function satisfying

(i) s0(x) ≥ 0, ∀ x ∈ IIR;
(ii) s′0(x) ≤ 0, ∀ x ≥ 0;
(iii) s′0(x) ≥ 0, ∀ x ≤ 0;
(iv) ||s0(x)||C1(IIR) ≤M (where M is a positive constant);

(v) s0(x) =

{
1

1+x , as x ≥ 1,
0, as x ≤ −1.

By (2.4), we see that the initial data (2.5) corresponds to the case that µ = 0 in (2.4).
However the conclusion of Theorem 2.1 is false because we have

Theorem 2.2. There exists ε0 > 0 so small that for any given ε ∈ (0, ε0], the first order
derivatives of the C1 solution to the Cauchy problem (2.1) and (2.5) must blow up in a finite
time and there exist two positive constants a and b independent of ε such that the life-span

T̃ (ε) satisfies

exp
(
aε−2

)
≤ T̃ (ε) ≤ exp

(
bε−2

)
. (2.6)

Remark 2.1. (2.6) shows that the estimate (1.19) is sharp.
Proof of Theorem 2.2. Noting the second equation system in (2.1), we have

s(t, x) = εs0(x), ∀ (t, x) ∈ IIR+ × IIR. (2.7)

Substituting it into the first equation in (2.1), we observe that the Cauchy problem (2.1)
and (2.5) simply reduces to the following Cauchy problem for a scalar equation

rt + (1 + εs0(x)r) rx = 0, (2.8)

t = 0 : r = εr0(x) = ε(1 + x2)−1, (2.9)

where s0(x) satisfies the properties (i)-(v). Therefore, in what follows it suffices to consider
the Cauchy problem (2.8)–(2.9).
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On the existence domain of the C1 solution to the Cauchy problem (2.8)–(2.9), let x =
x(t, β) be the characteristic passing through a point (0, β) on the x-axis and set

λ(t, x) = 1 + εs0(x)r(t, x). (2.10)

By the definition of characteristic curve, x = x(t, β) satisfies{
dx
dt = λ(t, x),
t = 0 : x = β,

(2.11)

on which

r = εr0(β) = ε(1 + β2)−1. (2.12)

Hence, noting (2.10) and using (2.12), we may rewrite (2.11) as{
dx
dt = 1 + ε2s0(x)(1 + β2)−1,
t = 0 : x = β.

(2.13)

It follows from (2.12) that along the characteristic x = x(t, β)

rx(t, x(t, β)) = −2εβ
(
1 + β2

)−2
/xβ(t, β). (2.14)

On the other hand, we obtain from (2.13) that

xβ(t, β) = A(t, β) exp△(t, β), (2.15)

where

△(t, β) =
ε2

1 + β2

∫ t

0

s′0(x(τ, β))dτ, (2.16)

A(t, β) = 1− 2ε2β

(1 + β2)2

∫ t

0

s0(x(τ, β)) exp (−△ (τ, β)) dτ. (2.17)

Now we estimate △(t, β).
Let ε0 be so small that

ε20M ≤ 1

2
, (2.18)

where M is given in the property (iv). Hence, noting (2.10), (2.12) and the property (i), on
the existence domain of the C1 solution to the Cauchy problem (2.8)–(2.9) we have

1 ≤ λ(t, x) ≤ 3

2
. (2.19)

Then noting (2.19) and the first equation in (2.13), we obtain from (2.16) that

△(t, β) =
ε2

1 + β2

∫ t

0

s′0(x(τ, β))
1

λ(τ, x(τ, β))
λ(τ, x(τ, β))dτ

=
ε2

1 + β2

∫ x(t,β)

β

s′0(x)
1

1 + ε2s0(x)(1 + β2)−1
dx. (2.20)

Noting (2.19) again and using the properties (iv)–(v), we get

|△(t, β)| ≤ ε2
∫ ∞

−∞
|s′0(x)| dx ≤ ε2

{∫ 1

−1

|s′0(x)| dx+

∫ ∞

1

1

(1 + x)2
dx
}

≤ ε2
{
2M +

1

2

}
, ∀ t ≥ 0, ∀ β ∈ IIR. (2.21)

Thus we obtain

|△(t, β)| ≤ C1ε
2, ∀ t ≥ 0, ∀ β ∈ IIR, (2.22)
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where C1 is a positive constant independent of ε.

Moreover, by (2.11) and (2.19) we have

β + t ≤ x(t, β) ≤ β +
3

2
t, ∀ t ≥ 0, ∀ β ∈ IIR. (2.23)

We next estimate A(t, β).

For any β ∈ IIR, noting (2.22), the property (i), (2.19), the first equation in (2.13) and
(2.23), we obtain from (2.17) that

A(t, β) ≥ 1− 2ε2|β|
(1 + β2)2

exp
(
C1ε

2
) ∫ t

0

s0(x(τ, β))dτ

= 1− 2ε2|β|
(1 + β2)2

exp
(
C1ε

2
) ∫ t

0

s0(x(τ, β))
λ(τ, x(τ, β))

λ(τ, x(τ, β))
dτ

= 1− 2ε2|β|
(1 + β2)2

exp
(
C1ε

2
) ∫ x(t,β)

β

s0(x)
1

1 + ε2s0(x)(1 + β2)−1
dx

≥ 1− 2ε2|β|
(1 + β2)2

exp
(
C1ε

2
) ∫ |β|+ 3

2 t

−1

s0(x)dx. (2.24)

Case 1. |β|+ 3
2 t ≤ 1.

By the properties (iv)–(v), it follows from (2.24) that

A(t, β) ≥ 1− 2ε2|β|
(1 + β2)2

exp
(
C1ε

2
) ∫ 1

−1

s0(x)dx

≥ 1− 4Mε2 exp
(
C1ε

2
)
≥ 1− 4Mε20 exp

(
C1ε

2
0

)
≥ 1

2
, ∀ t ∈ IIR+, ∀ β ∈

{
β ∈ IIR

∣∣∣∣ |β|+ 3

2
t ≤ 1

}
, (2.25)

provided that ε0 > 0 is suitably small.

Case 2. |β|+ 3
2 t > 1.

Noting the properties (iv)–(v), we obtain from (2.24) that

A(t, β) ≥ 1− 2ε2|β|
(1 + β2)2

exp
(
C1ε

2
){∫ 1

−1

s0(x)dx+

∫ |β|+ 3
2 t

1

1

1 + x
dx
}

≥ 3

4
− C2

|β|
(1 + β2)2

ε2
{
ln

(
1 + |β|+ 3

2
t

)
− ln 2

}
≥ 3

4
− C2

|β|
(1 + β2)2

ε2
{
ln

(
2

(
|β|+ 3

2
t

))
− ln 2

}
=

3

4
− C2

|β|
(1 + β2)2

ε2 ln

(
|β|+ 3

2
t

)
≥ 3

4
− C2

ε2

1 + β2
ln

(
|β|+ 3

2
t

)
, (2.26)

provided that ε0 > 0 is suitably small; here and hereafter Cj (j = 2, 3, · · · ) stand for positive
constants independent of t, β and ε. It is easy to see that when ε0 > 0 is suitably small, for
any fixed ε ∈ (0, ε0] we have

1

3
exp

( 1

4C2ε2

)
≤ 2

3

{
exp

[1 + β2

4C2ε2

]
− |β|

}
, ∀ β ∈ IIR.
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Choosing C3 to satisfy

exp
(
C3ε

−2
)
≤ 1

3
exp

( 1

4C2ε2

)
,

we have

C2ε
2

1 + β2
ln
(
|β|+ 3

2
t
)
≤ 1

4
, ∀ t ∈

[
0, exp

(
C3ε

−2
)]
.

Then it follows from (2.26) that

A(t, β) ≥ 1

2
, ∀ t ∈

[
0, exp

(
C3ε

−2
)]
, ∀ β ∈

{
β ∈ IIR

∣∣∣ |β|+ 3

2
t > 1

}
. (2.27)

Thus, combining (2.25) and (2.27) gives

A(t, β) ≥ 1

2
, ∀ t ∈

[
0, exp

(
C3ε

−2
)]
, ∀ β ∈ IIR. (2.28)

Therefore, noting (2.15), (2.22) and (2.28), we obtain from (2.14) that

|rx(t, β)| ≤ C4ε, ∀ t ∈
[
0, exp

(
C3ε

−2
)]
, ∀ β ∈ IIR. (2.29)

(2.29) implies that

T̃ (ε) ≥ exp
(
aε−2

)
, (2.30)

where a = C3 is a positive constant independent of ε.
Similarly, for any given β ≥ 1 we have

A(t, β) ≤ 1− 2ε2β

(1 + β2)2
exp

(
−C1ε

2
) ∫ t

0

s0(x(τ, β))dτ

= 1− 2ε2β

(1 + β2)2
exp

(
−C1ε

2
) ∫ x(t,β)

β

1

1 + x

1

1 + ε2s0(x)(1 + β2)−1
dx

≤ 1− 4ε2β

3(1 + β2)2
exp

(
−C1ε

2
) ∫ x(t,β)

β

1

1 + x
dx

= 1− 4ε2β

3(1 + β2)2
exp

(
−C1ε

2
)
[ln(1 + x(t, β))− ln(1 + β)] , ∀ t ≥ 0.

