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Abstract

This paper deals with nonlinear expectations. The author obtains a nonlinear gen-
eralization of the well-known Kolmogorov’s consistent theorem and then use it to con-
struct filtration-consistent nonlinear expectations via nonlinear Markov chains. Com-
pared to the author’s previous results, i.e., the theory of g-expectations introduced via
BSDE on a probability space, the present framework is not based on a given probabil-
ity measure. Many fully nonlinear and singular situations are covered. The induced
topology is a natural generalization of Lp-norms and L∞-norm in linear situations.
The author also obtains the existence and uniqueness result of BSDE under this new
framework and develops a nonlinear type of von Neumann-Morgenstern representation
theorem to utilities and present dynamic risk measures.
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§ 1 . Introduction

Let (Ω,F) be a measurable space and let Lb(F) be the space of F -measurable and
bounded real functions. A nonlinear expectation is a continuous functional

E [ · ] : Lb(F) −→ R

that is order preserving (i.e., E [X1] ≥ E [X2], if X1 ≥ X2) and constant preserving (i.e.,
E [c] = c).

If furthermore E [ · ] is a linear functional, then it is a classical expectation under the
(additive) probability measure P on (Ω,F) induced by

P (A) := E [1A], A ∈ F . (1.1)

In this case we have
E [X ] =

∫
Ω

X(ω)dP (ω).
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It is well known that there is a 1-1 correspondence between linear expectations and additive
probability measures. But this 1-1 correspondence fails in nonlinear situations. In general,
given a nonlinear expectation E [ · ], one can still derive a non additive probability measure
P by (1.1). But there exist an infinite number of nonlinear expectations satisfying the same
relation (see [8]). Thus in nonlinear situations the notion of expectation is more characteristic
than that of non additive measures. We refer to [7] for a deeper investigation.

In the dynamic situation, a basic notion is the conditional expectation under a given
filtration Ft. This notion permits us to use the up-date information Ft to obtain the best
estimate of a given random variable. The well-known martingale theory is fundamentally
based on this notion (see [15]). As in linear situations, the conditional nonlinear expectation
of a random variable X under Ft is an Ft-measurable random variable E [X/Ft] satisfying

E [1AE [X/Ft]] = E [1AX ], ∀A ∈ Ft.

A nonlinear expectation E [ · ] is called Ft-consistent if such E [X/Ft] exists for all t ≥ 0 and
X ∈ Lb(F). In nonlinear situations, there do exist non-consistence expectations. If E [ · ] is
Ft-consistent, we then can develop the related nonlinear martingale theory in a way parallel
to the classical one.

The following problems are theoretically interesting and practically important:
P1. Can we find a simple mechanism, which enables us to generate a large kind of

filtration-consistent nonlinear expectation?
P2. For a given filtration consistent nonlinear expectation, is there a simple mechanism

that determines the value of this expectation?
Problem P1 was investigated in [36] where a notion of g-expectation was introduced under

the framework of the natural filtration (Ft)0≤t≤T generated by a d-dimensional Brownian
motion (Bt)0≤t≤T in a probability space (Ω,F , P ). It is defined as follows. For each FT -
measurable and L2-integrable random variable X , we solve the following BSDE:

−dY X
t = g(t, ZX

t )dt− ZX
t Bt, t ∈ [0, T ],

Y X
T = X. (1.2)

Here the mechanism is the function g : (ω, t, z) ∈ Ω× [0, T ]×Rd �−→ R. It satisfies the usual
conditions for a BSDE, i.e., Lipschitz and linear growth in z and Ft-adapted. In addition
we assume that g(t, 0) ≡ 0. The g-expectation of X is defined by

Eg[X ] := Y X
0 .

We can check that it is an Ft-consistent. In fact the corresponding conditional g-expectation
of X given by Ft is nothing else but Eg[X |Ft] = Y X

t . It is worth to point out that the
expectation EQ[ · ] under the probabilityQ defined by the well-known Girsanov transforation

dQ

dP
= exp

{∫ T

0

bsBs −
1
2

∫ T

0

|bs|2ds
}

is in fact the g-expectation for g(t, z) = 〈bt, z〉, which is linear in z. When g is nonlinear in z,
the notion of g-expectations can be considered as a nonlinear Girsanov transformation. Thus
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a large class of Ft-consistent nonlinear expectations can be generated by a simple mechanism
g. Once this function g is obtained, then the corresponding nonlinear expectation is uniquely
determined by solving BSDE (1.2). We recall that in the last decade many numerical
methods, algorithms and the related numerical analysis, i.e., convergence and converging
rate, ect., have developed.

For an Ft-consistent nonlinear expectation, one can introduce the notion of nonlinear
martingales, submartingales and supermartingales. It is then natural to ask whether the
abandunt results in the classical martingale theory have their counterparts under the frame-
work of g-expectations. Many results have been obtained in this direction, among them the
decomposition theorem of Doob-Meyer’s type of g-supermartingales or submartingales has
been proved for square-integrable situation by [37] and [10–12].

A natural question closely related to Problem P2 is: Is the notion of g-expectations
general enough to include all regular Ft-consistent nonlinear expectations? In the recent
paper [8] we have the following result: if an Ft-consistent nonlinear expectation E is Egμ

dominated with gμ(z) := μ|z| for some sufficiently large μ > 0, then there exists a unique
function g such that E [X ] = Eg[X ] for all X (see Definition 2.2 for the notion of domination,
it plays an important role in this paper). Nonlinear Doob-Meyer decomposition mentioned
above plays a crucial role in the proof of this result (cf. [39] for a more systematic explanation
and [38, 40] for more general results).

But on the other hand, we shall show in this paper that Eg[ · ] is a quasi nonlinear
expectation, i.e., the fully nonlinear situation can not be covered. Thus to solve Problem
P2, we must find a new mechanism to generate a wider kind of nonlinear expectations.

In this paper we shall use a nonlinear Markov semigroup (or Markov chain) (Tt)t≥0 to
generate a nonlinear expectation E [ · ]. In other words, the infinitesimal generator A of
(Tt)t≥0 is the generator of the corresponding nonlinear expectations. In this situation, if
A is quasilinear (resp. fully nonlinear) then E [ · ] is also quasilinear (resp. fully nonlinear).
Brievely, our procedure is as follows:

(1) We use a self-dominated nonlinear Markov semigroup T ∗
t to generate a self-dominated

and Ft-consistent nonlinear expectation E∗. In this step, we will obtain an extension of
Kolmogorov consistent theorem for a family of finite dimensional nonlinear distributions
induced by the the Markov semigroup T ∗

t . The condition of the self domination of T ∗

permits us to induce a norm under which E∗[ · ] and E∗[ · |Ft] are continuous.

(2) For an arbitrary T ∗
t -dominated Markov semigroup Tt we can use the same topology

induced by T ∗ to generate the corresponding Ft-consistent nonlinear expectation E [ · ] which
is E∗-dominated. This E [ · ] is therefore continuous under the given norm.

Let g(z), z ∈ Rd be a real Lipschitz function with Lipschitz constant μ > 0. Then Eg is
Egμ dominated, so is the related nonlinear Markov chains. This implies that a large class of
g-expectations can be also generated by the above approach. In this paper we shall also give
some typical class of fully nonlinear Markov semigroups. They are either self dominated
or dominated by some other self dominated fully nonlinear Markov semigroups. Thus the
way to generate filtration consistent nonlinear expectations is largely extended. It is an
important step towards to solve completely Problem P2.
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On the other hand, since the classical linear Markov semigroups are self dominated, they
are within our new framework. In fact in this special situation this method corresponds
to the classical L1 theory. We recall that the notion of g-expectations is essentially an
L2-theory.

Another advantage of this domination approach is that, unlike in BSDE theory, no prior
probability space is required. In fact, the continuity and completeness of the generated non-
linear expectation is under the norm induced by the given self dominated Markov semigroup.
This constitutes a new “probability space”.