(2.31)

Particularly, in what follows we consider the case that β = 1.
Noting (2.23), from (2.31) we get

A(t, 1) ≤ 1− 1

3
ε2 exp

(
−C1ε

2
)
[ln(2 + t)− ln 2] , ∀ t ≥ 0. (2.32)

Then it follows from (2.32) that

A(t0, 1) ≤ 0, (2.33)

where

t0 = 2 exp
{ 3

ε2
exp

(
C1ε

2
)}

− 2. (2.34)

Noting (2.15), (2.22) and (2.33), from (2.14) we see that the C1 solution to the Cauchy
problem (2.8)-(2.9) must blow up at t0 at the latest. This implies that

T̃ (ε) ≤ t0 ≤ exp
(
bε−2

)
, (2.35)

where b is a positive constant independent of ε.
The combination of (2.30) and (2.35) gives (2.6). The proof is completed.
Remark 2.2. Theorem 2.2 makes it clear that the condition that µ > 0 is essential and

sharp for Theorem 1.1 in [1].
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§3. Almost Global Existence of C1

Solution (I)—Proof of Theorem 1.1

Theorem 1.1 will be proved in a way similar to the proof of Theorem 1.1 in [1]. In what
follows we only point out the essentially different part in the proof and ε0 > 0 is always
supposed to be suitably small.

As in [1], we may suppose that

0 < λ1 (0) < λ2 (0) < · · · < λn (0) . (3.1)

By the existence and uniqueness of local C1 solution to Cauchy problem for quasilinear
hyperbolic systems (see Chapter 1 in [4]), in order to prove Theorem 1.1 it suffices to establish
a uniform a priori estimate on the C0 norm of the C1 solution u = u(t, x) to the Cauchy
problem (1.1) and (1.9) on any fixed domain 0 ≤ t ≤ T with

0 < T ≤ exp
(
κε−1

)
, (3.2)

where κ is a positive constant independent of ε and will be determined later.
By (3.1), there exist positive constants δ and δ0 so small that

λi+1 (u)− λi (v) ≥ 4δ0, ∀ |u|, |v| ≤ δ (i = 1, · · · , n− 1) , (3.3)

|λi (u)− λi (v) | ≤
δ0
2
, ∀ |u|, |v| ≤ δ (i = 1, · · · , n) . (3.4)

For the time being it is supposed that on any given existence domain 0 ≤ t ≤ T with
(3.2) of the C1 solution u = u (t, x) we have

|u (t, x) | ≤ δ. (3.5)

At the end of the proof of Lemma 3.3, we shall explain that this hypothesis is reasonable.
Thus, in order to prove Theorem 1.1 we only need to establish a uniform a priori estimate
on the C0 norm of v and w (see (2.3)–(2.4) in [1] for the definitions of v and w) on any given
existence domain 0 ≤ t ≤ T of the C1 solution u = u (t, x), where T satisfies (3.2).

By (3.1) and (3.5), on the existence domain 0 ≤ t ≤ T (where T satisfies (3.2)) of the C1

solution u = u (t, x) we have

0 < λ1 (u) < λ2 (u) < · · · < λn (u) , (3.6)

provided that δ is suitably small.
For any fixed T > 0, let

DT
− = {(t, x) | 0 ≤ t ≤ T, x ≤ −t} , (3.7)

DT
0 = {(t, x) | 0 ≤ t ≤ T, −t ≤ x ≤ (λ1 (0)− δ0) t} , (3.8)

DT
+ = {(t, x) | 0 ≤ t ≤ T, x ≥ (λn (0) + δ0) t} , (3.9)

DT = {(t, x) | 0 ≤ t ≤ T, (λ1 (0)− δ0) t ≤ x ≤ (λn (0) + δ0) t} (3.10)

and for i = 1, · · · , n,
DT

i = {(t, x) | 0 ≤ t ≤ T,

− [δ0 + η (λi (0)− λ1 (0))] t ≤ x− λi (0) t ≤ [δ0 + η (λn (0)− λi (0))] t} ,
(3.11)

where η > 0 is suitably small.
Noting that η > 0 is small, we observe from (3.3) that

DT
i ∩DT

j = ∅, ∀ i ̸= j, (3.12)
n∪

i=1

DT
i ⊂ DT . (3.13)
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Let

V
(
DT

±
)
= max

i=1,··· ,n
|| (1 + |x|) vi (t, x) ||L∞(DT

±)
, (3.14)

V
(
DT

0

)
= max

i=1,··· ,n
|| (1 + t) vi (t, x) ||L∞(DT

0 )
, (3.15)

W
(
DT

±
)
= max

i=1,··· ,n
|| (1 + |x|)wi (t, x) ||L∞(DT

±)
, (3.16)

W
(
DT

0

)
= max

i=1,··· ,n
|| (1 + t)wi (t, x) ||L∞(DT

0 )
, (3.17)

W c
∞ (T ) = max

i=1,··· ,n
sup

(t,x)∈DT \DT
i

(1 + |x− λi (0) t|) |wi (t, x) |, (3.18)

W1 (T ) = max
i=1,··· ,n

sup
0≤t≤T

∫
DT

i (t)

|wi (t, x) |dx, (3.19)

V∞ (T ) = max
i=1,··· ,n

sup
→0≤t≤T

x∈IIR

|vi (t, x) |, (3.20)

where DT
i (t) (t ≥ 0) denotes the t-section of DT

i :

DT
i (t) =

{
(τ, x) | τ = t, (τ, x) ∈DT

i

}
. (3.21)

Obviously, V∞ (T ) is equivalent to

U∞ (T ) = max
i=1,··· ,n

sup
→0≤t≤T

x∈IIR

|ui (t, x) |. (3.22)

It is easy to see that Lemma 3.1 in [1] is still valid, namely,

Lemma 3.1. For each i = 1, · · · , n, on the domain DT \DT
i we have

ct ≤ |x− λi (0) t| ≤ Ct, cx ≤ |x− λi (0) t| ≤ Cx, (3.23)

where c and C are positive constants independent of (t, x) and T .
In the present situation, similarly to Lemma 3.2 in [1] and Appendix in [2], we have
Lemma 3.2. Suppose that (3.1) holds and A (u) ∈ C2 in a neighbourhood of u = 0.

Suppose furthermore that ψ (x) is a C1 vector function satisfying (1.10). Then there exists
ε0 > 0 so small that for any fixed ε ∈ (0, ε0], on any given existence domain 0 ≤ t ≤ T of the
C1 solution u = u (t, x) to the Cauchy problem (1.1) and (1.9), there exist positive constants
k1 and k2 independent of ε and T such that the following uniform a priori estimates hold:

V
(
DT

±
)
, V

(
DT

0

)
≤ k1ε, (3.24)

W
(
DT

±
)
, W

(
DT

0

)
≤ k2ε. (3.25)

Remark 3.1. In Lemma 3.2 we neither require that system must be weakly linearly
degenerate nor demand that T satisfies (3.2).

Proof of Lemma 3.2. For the time being it is supposed that on any given existence
domain {0 ≤ t ≤ T}\DT of the C1 solution u = u(t, x) we have

|u(t, x)| ≤ δ. (3.26)

Completely repeating the proof of Lemma 3.2 in [1] and the discussion carried out in
Appendix in [2], we can easily prove that there exist two positive constants k1 and k2
independent of ε and T such that (3.24) and (3.25) hold.

Finally, taking ε0 > 0 suitably small, we obtain from (3.24) that

sup
(t,x)∈DT

−∪DT
0 ∪DT

+

|u(t, x)| ≤ C0k1ε ≤ C0k1ε0 ≤ 1

2
δ, (3.27)
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where C0 is a positive constant independent of ε and T . This implies the validity of the
hypothesis (3.26). The proof of Lemma 3.2 is finished.

Lemma 3.3. Suppose that (3.1) holds and, in a neighbourhood of u = 0, A (u) ∈ C2 and
(1.5)–(1.6) hold. Suppose furthermore that ψ (x) is a C1 vector function satisfying (1.10).
Then there exists ε0 > 0 so small that for any fixed ε ∈ (0, ε0], on any given existence
domain 0 ≤ t ≤ T of the C1 solution u = u (t, x) to the Cauchy problem (1.1) and (1.9),
there exist positive constants ki (i = 3, 4, 5) independent of ε and T such that the following
uniform a priori estimates hold:

W c
∞ (T ) ≤ k3ε, (3.28)

W1 (T ) ≤ k4h, (3.29)

V∞ (T ) , U∞ (T ) ≤ k5h, (3.30)

where h is a small positive constant independent of ε, and T satisfies

T ≤ exp
(
hε−1

)
. (3.31)

Remark 3.2. In Lemma 3.3 we do not yet require that system must be weakly linearly
degenerate.

Proof of Lemma 3.3. This lemma will be proved in a way similar to the proof of
Lemma 3.3 in [1]. In what follows we only point out the essentially different part in the
proof and ε0 > 0 is always supposed to be suitably small.