We shall also study the existence and uniqueness of BSDE under this new “probability
space”. This extends BSDE theory to fully nonlinear situations.

This paper is organized as follows: In Section 2, we shall introduce the notion of dom-
inated and self-dominated nonlinear pre-expectations, introduce the norms and then take
the completions. We thus have a generalized notion of “probability space”. In Section 3
we introduce the notion of families of finite-dimensional distributions corresponding to a
nonlinear expectation and prove the related nonlinear Kolmogorov consistent theorem. The
notion and examples of nonlinear Markov chains (i.e., nonlinear Markov semigroups) will
be given and studied in Section 4. In Section 5, we shall construct the filtration consistent
nonlinear expectation corresponding to a nonlinear Markov semigroup. In Section 6 we shall
prove an existence and uniqueness theorem of BSDE under this new probability space. In
Section 7 we discuss the relation between nonlinear expectations and nonlinear expected
utilities.

The systematic research on filtration-consistent nonlinear expectations begins from [36].
The formal definition is only given in 2002. Many interesing and largely open problems are
still to be explored.

§ 2 . Nonlinear Expectations

2.1. Examples

A financial market consists of a non-risky asset, called the bond, with price P0(t) satis-
fying

dP0(t)
dt

= rtP0(t), P0(0) = 1,

and a risky asset, called the stock, with price P v(t) satisfying

dP (t) = P (t)[btdt+ σtdB(t)], P (0) = p.

where Bt, t ≥ 0 is a Brownian motion. We assume that bt, σt and σ−1
t are uniformly

bounded and FB
t adapted, where FB

t is the filtration generated by the Brownian motion B.
We assume that an investor invests π0(t) = n0(t)P0(t) in the bond and π(t)n(t)P (t) in the
stock. His total wealth at time t is yt = π0(t) + π(t). Under the self-financing condition, his
wealth evolves according to

dyt = n0(t)dP0(t) + n(t)dP (t),
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or
dyt = [ry + (bt − r)π(t)]dt + σtπ(t)dBt.

Without loss of generality, we may assume that rt ≡ 0 (otherwise we can take the discount
exp(−

∫ t

0
rsds)). Thus

dyt = σtπ(t)[dBt + σ−1
t btdt]. (2.1)

Let ξ be a bounded contingent claim at maturity t = T . It is an FB
T -measurable positive

and bounded random variable. We can solve Equation (2.1) with the terminal condition
yT = ξ. This is a backward stochastic differential equation whose solution is a pair (yt, πt).
The value y0 is the cost to replicate ξ at the time t = 0. y0 is the non-arbitrage price of the
contingent claim ξ. It can be expressed as

y0 = EXT [ξ] = E[XT ξ],

where

XT = exp
[
−

∫ T

0

σ−1
s bsdBs −

1
2

∫ T

0

|σ−1
s bs|2ds

]
.

Example 2.1. Consider a market where the short-selling is prohibited, i.e., π(t) ≥ 0.
Then the replication can be achieved by a penalty method

dyβ
t = σtπ

β(t)[dBt + σ−1
t btdt] − β[σtπ

β(t)]−dt,

yβ
T = ξ.

For each given β ≥ 0, the solution yβ
0 = Eβ [ξ] is a g-expectation. The selling price of the

contingent claim ξ under the prohibition of short selling is

E∞[ξ] := lim
β↗∞

Eβ [ξ].

Both Eβ [ξ] and E∞[ξ] are nonlinear expectations.

Example 2.2. Consider a large investor who influences the stocks price via controlling
the volatility: σt = σ(vt) and the rate of expected return: bt = b(vt), where vt, t ≥ 0 is his
control policy and is FB

t adapted with values in a control domain U . Here we assume that

b = b(v), σ = σ(v), σ−1(v), v ∈ U,

are uniformly bounded functions. Thus we have

dyt = σ(vt)πt[dBt + σ−1(vt)b(vt)dt].