As in the proof of Lemma 3.3 in [1], we first estimate W̃1 (T ) (see (3.47) in [1]).
In the present situation, instead of (3.54) in [1] we have

|qi (t, x̃i (t, y))|t=t(y) ≤
∣∣∣∣wi

(
y

λn (0) + δ0
, y

)∣∣∣∣
+ C1

{
(W c

∞ (T ))
2
∫ t(y)

y
λn(0)+δ0

(1 + s)
−1

(1 + |x̃i (s, y) |)−1 ∂x̃i (s, y)

∂y
ds

+W c
∞ (T )

n∑
k=1

∫
(s,x̃i(s,y))∈DT

k

(1 + s)
−1 |wk (s, x̃i (s, y)) |

∂x̃i (s, y)

∂y
ds
}
,

(3.32)

henceforth Cj (j = 1, 2, · · · ) will denote positive constants independent of ε and T . Then,
similarly to (3.57) in [1], using (3.25) we obtain from (3.32) that∫ y2

0

|qi (t, x̃i (t, y)) |t=t(y)dy ≤ C2

{
k2ε log(1 + C3T ) + (W c

∞(T ))
2
log(1 + T )

× log(1 + C3T ) + W c
∞(T )W1(T ) log(1 + T )} .

Thus, similar to (3.58) in [1], we get

W̃1(T ) ≤ C4

{
k2ε log(1 + T ) + (W c

∞(T ) log(1 + T ))
2
+W c

∞(T )W1(T ) log(1 + T )
}
. (3.33)

On the other hand, similarly to (3.62) in [1], we have

W1(T ) ≤ C5

{
k2ε log(1 + T ) + (W c

∞(T ) log(1 + T ))
2
+W c

∞(T )W1(T ) log(1 + T )
}
. (3.34)

We next estimate W c
∞ (T ).

In the present situation, instead of (3.68) in [1] we have

|wi (t0, y) | ≤ k2ε (1 + y)
−1 ≤ C6k2ε (1 + t0)

−1 ≤ C7k2ε (1 + t)
−1
, (3.35)

and then instead of (3.69) in [1] we have

W c
∞ (T ) ≤ C8

{
k2ε+ (W c

∞ (T ))
2
log(1 + T ) +W c

∞ (T ) W̃1 (T )
}
. (3.36)
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If T satisfies (3.31) (in which h will be determined later), then it follows from (3.33)–(3.34)
and (3.36) that

W̃1(T ), W1(T ) ≤ C9

{
k2h+

(
hε−1W c

∞(T )
)2

+ hε−1W c
∞(T )W1(T )

}
,

(3.37)

W c
∞(T ) ≤ C10

{
k2ε+ hε−1 (W c

∞(T ))
2
+W c

∞(T )W̃1(T )
}
, (3.38)

provided that ε0 > 0 is suitably small.
Under the condition (3.31), we now use continuous induction to prove (3.28)–(3.29) and

W̃1 (T ) ≤ k4h. (3.39)

Noting (1.10), evidently we have

W c
∞(0) ≤ C11ε, W1(0) = W̃1(0) = 0. (3.40)

Hence, by continuity there exist positive constants k3, k4 and h independent of ε such that
(3.28)–(3.29) and (3.39) hold at least for 0 ≤ T ≤ τ0, where τ0 is a small positive number.
Thus, in order to prove (3.28)–(3.29) and (3.39) it suffices to show that we can choose k3,
k4 and h in such a way that for any fixed T0

(
0 < T0 ≤ T ≤ exp

(
hε−1

))
such that

W c
∞ (T0) ≤ 2k3ε, (3.41)

W̃1 (T0) , W1 (T0) ≤ 2k4h, (3.42)

we have

W c
∞ (T0) ≤ k3ε, (3.43)

W̃1 (T0) , W1 (T0) ≤ k4h. (3.44)

Substituting (3.41)-(3.42) into the right-hand sides of (3.37) and (3.38) (in which we take
T = T0), we obtain

W c
∞ (T0) ≤ C10ε

{
k2 + 4k23h+ 4k3k4h

}
, (3.45)

W̃1 (T0) , W1(T0) ≤ C9h
{
k2 + 4k23h+ 4k3k4h

}
. (3.46)

Hence, if

k3 ≥ 2C10k2, k4 ≥ 2C9k2 and 4k3 (k3 + k4)h ≤ k2, (3.47)

then we get (3.43)–(3.44) immediately. This proves (3.28)-(3.29) and (3.39).
We now prove (3.30).
Similarly to (3.82) in [1], we have

|u(t, x)| ≤ C12k1ε+ C13 {W c
∞(T ) +W1(T )}

≤ C12k1ε+ C13 {k3ε+ k4h} ≤ C14(k1 + k3)ε+ C13k4h

≤ C14(k1 + k3)ε0 + C13k4h ≤ 2C13k4h, (3.48)

where we have taken ε0 so small that C14(k1 + k3)ε0 ≤ C13k4h. Hence, if

k5 ≥ 2C13k4, (3.49)

then we get (3.30) immediately.
Finally, if we take

h ≤ min
{
(2k5)

−1
δ, k2 (4k3 (k3 + k4))

−1
}
, (3.50)

then we have

|u(t, x)| ≤ k5h ≤ 1

2
δ. (3.51)
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This implies the validity of hypothesis (3.5). The proof of Lemma 3.3 is finished.

Let

V c
∞ (T ) = max

i=1,··· ,n
sup

(t,x)∈DT \DT
i

(1 + |x− λi (0) t|) |vi (t, x) |, (3.52)

U c
∞ (T ) = max

i=1,··· ,n
sup

(t,x)∈DT \DT
i

(1 + |x− λi (0) t|) |ui (t, x) |, (3.53)

V1 (T ) = max
i=1,··· ,n

sup
0≤t≤T

∫
DT

i (t)

|vi (t, x) |dx, (3.54)

W∞ (T ) = max
i=1,··· ,n

sup
→0≤t≤T

x∈IIR

|wi (t, x) |. (3.55)

We have the following lemma.

Lemma 3.4. Under the assumptions of Lemma 3.3, suppose furthermore that system
(1.1) is weakly linearly degenerate. In the normalized coordinates there exists ε0 > 0 so
small that for any fixed ε ∈ (0, ε0], on any given existence domain 0 ≤ t ≤ T of the C1

solution u = u (t, x) to the Cauchy problem (1.1) and (1.9), there exist positive constants ki
(i = 6, 7, 8) independent of ε and T such that the following uniform a priori estimates hold:

U c
∞ (T ) , V c

∞ (T ) ≤ k6ε, (3.56)

V1 (T ) ≤ k7h, (3.57)

W∞ (T ) ≤ k8h, (3.58)

where h is the suitably small positive constant given in Lemma 3.3, and T satisfies

T ≤ exp
(
hε−1

)
. (3.59)

Proof. This lemma will be proved in a way similar to the proof of Lemma 3.4 in [1].
In what follows we only point out the essentially different part in the proof and ε0 > 0 is
always supposed to be suitably small.

Similarly to (3.92) in [1], noting that h > 0 is suitably small, we still have

U c
∞(T ) ≤ C15V

c
∞(T ). (3.60)

As in the proof of Lemma 3.4 in [1], we first estimate Ṽ1(T ) (see (3.98) in [1]).

In the present situation, instead of (3.103 in [1]) we have

|pi (t, x̃i (t, y))|t=t(y) ≤
∣∣∣∣vi( y

λn (0) + δ0
, y

)∣∣∣∣
+ C16

{
W c

∞ (T )V c
∞ (T )

∫ t(y)

y
λn(0)+δ0

(1 + s)
−1

(1 + |x̃i (s, y) |)−1 ∂x̃i (s, y)

∂y
ds

+W c
∞ (T )

n∑
j=1

∫
(s,x̃i(s,y))∈DT

j

(1 + s)
−1 |vj (s, x̃i (s, y)) |

∂x̃i (s, y)

∂y
ds

+ V c
∞ (T )

n∑
k=1

∫
(s,x̃i(s,y))∈DT

k

(1 + s)
−1 |wk (s, x̃i (s, y)) |

∂x̃i (s, y)

∂y
ds

}
. (3.61)

Then, similarly to (3.104) in [1], using Lemmas 3.2 and 3.3 we obtain

Ṽ1(T ) ≤ C17

{
k1ε log(1 + T ) + k3εV

c
∞(T ) (log(1 + T ))

2

+k3εV1(T ) log(1 + T ) + k4hV
c
∞(T ) log(1 + T )} . (3.62)
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On the other hand, similarly to (3.105)–(3.106) in [1], we have

V1(T ) ≤ C18

{
k1ε log(1 + T ) + k3εV

c
∞(T ) (log(1 + T ))

2

+k3εV1(T ) log(1 + T ) + k4hV
c
∞(T ) log(1 + T )} , (3.63)

V c
∞(T ) ≤ C19

{
k1ε+ k3εV

c
∞(T ) log(1 + T ) + k3εṼ1(T ) + k4hV

c
∞(T )

}
.

(3.64)

Thus, in a manner similar to the proof of (3.28)–(3.29) and (3.39), we can easily prove
that there exist positive constants k6 and k7 independent of ε and T such that (3.56)–(3.57)
and

Ṽ1(T ) ≤ k7h (3.65)

hold, provided that h > 0 is suitably small and T satisfies (3.59).
We finally estimate W∞(T ).
In the present situation, instead of (3.109) in [1] we have

|wi(t, x)| ≤ C20

{
W
(
DT

+

)
+ (W c

∞(T ))
2
+W c

∞(T )W∞(T ) log(1 + T )

+U∞(T ) (W c
∞(T ))

2
+ V c

∞(T ) (W∞(T ))
2
log(1 + T )

}
. (3.66)

Then, similarly to (3.110) in [1], using Lemmas 3.2–3.3 and (3.56), we obtain from (3.66)
that

W∞(T ) ≤ C21

{
k2ε+ k3hW∞(T ) + k6h (W∞(T ))

2
}
, (3.67)

provided that ε0 > 0 is suitably small.
By (3.32) in [1], there exists a positive constant k8 independent of ε such that

W∞(τ0) ≤ k8h, (3.68)

provided that ε0 > 0 is suitably small, where τ0 > 0 is a small positive number. Hence in
order to prove (3.58), it suffices to show that we can choose k8 in such a way that for any
fixed τ1 (0 < τ1 ≤ T ≤ exp(hε−1)) such that

W∞(τ1) ≤ 2k8h, (3.69)

we have

W∞(τ1) ≤ k8h. (3.70)

Substituting (3.69) into the right-hand side of (3.67) (in which we take T = τ1) gives

W∞(τ1) ≤ C21h
{
1 + 2k3k8h+ 4k6k

2
8h

2
}
, (3.71)

where we have taken ε0 so small that k2ε0 ≤ h. Taking h > 0 so small that

2k3k8h ≤ 1 and 4k6k
2
8h

2 ≤ 1, (3.72)

we obtain from (3.71) that

W∞(τ1) ≤ 3C21h. (3.73)

Hence, if k8 ≥ 3C21, then we get (3.70) immediately. Thus (3.58) is proved. This completes
the proof of Lemma 3.4.

Proof of Theorem 1.1. It suffices to prove Theorem 1.1 in the normalized coordinates.
Under the assumptions of Theorem 1.1, by Lemmas 3.3 and 3.4, we know that if ε0 > 0 is
suitably small, then for any fixed ε ∈ (0, ε0], on any given existence domain 0 ≤ t ≤ T of the
C1 solution u = u(t, x) to the Cauchy problem (1.1) and (1.9), there exists a small positive
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constant h independent of ε such that the following uniform a priori estimate on the C1

norm of the solution

||u (t, ·) ||C1
△
= ||u (t, ·) ||C0 + ||ux (t, ·) ||C0 ≤ Kh (3.74)

holds, where K is a positive constant independent of ε and T , and T satisfies

T ≤ exp(hε−1). (3.75)

This implies that

T̃ (ε) ≥ exp(hε−1). (3.76)

Hence, taking κ = h, we get (1.17) immediately. Thus the proof of Theorem 1.1 is
completed.

§4. Almost Global Existence of C1

Solution (II) — Proof of Theorem 1.2

Theorem 1.2 will be proved in a manner similar to the proof of Theorem 1.1. In what
follows we only point out the essentially different part in the proof and ε0 > 0 is always
supposed to be suitably small.

As in Section 3, in order to prove Theorem 1.2 it suffices to establish a uniform a priori
estimate on the C0 norm of the C1 solution u = u(t, x) to the Cauchy problem (1.1) and
(1.9) on any fixed domain 0 ≤ t ≤ T with

0 < T ≤ exp
(
κ̃ε−2

)
, (4.1)

where κ̃ is a positive constant independent of ε and will be determined later.
For the time being it is supposed that on the existence domain of the C1 solution u =

u (t, x) we have

|u (t, x) | ≤ δ. (4.2)

In Remark 4.3, we shall explain that this hypothesis is reasonable. Thus, in order to prove
Theorem 1.2 we only need to establish a uniform a priori estimate on the C0 norm of v
and w (see (2.3)–(2.4) in [1] for the definitions of v and w) on any given existence domain
0 ≤ t ≤ T of the C1 solution u = u (t, x), where T satisfies (4.1).

Instead of (3.16)–(3.18), we introduce

W
(
DT

±
)
= max

i=1,··· ,n
|| (1 + |x|)1+ν

wi (t, x) ||L∞(DT
±)
, (4.3)

W
(
DT

0

)
= max

i=1,··· ,n
|| (1 + t)

1+ν
wi (t, x) ||L∞(DT

0 )
, (4.4)

W
c

∞ (T ) = max
i=1,··· ,n

sup
(t,x)∈DT \DT

i

(1 + |x− λi (0) t|)1+ν |wi (t, x) |. (4.5)

Similarly to Lemma 3.2 in [1] and Appendix in [2], we can easily prove the following
lemma.

Lemma 4.1. Suppose that (3.1) holds and A (u) ∈ C2 in a neighbourhood of u = 0.
Suppose furthermore that ψ (x) is a C1 vector function satisfying (1.10) and (1.18). Then
there exists ε0 > 0 so small that for any fixed ε ∈ (0, ε0], on any given existence domain
0 ≤ t ≤ T of the C1 solution u = u (t, x) to the Cauchy problem (1.1) and (1.9), there exist
positive constants k1 and k2 independent of ε and T such that the following uniform a priori
estimates hold:

V
(
DT

±
)
, V

(
DT

0

)
≤ k1ε, (4.6)

W
(
DT

±
)
, W

(
DT

0

)
≤ k2ε. (4.7)
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In the present situation, Lemma 3.3 in [1] is still valid and can be stated as the following

Lemma 4.2. Suppose that (3.1) holds and, in a neighbourhood of u = 0, A (u) ∈ C2 and
(1.5)–(1.6) hold. Suppose furthermore that ψ (x) is a C1 vector function satisfying (1.10)
and (1.18). Then there exists ε0 > 0 so small that for any fixed ε ∈ (0, ε0], on any given
existence domain 0 ≤ t ≤ T of the C1 solution u = u (t, x) to the Cauchy problem (1.1)
and (1.9), there exist positive constants ki (i = 3, 4, 5) independent of ε and T such that the
following uniform a priori estimates hold:

W
c

∞ (T ) ≤ k3ε, (4.8)

W̃1(T ), W1 (T ) ≤ k4ε, (4.9)

V∞ (T ) , U∞ (T ) ≤ k5ε. (4.10)

Remark 4.1. In Lemmas 4.1 and 4.2 we neither require that system must be weakly
linearly degenerate nor demand that T satisfies (4.1).

Remark 4.2. It is easy to check that Lemmas 4.1 and 4.2 are still valid in the case that
ν > 0.

Remark 4.3. Lemma 4.2 implies the validity of the hypothesis (4.2). In fact, when
ε0 > 0 is suitably small, we obtain from (4.10) that

U∞ (T ) ≤ k5ε ≤ k5ε0 ≤ 1

2
δ. (4.11)

(4.11) shows that the hypothesis (4.2) is reasonable.

For any fixed T1 and T2 satisfying

0 ≤ T1 ≤ T2, (4.12)

let

V c
∞ (T1, T2) = max

i=1,··· ,n
sup

→(t,x)∈DT2\DT2
i

T1≤t≤T2

(1 + |x− λi (0) t|) |vi (t, x) |, (4.13)

U c
∞ (T1, T2) = max

i=1,··· ,n
sup

→(t,x)∈DT2\DT2
i

T1≤t≤T2

(1 + |x− λi (0) t|) |ui (t, x) |, (4.14)

V1 (T1, T2) = max
i=1,··· ,n

sup
T1≤t≤T2

∫
DT

i (t)

|vi (t, x) |dx, (4.15)

Ṽ1 (T1, T2) = max
i=1,··· ,n

max
j ̸=i

sup
C̃j

∫
C̃j∩{T1≤t≤T2}×IIR

|wi (t, x) |dt, (4.16)

where C̃j (j ̸= i) stands for any given j-th characteristic in DT
i .

Obviously, for any fixed T ≥ 0 we have

V c
∞ (T ) = V c

∞ (0, T ) , (4.17)

U c
∞ (T ) = U c

∞ (0, T ) , (4.18)

V1(T ) = V1(0, T ), (4.19)

Ṽ1 (T ) = Ṽ1 (0, T ) . (4.20)
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Moreover,

V c
∞ (T2) = max {V c

∞ (0, T1) , V
c
∞ (T1, T2)} , (4.21)

U c
∞ (T2) = max {U c

∞ (0, T1) , U
c
∞ (T1, T2)} , (4.22)

V1(T2) = max {V1 (0, T1) , V1 (T1, T2)} , (4.23)

Ṽ1 (T2) ≤ Ṽ1 (0, T1) + Ṽ1 (T1, T2) , (4.24)

where T1 and T2 satisfy (4.12).
Similarly to Lemma 3.4, we have
Lemma 4.3. Under the assumptions of Lemma 4.2, suppose furthermore that the system

(1.1) is weakly linearly degenerate. In the normalized coordinates there exists ε0 > 0 so small
that for any fixed ε ∈ (0, ε0], on any given existence domain 0 ≤ t ≤ T of the C1 solution
u = u (t, x) to the Cauchy problem (1.1) and (1.9), there exist positive constants k6 and k7
independent of ε and T such that the following uniform a priori estimates hold:

U c
∞ (0, T ) , V c

∞ (0, T ) ≤ k6ε, (4.25)

Ṽ1 (0, T ) , V1 (0, T ) ≤ k7ε| log ε|, (4.26)

where

Tε3 ≤ 1. (4.27)

Proof. This lemma will be proved in a way similar to the proof of Lemma 3.4 in [1].
In what follows we only point out the essentially different part in the proof and ε0 > 0 is
always supposed to be suitably small.