In this situation the non-arbitrage price of a contingent claim at maturity t = T is

yv
0 = Ev[ξ] = E[Xv

T ξ],

where Ev[ · ] is the expectation under P v via the Girsonov transformation

XT = exp
[
−

∫ T

0

σ−1(vs)b(vs)dBs −
1
2

∫ T

0

|σ−1b|2(vs)ds
]
.
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Thus, in order to replicate a contingent claim ξ, the minimum cost he need to pay at the
time t = 0 is

E∗[ξ] := inf
v( · )

Ev[ξ].

Example 2.3. On the other hand, a small investor who knows only that b(v) and σ(v)
are ranged in v ∈ U but who has no further inside information should consider the worst
case. For him, the cost of the replication is

E∗[ξ] := sup
v( · )

Ev[ξ].

Both E∗ and E∗ are nonlinear expectations.

2.2. General framework

In the above examples our arguments are based on a given Wiener measure. We now
introduce a self-closed framework. Let (Ω,F) be a measurable space. Let Lb(F) be the
linear space of all F -measurable real functions such that

sup
ω∈Ω

|X(ω)| <∞. (2.2)

Let D be a linear subspace of Lb(F) such that
( i ) 1 ∈ D;
(ii) if X ∈ D then |X | ∈ D.
D constitutes a vector lattice. A typical example is

D =
{ N∑

i=1

ai1Ai , {Ai}N
i=1 is a partition of (Ω,F), ai ∈ R

}
.

We shall define pre-expectations on D and then take the completion under a norm induced
from these pre-expectations.

Definition 2.1. E : D −→ R is said to be a nonlinear pre-expectation defined on D if it
satisfies

(E1) monotonicity:

if X1(ω) ≥ X2(ω), ∀ω ∈ Ω, then E [X1] ≥ E [X2];

(E2) constant-preserving:

E [c] = c for each constant c.

If moreover D is a Fréchet space equipped with a quasi-norm ‖ · ‖ and E [ · ] is continuous
under this norm, then E is called a nonlinear expectation on (D, ‖ · ‖).

Definition 2.2. Let E1 and E2 be two nonlinear pre-expectations on D. E1[ · ] is said to be
dominated (resp. strongly dominated ) by E2[ · ], or E2-dominated (resp. strongly dominated ),
if

E1[X ] − E1[Y ] ≤ E2[|X − Y |], ∀X,Y ∈ D

(resp. E1[X ] − E1[Y ] ≤ E2[Y −X ], ∀X,Y ∈ D).



NONLINEAR EXPECTATIONS AND NONLINEAR MARKOV CHAINS 165

E is said to be self-dominated (resp. strongly self-dominated ) if it is dominated (resp. strong
-ly dominated ) by itself.

Remark 2.1. If the constraint (E2) is reduced to (U2) u(x) := E [x], x ∈ R, is a deter-
ministic, continuous and strictly increasing function such that u(0) = 0, then all conclusions
derived in this section as well as in the next two sections still hold true. A functional sat-
isfying (E1) and (U2) is called a pre-utility. It plays an important role in economics and
finance. We shall discuss it in the last section.

Let E∗ be a self-dominated nonlinear pre-expectation on D. We introduce a quasi-norm:

‖X‖∗ := E∗[|X |], X ∈ D.

Since
E∗[X + Y ] ≤ E∗[X ] + E∗[|Y |], ∀X,Y ∈ D, (2.3)

we have
E∗[|X + Y |] ≤ E∗[|X | + |Y |] ≤ E∗[|X |] + E∗[|Y |],

or
‖X + Y ‖∗ ≤ ‖X‖∗ + ‖Y ‖∗ . (2.4)

In particular, for each integer n ≥ 1, we have

‖nX‖∗ ≤ n ‖X‖∗ . (2.5)

Lemma 2.1. We have

lim
αn→0

‖αnX‖∗ = 0, (2.6)

lim
‖Xn‖∗→0

‖αXn‖∗ = 0. (2.7)

Particularly
‖X‖∗ = 0 implies ‖αX‖∗ = 0. (2.8)

Proof. The first limit is due to the fact that

‖αnX‖∗ ≤
∥∥∥αn max

ω
|X(ω)|

∥∥∥
∗

= |αn|max
ω

|X(ω)| → 0.