Similarly to (3.92) in [1], we still have

U c
∞(0, T ) ≤ C1V

c
∞(0, T ), (4.28)

henceforth Cj (j = 1, 2, · · · ) will denote positive constants independent of ε and T .

As in the proof of Lemma 3.4 in [1], we first estimate Ṽ1(0, T ).
In the present situation, instead of (3.103) we have

|pi (t, x̃i (t, y))|t=t(y) ≤
∣∣∣∣vi( y

λn (0) + δ0
, y

)∣∣∣∣
+ C2

{
W

c

∞ (T )V c
∞ (0, T )

∫ t(y)

y
λn(0)+δ0

(1 + s)
−(1+ν)

(1 + |x̃i (s, y) |)−1 ∂x̃i (s, y)

∂y
ds

+W
c

∞ (T )
n∑

j=1

∫
(s,x̃i(s,y))∈DT

j

(1 + s)
−(1+ν) |vj (s, x̃i (s, y)) |

∂x̃i (s, y)

∂y
ds

+ V c
∞ (0, T )

n∑
k=1

∫
(s,x̃i(s,y))∈DT

k

(1 + s)
−1 |wk (s, x̃i (s, y)) |

∂x̃i (s, y)

∂y
ds
}
.

(4.29)

Then, similarly to (3.104) in [1], using Lemmas 4.1 and 4.2 we obtain

Ṽ1(0, T ) ≤ C3 {k1ε log(1 + T ) + k3εV
c
∞(0, T ) log(1 + T )

+k3εV1(0, T ) + k4εV
c
∞(0, T ) log(1 + T )} . (4.30)

On the other hand, similarly to (3.105)–(3.106) in [1], we have

V1(T ) ≤ C4 {k1ε log(1 + T ) + k3εV
c
∞(0, T ) log(1 + T )

+k3εV1(0, T ) + k4εV
c
∞(0, T ) log(1 + T )} , (4.31)
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V c
∞(0, T ) ≤ C5

{
k1ε+ k3εV

c
∞(0, T ) + k3εṼ1(0, T ) + k4εV

c
∞(0, T )

}
. (4.32)

If (4.27) holds, then it follows from (4.30)–(4.32) that

Ṽ1(0, T ), V1(0, T ) ≤ C6 {k1ε| log ε|+ (k3 + k4) ε| log ε|V c
∞(0, T ) + k3εV1(0, T )} ,

(4.33)

V c
∞(0, T ) ≤ C7

{
k1ε+ (k3 + k4) εV

c
∞(0, T ) + k3εṼ1(0, T )

}
. (4.34)

Thus as before1, by the continuous induction we can easily prove that there exist positive
constants k6 and k7 independent of ε and T such that (4.25) and (4.26) hold, provided that
ε0 > 0 is suitably small and T satisfies (4.27). The proof is finished.

Lemma 4.4. Under the assumptions of Lemma 4.3, in the normalized coordinates there
exists ε0 > 0 so small that for any fixed ε ∈ (0, ε0], on any given existence domain ε−3 ≤ t
≤ T of the C1 solution u = u (t, x) to the Cauchy problem (1.1) and (1.9), there exist
positive constants k8 and k9 independent of ε and T such that the following uniform a priori
estimates hold:

U c
∞
(
ε−3, T

)
, V c

∞
(
ε−3, T

)
≤ k8ε, (4.35)

Ṽ1
(
ε−3, T

)
, V1

(
ε−3, T

)
≤ k9ε log(1 + T ), (4.36)

where we assume that the classical solution exists on the strip:
[
0, ε−3

]
× IIR, and where T

satisfies

ε−3 ≤ T ≤ exp
(
ε−2
)
. (4.37)

Proof. This lemma will be proved in a manner similar to the proof of Lemma 4.3. In
what follows we only point out the essentially different part in the proof and ε0 > 0 is always
supposed to be suitably small.

Similarly to (4.28), we have

U c
∞
(
ε−3, T

)
≤ C8V

c
∞
(
ε−3, T

)
. (4.38)

As in the proof of Lemma 3.4 in [1], we first estimate Ṽ1(ε
−3, T ).

In the present situation, instead of (3.103) we have

|pi (t, x̃i (t, y))|t=t(y)

≤
∣∣∣∣vi( y

λn (0) + δ0
, y

)∣∣∣∣ ( or vi
(
ε−3, y

))
+ C9

{
W

c

∞ (T )V c
∞
(
ε−3, T

) ∫ t(y)

ε−3

(1 + s)
−(1+ν)

(1 + |x̃i (s, y) |)−1 ∂x̃i (s, y)

∂y
ds

+W
c

∞ (T )

n∑
j=1

∫
(s,x̃i(s,y))∈DT

j

(1 + s)
−(1+ν) |vj (s, x̃i (s, y)) |

∂x̃i (s, y)

∂y
ds

+ V c
∞
(
ε−3, T

) n∑
k=1

∫
(s,x̃i(s,y))∈DT

k

(1 + s)
−1 |wk (s, x̃i (s, y)) |

∂x̃i (s, y)

∂y
ds

}
.

(4.39)

1See the proof of (3.28)–(3.29) and (3.39).
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Then, similarly to (4.31), using (4.6), (4.8)–(4.9) and (4.25)–(4.26) we obtain

Ṽ1
(
ε−3, T

)
≤ C10

{
max

(
V
(
DT

+

)
, V

(
DT

0

))
log(1 + T ) + V1

(
0, ε−3

)
+V c

∞
(
0, ε−3

)
log
(
1 + ε−3

)
+W

c

∞(T )V c
∞
(
ε−3, T

)
log(1 + T )

+W
c

∞(T )V1
(
ε−3, T

)
+ W̃ (T )V c

∞
(
ε−3, T

)
log(1 + T )

}
≤ C11

{
(k1 + k6 + k7) ε log(1 + T ) + k3εV

c
∞
(
ε−3, T

)
log(1 + T )

+k3εV1
(
ε−3, T

)
+ k4εV

c
∞
(
ε−3, T

)
log(1 + T )

}
, (4.40)

where we have made use of the fact that T ≥ ε−3.
Similarly, we have

V1
(
ε−3, T

)
≤ C12

{
(k1 + k6 + k7) ε log(1 + T ) + k3εV

c
∞
(
ε−3, T

)
log(1 + T )

+k3εV1
(
ε−3, T

)
+ k4εV

c
∞
(
ε−3, T

)
log(1 + T )

}
. (4.41)

On the other hand, similarly to (4.32), using (4.6), (4.25) and (4.8)–(4.9) and noting that
T ≥ ε−3 and ν ≥ 1, we obtain

V c
∞
(
ε−3, T

)
≤ C13

{
max

(
V
(
DT

+

)
, V

(
DT

0

))
+ V c

∞
(
0, ε−3

)
+W

c

∞(T )V c
∞
(
ε−3, T

)
+
(
1 + ε−3

)−ν
W

c

∞(T )Ṽ1
(
ε−3, T

)
+ W̃1(T )V

c
∞
(
ε−3, T

)}
≤ C14

{
(k1 + k6) ε+ (k3 + k4) εV

c
∞
(
ε−3, T

)
+ k3ε

4Ṽ1
(
ε−3, T

)}
.

(4.42)

Thus, using the continuous induction again, when T ≤ exp
(
ε−2
)
, we can easily prove

that there exist positive constants k8 and k9 independent of ε and T , such that (4.35) and
(4.36) hold. The proof is completed.

Lemma 4.5. Under the assumptions of Lemma 4.3, in the normalized coordinates there
exists ε0 > 0 so small that for any fixed ε ∈ (0, ε0], on any given existence domain 0 ≤ t ≤ T
of the C1 solution u = u (t, x) to the Cauchy problem (1.1) and (1.9), there exist positive
constants k10 and k11 independent of ε and T such that the following uniform a priori
estimates hold:

U c
∞ (T ) , V c

∞ (T ) ≤ k10ε, (4.43)

W∞ (T ) ≤ k11ε, (4.44)

where T satisfies

0 ≤ T ≤ exp
(
h̃ε−2

)
, (4.45)

in which h̃ > 0 is a small constant independent of ε.

Proof. Without loss of generality, we may suppose that 0 < h̃ ≤ 1.
Noting (4.21) and combining (4.25) and (4.35), we get (4.43) immediately.
We now estimate W∞(T ).
In the present situation, instead of (3.66) we have

|wi(t, x)| ≤ C15

{
W
(
DT

+

)
++

(
W

c

∞(T )
)2

+W
c

∞(T )W∞(T )

+U∞(T )
(
W

c

∞(T )
)2

+ V c
∞(T ) (W∞(T ))

2
log(1 + T )

}
. (4.46)

Then using (4.7), (4.8), (4.10) and (4.43), we obtain from (4.46) that

W∞(T ) ≤ C16

{
(k2 + k3) ε+ k3εW∞(T ) + k10ε (W∞(T ))

2
log(1 + T )

}
, (4.47)
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provided that ε0 > 0 is suitably small.
Hence as before, noting (4.47) and using the continuous induction again, we can find a

positive constant k11 and a small h̃ > 0 independent of ε and T such that (4.44) holds if T
satisfies (4.45). The proof is completed.

Proof of Theorem 1.2. Similarly to the proof of Theorem 1.1, noting Lemmas 4.2 and

4.5 and taking κ̃ = h̃, we get the conclusion of Theorem 1.2 immediately. We omit the
details.

§5. Asymptotic Behaviour of Life-Span
of C1 Solution—Proof of Theorem 1.3

Theorem 1.3 will be proved in a way similar to the proof of Theorem 1.2 in [1]. To do so,
we need the following lemmas.

In the present situation, Lemma 3.2 is still valid. Moreover, similarly to Lemma 3.3, we
have

Lemma 5.1. Suppose that (3.1) holds and, in a neighbourhood of u = 0, A (u) ∈ C2 and
(1.5)–(1.6) hold. Suppose furthermore that ψ (x) is a C1 vector function satisfying (1.10).
Then there exists ε0 > 0 so small that for any fixed ε ∈ (0, ε0], on any given existence
domain 0 ≤ t ≤ T of the C1 solution u = u (t, x) to the Cauchy problem (1.1) and (1.9),
there exist positive constants ki (i = 3, 4, 5) independent of ε and T such that the following
uniform a priori estimates hold:

W c
∞ (T ) ≤ k3ε, (5.1)

W̃1(T ), W1 (T ) ≤ k4ε| log ε|, (5.2)

V∞ (T ) , U∞ (T ) ≤ k5ε| log ε|, (5.3)

where

Tε2+α ≤ 1. (5.4)

Proof. This lemma will be proved in a way similar to the proof of Lemma 3.3. In what
follows we only point out the essentially different part in the proof and ε0 > 0 is always
supposed to be suitably small.

Under the assumptions of Lemma 5.1, (3.33), (3.34) and (3.36) are still valid, namely, we
have

W̃1(T ) ≤ C1

{
k2ε log(1 + T ) + (W c

∞(T ) log(1 + T ))
2
+W c

∞(T )W1(T ) log(1 + T )
}
,
(5.5)

W1(T ) ≤ C2

{
k2ε log(1 + T ) + (W c

∞(T ) log(1 + T ))
2
+W c

∞(T )W1(T ) log(1 + T )
}
,
(5.6)

W c
∞ (T ) ≤ C3

{
k2ε+ (W c

∞ (T ))
2
log(1 + T ) +W c

∞ (T ) W̃1 (T )
}
, (5.7)

henceforth Cj (j = 1, 2, 3, · · · ) will denote positive constants independent of ε and T .
If T satisfies (5.4), then we obtain from (5.5)–(5.7) that

W̃1(T ), W1(T ) ≤ C4

{
k2ε| log ε|+ (W c

∞(T ) log ε)
2
+W c

∞(T )W1(T )| log ε|
}
,

(5.8)

W c
∞ (T ) ≤ C5

{
k2ε+ (W c

∞ (T ))
2 | log ε|+W c

∞ (T ) W̃1 (T )
}
, (5.9)

provided that ε0 > 0 is suitably small.
Thus, in a manner similar to the proof of (3.28)–(3.29) and (3.39), noting that ε > 0 is

small, under the condition (5.4) we can easily prove (5.1)–(5.2).
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On the other hand, completely repeating the procedure of proving (3.30), we get (5.3)
immediately. The proof of this lemma is finished.

Lemma 5.2. Under the assumptions of Theorem 1.3, in the normalized coordinates there
exists ε0 > 0 so small that for any fixed ε ∈ (0, ε0], on any given existence domain 0 ≤ t ≤ T
of the C1 solution u = u (t, x) to the Cauchy problem (1.1) and (1.9), there exist positive
constants ki (i = 6, · · · , 9) independent of ε and T such that the following uniform a priori
estimates hold:

U c
∞ (T ) , V c

∞ (T ) ≤ k6ε, (5.10)

Ṽ1(T ), V1 (T ) ≤ k7ε| log ε|+ k8 (ε| log ε|)2+α
T, (5.11)

where

Tε2+α ≤ 1. (5.12)

Moreover,

W∞ (T ) ≤ k9ε, (5.13)

where

Tε
3
4+α ≤ 1. (5.14)

Proof. This lemma will be proved in a way similar to the proof of Lemma 4.3 in [1].
In what follows we only point out the essentially different part in the proof and ε0 > 0 is
always supposed to be suitably small.

In the present situation, instead of (4.17)–(4.19) in [1] we have

Ṽ1(T ) ≤ C6

{
max

(
V
(
DT

+

)
, V

(
DT

0

))
log(1 + T ) +W c

∞(T )V c
∞(T ) (log(1 + T ))

2

+W c
∞(T )V1(T ) log(1 + T ) +W1(T )V

c
∞(T ) log(1 + T )

+ (V∞(T ))
1+α

(W c
∞(T ) log(1 + T ) +W1(T ))T

}
, (5.15)

V1(T ) ≤ C7

{
max

(
V
(
DT

+

)
, V

(
DT

0

))
log(1 + T ) +W c

∞(T )V c
∞(T ) (log(1 + T ))

2

+W c
∞(T )V1(T ) log(1 + T ) +W1(T )V

c
∞(T ) log(1 + T )

+ (V∞(T ))
1+α

(W c
∞(T ) log(1 + T ) +W1(T ))T

}
, (5.16)

V c
∞(T ) ≤ C8

{
max

(
V
(
DT

+

)
, V

(
DT

0

))
+W c

∞(T )V c
∞(T ) log(1 + T )

+W c
∞(T )Ṽ1(T ) + W̃1(T )V

c
∞(T )

}
. (5.17)

If T satisfies (5.12), then, using Lemmas 3.2 and 5.1 we obtain from (5.15)–(5.17) that

Ṽ1(T ), V1(T ) ≤ C9

{
k1ε| log ε|+ k3ε (log ε)

2
V c
∞(T ) + k3ε| log ε|V1(T )

+k4ε (log ε)
2
V c
∞(T ) + (k3 + k4) k5 (ε| log ε|)2+α

T
}
, (5.18)

V c
∞(T ) ≤ C10

{
k1ε+ k3ε| log ε|V c

∞(T ) + k3εṼ1(T ) + k4ε| log ε|V c
∞(T )

}
.
(5.19)

Thus, completely repeating the procedure of proving (4.8)–(4.9) in [1], we can easily show
that there exist positive constants k6, k7 and k8 independent of ε and T such that (5.10)
and (5.11) hold if T satisfies (5.12).

We now prove (5.13).
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In the present situation, instead of (4.32) in [1] we have

|wi(t, x)| ≤ C11

{
W
(
DT

+

)
+ (W c

∞(T ))
2
+W c

∞(T )W∞(T ) log(1 + T )

+U∞(T ) (W c
∞(T ))

2
+ V c

∞(T ) (W∞(T ))
2
log(1 + T )

+ (V∞(T ))
α
(W∞(T ))

2
T
}
. (5.20)

Then, similarly to (4.33) in [1], using Lemmas 3.2, 5.1 and (5.10) we get

W∞(T ) ≤ C12

{
ε
(
1 + | log ε|W∞(T ) + | log ε| (W∞(T ))

2
)

+(ε| log ε|)α T (W∞(T ))
2
}
, (5.21)

where T ≤ ε2+α.
Furthermore, we restrict T to satisfies (5.14). Then we obtain from (5.21) that

W∞(T ) ≤ C12

{
ε
(
1 + | log ε|W∞(T ) + | log ε| (W∞(T ))

2
)

+(ε| log ε|)α ε−(
3
4+α) (W∞(T ))

2
}
. (5.22)

Thus as in [1], using the continuous induction again, we can easily prove (5.13). This
completes the proof of Lemma 5.2.