For the second limit, we fix an integer i ≥ 1, such that |αi | ≤ 1. Since |αi Xn| ≤ |Xn|, we
then have

‖αXn‖∗ =
∥∥∥iα
i
Xn

∥∥∥
∗
≤ i

∥∥∥α
i
Xn

∥∥∥
∗
≤ i ‖Xn‖∗ → 0, as ‖Xn‖∗ → 0.

The set of null-elements under ‖ · ‖∗ is denoted by D∗
0 :

D∗
0 := {X ∈ D; ‖X‖∗ = 0}. (2.9)

We have
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Lemma 2.2. D∗
0 is a linear subspace of D.

Proof. By (2.8), X ∈ D∗
0 and α ∈ R implies αX ∈ D∗

0 . Now let X,Y ∈ D∗
0 and

α, β ∈ R. We have
‖αX + βY ‖∗ ≤ ‖αX‖∗ + ‖βY ‖∗ = 0.

This completes the proof.

Lemma 2.3. We have

‖X + Y ‖∗ = ‖X‖∗ , ∀X ∈ D, Y ∈ D∗
0 .

Proof. By (2.4), we have

‖X + Y ‖∗ ≤ ‖X‖∗ + ‖Y ‖∗ = ‖X‖∗ .

On the other hand
‖X + Y ‖∗ = ‖X + Y ‖∗ + ‖−Y ‖∗ ≥ ‖X‖∗ .

From the above results, we can introduce an equivalent relation ∼ in D, i.e., X ∼ Y iff
X − Y ∈ D∗

0 . The quotient linear space under this equivalent relation is denoted by D/D∗
0 .

For each {X} ∈ D/D∗
0 with X ∈ D a representative element of {X}, we denote by

E [{X}] := E [X ], ‖{X}‖∗ := ‖X‖∗ . (2.10)

Remark 2.2. In this space D/D∗
0 , {X} = {Y } (resp. {X} ≥ {Y }) means there exists

a null-element Z ∈ D∗
0 such that X(ω) +Z(ω) = Y (ω) (resp. X(ω) + Z(ω) ≥ Y (ω)), for all

ω ∈ Ω.

It is clear that (D/D∗
0 , ‖ · ‖∗) constitutes a linear quasi-normed space. Its completion is

denoted by ‖ · ‖∗. We thus have the following theorem.

Theorem 2.1. Let E∗ be a self-dominated nonlinear pre-expectation defined on D and let
D∗

0 be the linear subspace of ‖ · ‖∗-null elements with ‖ · ‖∗ = E∗[| · |]. Then, with definition
(2.10), E∗ defined on the quotient space D/D∗

0 is a self-dominated pre-expectation and ‖ · ‖∗
is a quasi-norm on D/D∗

0. Consequently, the completion of D/D∗
0 under ‖ · ‖∗, denoted by

[D]∗, is a Fréchet space (F -space in short ).

Since
|E∗[X ] − E∗[Y ]| ≤ E∗[|X − Y |] = ‖X − Y ‖∗ , ∀X,Y ∈ D,

we then have

Corollary 2.1. Let E∗ be a self-dominated (resp. strongly self-dominated ) nonlinear
pre-expectation defined on D. E∗ can be continuously and uniquely extended to the F -space
[D]∗. It is a self-dominated (resp. strongly self-dominated ) expectation such that

|E∗[X ] − E∗[Y ]| ≤ ‖X − Y ‖∗ , ∀X,Y ∈ [D]∗,

and such that
E∗[{X}]− E∗[{Y }] = E∗[X ] − E∗[Y ], ∀X,Y ∈ D.
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Corollary 2.2. Let E be an E∗-dominated (resp. strongly dominated ) pre-expectation
defined in D. Then E can be uniquely extended to the Fréchet space [D]∗ satisfying

|E [X ] − E [Y ]| ≤ ‖X − Y ‖∗ , ∀X,Y ∈ [D]∗.