Remark 5.1. By Lemmas 5.1 and 5.2, when ε0 > 0 is suitably small, the Cauchy problem
(1.1) and (1.9) admits a unique C1 solution u = u (t, x) on 0 ≤ t ≤ ε−( 3

4+α). Hence, we get

the following lower bound on the life-span T̃ (ε) of C1 solution

T̃ (ε) ≥ ε−(
3
4+α). (5.23)

Remark 5.2. Similarly to the proof of (5.13) with (5.14), we can prove easily that for
any fixed µ̃ ∈ (0, 1), there exists ε0 (µ̃) > 0 so small that the Cauchy problem (1.1)and (1.9)
admits a unique C1 solution u = u (t, x) on 0 ≤ t ≤ ε−(µ̃+α). Hence, we have

T̃ (ε) ≥ ε−(µ̃+α). (5.24)

Using Lemmas 3.2, 5.1 and 5.2 and Remark 5.1, almost completely repeating the proof
of Theorem 1.1 in [2], we can show Theorem 1.3 easily. In what follows we only point out
the essentially different part in the proof.

Proof of Theorem 1.3. As in [2], it suffices to prove Lemma 3.1 in [2], i.e., in the
normalized coordinates ũ satisfying (1.16) to prove

lim
ε→0

{
ε1+αT̃ (ε)

}
≤M0, (1.25a)

lim
ε→0

{
ε1+αT̃ (ε)

}
≥M0, (1.25b)

where M0 > 0 is defined by (3.5) in [2]. Moreover, as in [2], we still denote ũ by u.
In what follows we will directly use the notations presented in [2] and two lemmas on

ordinary differential equations of Riccati’s type given in [5] (also see [2]).
(1) Proof of (1.25a)
By Remark 5.1, there exists ε0 > 0 so small that for any fixed ε ∈ (0, ε0], the Cauchy

problem (1.1) and (1.9) admits a unique C1 solution u = u(t, x) on the domain 0 ≤ t ≤ T1,
where

T1
△
= ε−(

3
4+α) ≤ T̃ (ε)− 1

△
= T . (5.25)

As in [2], we may suppose that

T̃ (ε)ε2+α ≤ 1. (5.26)
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Thus, in what follows we only discuss the problem in the domain 0 ≤ t ≤ ε−(2+α).
Noting (1.10), we observe that there exist i0 ∈ J1 and x0 ∈ IIR such that (3.19) in [2] is

still valid.
When ε0 > 0 is suitably small, by (5.25) we get

T1 > ε−α △
= T0 > t0 (5.27)

(see [2] for the definition of t0).
Noting (4.62) in [1] and (5.3), instead of (3.25) in [2] we have

|w1 (t, x1 (t, x0))− w1 (0, x0) | ≤ C13ε
2| log ε|α, ∀ t ∈ [0, T0], (5.28)

and then, instead of (3.26) in [2] we have

w1(T0, x1(T0, x0)) = εl1(0)ψ
′(x0) +O

(
ε2| log ε|α

)
. (5.29)

Noting (5.3) again, by (3.27) in [2] we get

γ111 (u1e1) = a (εl1(0)ψ(x0))
α
+ a [(u1 (t, x1 (t, x0)))

α − ε (l1(0)ψ(x0))
α
] +

+ O
(
ε1+α| log ε|1+α

)
, (5.30)

where a is defined by (3.20) in [2].
Moreover, similarly to (3.25) in [2], using (5.10) we obtain

|γ111 (u)− γ111 (u1e1) | ≤ C14(1 + t)−1V c
∞
(
T
)
≤ C15ε(1 + t)−1

≤ C16ε
(
1 + ε−α

)−1 ≤ C16ε
1+α, ∀ t ∈ [T0, T ].

(5.31)

On the other hand, in the present situation, instead of (4.47) in [1] we have

u(t, x), v(t, x) = O (ε |log ε|) ; (5.32)

moreover, similarly to (4.55) in [1], using (5.32) we get

|u1(t, x1(t, x0))− εl1(0)ψ(x0)| ≤ C17ε
2 |log ε|2 . (5.33)

Hence, noting (5.33), instead of (3.29) in [2] we obtain from (5.30)–(5.31) that

a0(t) = γ111(u(t, x1(t, x0))) = a (εl1(0)ψ(x0))
α
+O

(
ε1+α |log ε|1+α

)
, ∀ t ∈ [T0, T ],

(5.34)
where a0(t) is defined by the first equality of (3.23) in [2]. Therefore, for ε > 0 suitably
small, noting (3.21) in [2] we get

a0(t) ≥
1

2
bεα > 0, ∀ t ∈ [T0, T ], (5.35)

where b is defined by (3.21) in [2].
Similarly to (3.31)–(3.34) in [2], we have∫ T

T0

|a1(t)|dt ≤ C18W
c
∞(T )

∫ T

T0

(1 + t)−1dt ≤ C19ε |log ε| , (5.36)∫ T

T0

|a2(t)|dt ≤ C20

(
W c

∞(T )
)2 ∫ T

T0

(1 + t)−2dt ≤ C21ε
2, (5.37)

K ≤
∫ T

T0

|a2(t)|dt · exp

(∫ T

T0

|a1(t)|dt

)
≤ C22ε

2, (5.38)

w1(T0, x1(T0, x0)) > C22ε
2 ≥ K, (5.39)
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provided that ε0 > 0 is suitably small, where a1(t), a2(t) and K are defined by (3.23) and
(3.33) in [2] respectively. To get (5.39), we have made use of the assumption (3.21) in [2].

Applying Lemma 2.1 in [2] and completely repeating the rest of the proof of (3.16a) in
[2], we get (1.25a) immediately.

(2) Proof of (1.25b)
Similarly to (3.41) in [2], noting (5.3) we have

||u(t, x)||C0[0,T ]×IIR ≤ C23ε |log ε| , (5.40)

where T satisfies

0 < T ≤Mε−(1+α), (5.41)

in which M stands for any given positive constant with M < M0.

As in [2], we now estimate Ũ1(T ) (see (3.46) in [2] for the definition of Ũ1(T )).
Similarly to (3.52) in [2], we have∫

C̃j

|ui(t, x)|dt ≤ C24

(
Ṽ1(T ) + V c

∞(T ) log(1 + T )
)

+ C25

(
Ũ1(T ) + V c

∞(T ) log(1 + T )
)
V∞(T ). (5.42)

Noting (5.41) and using (5.3) and (5.10)-(5.11), we obtain from (5.42) that

Ũ1(T ) ≤ C26

{
k7ε |log ε|+ k8 (ε |log ε|)2+α

ε−(1+α) + k6ε |log ε|

+k5ε |log ε|
(
Ũ1(T ) + k6ε |log ε|

)}
≤ C27

{
ε |log ε|2+α

+ ε |log ε| Ũ1(T )
}
, (5.43)

provided that ε0 > 0 is suitably small. Therefore, when ε0 > 0 is suitably small, from (5.43)
we get

Ũ1(T ) ≤ C28ε |log ε|2+α
. (5.44)

Noting (5.34), corresponding to (3.43) in [2] we have

a0(t) = a (εl1(0)ψ(y))
α
+ (γ111(u)− γ111(u1e1)) +O

(
(ε |log ε|)1+α

)
, (5.45)

and then similarly to (3.44) in [2], we have

w1(0, y)

∫ T

0

a+0 (t)dt ≤
[
(l1(0)ψ

′(y))
+
ε+ C29ε

2
] ∫ T

0

[
(a(l1(0)ψ(y))

α)
+
εα

+|γ111(u)− γ111(u1e1)|+ C30 (ε |log ε|)1+α
]
dt, (5.46)

where f+ = max(f, 0), and henceforth Cj (j = 29, 30, · · · ) will denote positive constant
independent of ε, T and y.

Similarly to (3.48) in [2], we have

w1(0, y)

∫ T

0

a+0 (t)dt ≤ (a (l1(0)ψ(y))
α
l1(0)ψ

′(y))
+
M + C31ε |log ε|1+α

+ C32ε
{(
V (DT

+) + V (DT
0 ) + V (DT

−)
)
log(1 + T )

+Ũ1(T ) + V c
∞(T ) log(1 + T )

}
. (5.47)

Noting (5.41) and using Lemma 3.2, (5.10) and (5.44), we obtain from (5.47) that

w1(0, y)

∫ T

0

a+0 (t) ≤ (a (l1(0)ψ(y))
α
l1(0)ψ

′(y))
+
M + C33ε |log ε|1+α

, (5.48)
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provided that ε0 > 0 is suitably small.

Moreover, similarly to (3.57)–(3.60) in [2], we have∫ T

0

|a1(t)|dt ≤ C34

{(
W (DT

+) +W (DT
0 ) +W (DT

−) +W c
∞(T )

)
log(1 + T ) + W̃1(T )

}
≤ C35ε |log ε| , (5.49)∫ T

0

|a2(t)|dt ≤ C36

{(
W (DT

+) +W (DT
0 ) +W (DT

−)
)2

+W c
∞(T )W̃1(T ) + (W c

∞(T ))
2
}

≤ C37ε
2 |log ε| , (5.50)

K ≤
∫ T

0

|a2(t)|dt · exp

(∫ T

0

|a1(t)|dt

)
≤ C38ε

2 |log ε| , (5.51)

∫ T

0

|a0(t)|dt ≤ C39ε
−1, (5.52)

provided that ε0 > 0 is suitably small.