Moreover, this extension E is an E∗-dominated (resp. strongly dominated ) nonlinear expec-
tation.

2.3. Examples

We give some examples of nonlinear expectations.

Example 2.4. A linear pre-expectation E[ · ] is strongly self-dominated. The completion
space [Lb(F)]∗ is L1(Ω,F , P ∗) with P ∗(A) := E∗[1A].

Example 2.5. An extremely strong nonlinear pre-expectation and an extremely weak
one on Lb(F) in the sense of domination are respectively

E∞[X ] := sup
ω∈Ω

X(ω), and E∞[X ] := inf
ω∈Ω

X(ω).

E∞ is strongly self-dominated. E∞ is dominated by E∞. It induces a Banach space [D]∞
under the norm: ‖X‖∞ := sup

ω∈Ω
|X(ω)|.

Remark 2.3. If a nonlinear pre-expectation E1 defined on D is dominated (resp.
strongly dominated) by some other one E2, then E1 is also dominated (resp. strongly dom-
inated) by E∞. Thus E1 can be continuously and uniquely extended to [D]∞.

Example 2.6. Let f : R −→ R be continuous and strictly increasing function and
let f−1 be its inverse. Given a nonlinear pre-expectation E . We can construct another
pre-expectation by

Ef [X ] := f−1([E [f(X)]).

A typical example is fp(x) := (x+)p − (x−)p for some ṗ ≥ 1. We have Efp [|X |] :=
([E [|X |p)])1/p. If E is linear, then it is dominated by Efp . The induced norm is Lp.

Example 2.7. A typical situation of the above Ef is in risk sensitive controls, where
f(x) := eθx (see for example [30]).

Example 2.8. Let {Ei, i ∈ I} be a family of linear pre-expectation defined on Lb(F).
We set

E∗[X ] := sup
i∈I

Ei[X ], E∗[X ] := inf
i∈I

Ei[X ].

We can check that E∗ is a strongly self-dominated nonlinear pre-expectations. It follows
from E∗ = −E∗[−X ] and thus

E∗[X ]− E∗[Y ] = E∗[−Y ] − E∗[−X ] ≤ E∗[X − Y ]

that E∗ is dominated by E∗. We can check that ‖ · ‖∗ is a norm and [Lb(F)]∗ is a Banach
space.
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Example 2.9. Let {Eij , i ∈ I, j ∈ J} be a family of linear pre-expectation defined on
Lb(F). We set

Ei[X ] : = sup
j∈J

Eij [X ], E∗[X ] : = sup
i∈I, j∈J

Eij [X ] = sup
i∈I

Ei[X ],

E∗[X ] : = inf
i∈I

Ei[X ] = inf
i∈I

sup
j∈J

Eij [X ], E ′
∗[X ] : = sup

i∈I
inf
j∈J

Eij [X ].

Since inf
i∈I

Ei[X ] − inf
i∈I

Ei[Y ] ≤ inf
i∈I

{Ei[X ] − Ei[Y ]}, we have

E∗[X ] − E∗[Y ] ≤ inf
i∈I

{Ei[X ] − Ei[Y ]} ≤ sup
i∈I

|Ei[X ] − Ei[Y ]|

≤ sup
i∈I

Ei[|X − Y |] = E∗[|X − Y |].

Thus E∗ is E∗-dominated. Consequently, E ′∗ is also dominated by E∗ since E ′∗[X ] = −E∗[−X ].

Example 2.10. Let f(x, y) : R2 −→ R be a continuous function such that f(x, y) ≥
f(x′, y′) if x ≥ x′, y ≥ y′ and such that f(x, x) ≡ x. Then with the notions of the precedent
example, E [ · ] := f(E∗[ · ], E∗[ · ]) is a nonlinear expectation on [Lb(F)]∗.

Example 2.11. (g-Expectation (see [36])) Let (Ft)t≥0 be the filtration of a d-dimension
-al Brownian (Bt)t≥0 in a probability space (Ω,F , P ) and let D be the linear space of all

bounded and
{ ⋃

T>0

FT

}
-measurable random variables. For each X ∈ D, there exists a

T > 0 such that X is FT -measurable. We solve the following 1-dimensional BSDE

−dYt = g(Zt)dt− ZtdBt, YT = X,

where the given generator g(z) : Rd → R satisfies Lipschitz condition in z and g(0) ≡ 0. We
define

Eg[X ] := Yt|t=0.

Eg[X ] is called g-expectation. This g-expectation has Ft-conditional expectation Eg[X/Ft]
:= Yt. It is the only Ft-measurable element satisfying

Eg[1AEg[X/Ft]] = Eg[1AX ], ∀A ∈ Ft.

We thus call Eg a filtration-consistent nonlinear expectation. A particularly interesting
case is gμ(z) := μ|z|, where μ is a constant (see [7]) for an interesting application of Egμ

to economics and finance). When μ ≥ 0, Egμ is a strongly self-dominated nonlinear pre-
expectation in D. If μ is bigger than the Lipschitz constant c of a generator g, then Eg

is dominated by Egμ (see [8]). In particular, when μ = 0, the related completion of D is
L1(Ω,F∞, P ).

Remark 2.4. A notion of Egμ-dominated and Ft-consistent nonlinear expectation was
introduced in [8]. We have proved that if the nonlinearity of an Egμ-dominated expectation
depends only on the risk, then it is a g-expectation.

Example 2.12. (A Singular Case) Let α ∈ Rd be given. We set gμ = μ|α · z|, ∀ z ∈ Rd.
In this case we have Egμ [X ] ≥ Egν [X ], for μ ≥ ν. Egν is strongly self-dominated

Egμ [X ] − Egμ [Y ] ≤ Egμ [X − Y ].
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We then define E∞[X ] := lim
μ→∞ Egμ [X ]. It is easy to check that E∞ is still a strongly self-

dominated expectation. In finance, this expectation is used in the pricing of contingent
claims in an incomplete market (see [13, 14, 18, 19]).

2.4. L∞
∗ -Norms

Let E∗ be a self-dominated nonlinear pre-expectation defined on Lb(F) and let L∗(F)
be the completion of Lb(F) under the norm ‖ · ‖∗ in the sense of Theorem 2.1. We assume
furthermore that

X1, X2, · · · ∈ L∗(F) and Xn(ω) ↘ 0, ∀ω ∈ Ω imply E∗[Xn] ↘ 0.

Lemma 2.4. Under this assumption we also have

X,X1, X2, · · · ∈ L∗(F) and Xn(ω) ↘ X(ω), ∀ω ∈ Ω imply E∗[Xn] ↘ E∗[X ],

X,X1, X2, · · · ∈ L∗(F) and Xn(ω) ↗ X(ω), ∀ω ∈ Ω imply E∗[Xn] ↗ E∗[X ].

Proof. In fact, since |X −Xn|(ω) ↘ 0, ∀ω ∈ Ω. By the self-domination of E∗, we have,
for the first situation,

0 ≤ E∗[Xn] − E∗[X ] ≤ E∗[|X −Xn|] ↘ 0,

and for the second situation,

0 ≤ E∗[Xn] − E∗[X ] ≤ E∗[|X −Xn|] ↘ 0.

Lemma 2.5. Let X ∈ L∗(F). Then E∗[|X |] − E∗[|X | ∧ n] ≤ E∗[|X | − |X | ∧ n] ↘ 0 as
n↗ ∞.

Lemma 2.6. Let X ∈ L∗(F). Then

E∗[|X |] = 0 ⇐⇒ E∗[1{|X|>0}] = 0.

Proof. Necessity. Let E∗[|X |] = 0. Suppose by contraction that E∗[1{|X|>0}] > 0. Since
for each ω ∈ Ω, 1{|X|>ε}(ω) ↗ 1{|X|>0}(ω) as ε↘ 0, we then have

E∗[1{|X|>ε}] ↗ E∗[1{|X|>0}] > 0.