Thus, noting (5.48), instead of (3.61) in [2] we have

(w1(0, y) +K)

∫ T

0

a+0 (t)dt ≤
M

M0
+ C33ε |log ε|1+α

+K

∫ T

0

|a0(t)|dt

≤ M

M0
+ C40ε |log ε|1+α

< 1, (5.53)

provided that ε0 > 0 is suitably small.

Therefore using (5.49)–(5.52), completely repeating the rest of the proof of (3.16b) in [2],
we obtain (1.25b) immediately. This completes the proof of Theorem 1.3.

§6. Breakdown of C1 Solution—Proof
of Theorem 1.4 and Theorem 1.5

Theorem 1.4 and Theorem 1.5 will be proved in a way similar to the proof of Theorem
1.2 and Theorem 1.3 in [2]. As before, here we only point out the essentially different part
in the proof.

We still use the normalized coordinates u as in Section 5. Let (t∗, x∗) be the starting
point of the singularity of the C1 solution u = u(t, x) to the Cauchy problem (1.1) and (1.9).
By Theorem 1.3 we have

1

2
M0ε

−(1+α) < t∗ < 2M0ε
−(1+α), (6.1)

where M0 is given by (3.5) in [2]. On the domain [0, t∗)× IIR the Cauchy problem (1.1) and
(1.9) admits a unique C1 solution u = u(t, x), and by Lemma 5.1 we have

∥u(t, x)∥C0([0,t∗)×IIR) ≤ K1ε| log ε|, (6.2)

where K1 is a positive constant independent of ε.

As in [2], let ξ = xi(s, yi) be the i-th characteristc passing through any given point
(t, x) on the domain [0, t∗)× IIR, where (s, ξ) denote the coordinates of variable point of this
characteristic and yi stands for the x-coordinate of the intersection point of this characterisitc
with the x-axis.

Similarly to Lemma 4.1 in [2], we have

Lemma 6.1. For i = 1, · · · , n and for any given point (t, x) on the domain [0, t∗) × IIR
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we have ∣∣∣wi(t, x)
∂xi(t, yi)

∂yi

∣∣∣ ≤ K2ε exp (|log ε|α) , (6.3)

provided that ε > 0 is suitably small, where K2 is a positive constant independent of i, t,
yi(or x) and ε.

Proof. As in the proof of Lemma 4.1 in [2], we consider the following two (only two)
possibilities: Case 1

ai(ψ̃i(yi))
αψ̃′

i(yi) <
1

4M0
(6.4)

and Case 2

ai(ψ̃i(yi))
αψ̃′

i(yi) ∈
[

1

4M0
,

1

M0

]
, (6.5)

where

ai = − 1

α!

∂1+αλi

∂u1+α
i

(0), (6.6)

and ψ̃i(x) is defined by (4.7) in [2].
Case 1. In the present situation, Remark 3.1 in [2] is still valid. Hence, similarly to

(4.14) in [2], we have

|wi(t, xi(t, yi))| ≤ C1ε, ∀t ∈ [0, t∗), (6.7)

where yi belongs to Case 1; here and hereafter Cj (j = 1, 2, · · · ) denote positive constants
independent of i, t, yi and ε.

Noting (6.2) and (6.7), instead of (4.29) in [2] we have

|P3(τ)| ≤ C2|ui|α|wi| ≤ C3ε
1+α |log ε|α , ∀ τ ∈ [0, t∗), (6.8)

and then, instead of (4.30) in [2] we obtain∫ s

0

|P3(τ)|dτ ≤ 2C3M0| log ε|α, ∀ τ ∈ [0, t∗). (6.9)

On the other hand, similarly to (4.31) and (4.34) in [2], we have∫ s

0

|P1(τ)|dτ ≤ C4

{
W̃1(s) +

(
W c

∞(s) +W
(
Ds

±
)
+W (Ds

0)
) ∫ s

0

(1 + τ)−1dτ

}
≤ C5

{
W̃1(s) +

(
W c

∞(s) +W
(
Ds

±
)
+W (Ds

0)
)
log(1 + t∗)

}
,

∀ τ ∈ [0, t∗), (6.10)∫ s

0

|P2(τ)|dτ ≤ C6ε

{
Ũ1(s) +

(
V c
∞(s) + V

(
Ds

±
)
+ V (Ds

0)
) ∫ s

0

(1 + τ)−1dτ

}
≤ C7ε

{
Ũ1(s) +

(
V c
∞(s) + V

(
Ds

±
)
+ V (Ds

0)
)
log(1 + t∗)

}
,

∀ τ ∈ [0, t∗), (6.11)

and then, noting (6.1) and using Lemma 3.2, (5.1)–(5.2), (5.10) and (5.44), we obtain from
(6.10)–(6.11) that ∫ s

0

|P1(τ)|dτ ≤ C8ε| log ε|, ∀ s ∈ [0, t∗), (6.12)∫ s

0

|P2(τ)|dτ ≤ C9ε
2| log ε|2+α, ∀ s ∈ [0, t∗). (6.13)
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Similarly to (4.38) in [2], combining (6.9) and (6.12)–(6.13), we obtain that for any fixed
yi belonging to Case 1, there exists a positive constant K3 independent of i, t, yi and ε such
that

0 <
∂xi(t, yi)

∂yi
≤ K3 exp (| log ε|α) , ∀ t ∈ [0, t∗), (6.14)

provided that ε > 0 is suitably small.
Noting (6.7) and (6.14), we get (6.3) immediately in Case 1.
Case 2. As in [2], we assume that

ψ̃′
i(yi) > 0 and ai(ψ̃i(yi))

α > 0. (6.15)

By Lemma 5.2 and Remark 5.1 we have

|wj(t, x)| ≤ C10ε, ∀ (t, x) ∈ [0, T1]× IIR, ∀ j = 1, · · · , n, (6.16)

where T1 is defined by (5.25).
Moreover, similarly to (4.62) in [1], noting (5.25) and using (5.1), (5.3), (5.10) and (6.16)

we have

|wi (t, xi (t, yi))− εli(0)ψ̃
′
i(yi)| ≤ C11

{
ε2 +W∞ (t)W c

∞ (t) log(1 + t)

+ (W∞ (t))
2
V c
∞ (t) log(1 + t) + (V∞ (t))

α
(W∞ (t))

2
t
}

≤ C12

{
ε2 + ε2| log ε|+ ε2+α| log ε|αt

}
≤ C13

{
ε2 + ε2| log ε|+ ε

5
4 | log ε|α

}
}

≤ C14ε
9
8 , ∀ t ∈ [0, T1], (6.17)

provided that ε > 0 is suitably small. Then we have

wi(t, xi(t, yi)) ≥
1

2
εψ̃′

i(yi) > 0, ∀ t ∈ [0, T1]. (6.18)

On the other hand, as in [1], wi(t, xi(t, yi)) is a strictly increasing function of t for t ≥ T1;
then

wi(t, xi(t, yi)) ≥
1

2
εψ̃′

i(yi) > 0, ∀ t ∈ [T1, t
∗). (6.19)

Furthermore, for any j ̸= i, using Lemma 5.1, for ε > 0 suitably small we have

|wj (t, xi (t, yi)) | ≤ C15 (1 + t)
−1
W c

∞ (t) ≤ C16 (1 + T1)
−1
ε ≤ C17ε

7
4 , ∀ t ∈ [T1, t

∗). (6.20)

Since the C1 norm of ψ(x) is bounded, using the first inequality in (6.15) and noting (6.5),
for any j ̸= i we obtain that for ε > 0 suitably small,

|wj(t, xi(t, yi))| < wi(t, xi(t, yi)), ∀ t ∈ [T1, t
∗). (6.21)

Noting (6.16), completely repeating the proof of Case 1, we can prove easily

0 <
∂xi(t, yi)

∂yi
≤ K4 exp (| log ε|α) , ∀ t ∈ [0, T1], (6.22)

where K4 is a positive constant independent of i, t, yi and ε. Moreover,

0 <
∂xi(t, yi)

∂yi
, ∀ t ∈ [0, t∗). (6.23)

Similarly to (4.50) in [2], we have

Qi(t) ≤ Qi(T1) + C18W
c
∞ (t)

∫ t

T1

(1 + τ)−1Qi(τ)dτ, ∀ t ∈ [T1, t
∗), (6.24)

and then, noting (6.1) and using Lemma 5.1, for ε > 0 suitably small we get

Qi(t) ≤ C19Qi(T1), ∀ t ∈ [T1, t
∗), (6.25)
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where

Qi(t) = |wi(t, xi(t, yi))|
∂xi(t, yi)

∂yi
. (6.26)

Thus, noting (6.16) and (6.22), we obtain

Qi(t) ≤ C20ε exp (| log ε|α) , ∀ t ∈ [0, t∗), (6.27)

i.e.,

|wi(t, xi(t, yi))|
∂xi(t, yi)

∂yi
≤ C20ε exp (| log ε|α) , ∀ t ∈ [0, t∗). (6.28)

This proves (6.3) in Case 2. The proof of Lemma 6.1 is finished.
Using Lemma 6.1, completely repeating the proof of Theorem 1.2 and Theorem 1.3 in [2],

we get the conclusion of Theorem 1.4 and Theorem 1.5 immediately.
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