It follows that there exists ε > 0 such that E∗[1{|X|>ε}] > 0. Thus E∗[ε1{|X|>ε}] > 0 and
then E∗[|X |] ≥ E∗[ε1{|X|>ε}] > 0. This contradicts E∗[|X |] = 0.

Sufficiency. We first prove E∗[|X | ∧ n] = 0 for each fixed n = 1, 2, · · · . Since

0 = E∗[n1{|X|>0}(ω)] = E∗[n1{(|X|∧n)>0}]

≥ E∗[(|X | ∧ n)1{(|X|∧n)>0}] = E∗[|X | ∧ n],

we have E∗[|X | ∧ n] = 0. |X | ∧ n] ↗ |X | as n↗ ∞, 0 = E∗[|X | ∧ n] ↗ E∗[|X |]. Thus

E∗[|X |] = 0.
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For each X ∈ L∗(F) we set

ess∗ sup
ω∈Ω

X(ω) : = inf{c ∈ R; c ≥ X in L∗(F)},

‖X‖∗∞ : = ess∗ sup
ω∈Ω

|X(ω)|.

We then can define
L∞
∗ (F) := {X ∈ L∗(F); ‖X‖∗∞ < +∞}.

By Lemma 2.6, L∞
∗ (F) constitutes a Banach space under the norm ‖X‖∗∞.

Remark 2.5. If E∗ is a linear expectation, then the space L∞∗ (F) becomes the classical
L∞(F).

Lemma 2.7. Let X, X1, X2, · · · ∈ L∗∞(F) be such that ‖Xn −X‖∗∞ → 0 and let
f : R −→ R be a continuous function. Then f(X), f(X1), f(X2), · · · ∈ L∞

∗ (F) and

‖f(Xn) − f(X)‖∗∞ → 0.

§ 3 . Distributions of Random Variables and Stochastic Processes

In this section we consider nonlinear distributions of Rd-valued random variables and
Rd-valued stochastic processes. As in classic situations, the space Rd can be generalized
to a Polish space S. We shall give a nonlinear generalization of Kolmogorov’s consistent
theorem.

3.1. Distributions of random variables

Let E [ · ] be a nonlinear pre-expectation on Lb(F). We also denote by Lb(B(Rd)), the
space of B(Rd)-measurable real functions defined on Rd such that sup

x∈Rd

|φ(x)| <∞ holds for

each φ ∈ Lb(B(Rd)). Let X ∈ Lb(F) be given. The nonlinear distribution of X under E [ · ]
is defined by

T [φ] := E [φ(X)], φ ∈ Lb(B(Rd)).

This distribution T [ · ] is again a nonlinear pre-expectation defined on Lb(B(Rd)).

3.2. Family of finite-dimensional nonlinear distributions of a process

In the rest of this paper Ω will be a collection of Rd-valued processes defined on R+ =
[0,∞). A typical situation is Ω = Cd(R+), the space of all Rd-valued continuous functions
(ωt)t∈R+ equipped with the distance

ρ(ω1, ω2) :=
∞∑

i=1

2−i
[(

max
t∈[0,i]

|ω1
t − ω2

t |
)
∧ 1

]

with F = B(Cd(R+)). Our formulation is also applied to some other canonical space such
as D(0,∞), (Rd)[0,∞). The space Lb(F) is defined in (2.2). We also set

L0(F) := {X(ω) = φ(ωt1 , · · · , ωtm), ∀m ≥ 1, t1, · · · , tm ∈ R+, ∀φ ∈ Lb(B[(Rd)m])}.
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It is clear that L0(F) is a linear subspace of Lb(F).
Given a nonlinear pre-expectation E [ · ] defined on Lb(F). The family of finite-dimension

-al nonlinear distributions of the canonical process (ωt)t∈R+ under E [ · ] is defined as follows.
For each integer m ≥ 1, φ ∈ Lb(B[(Rd)m]) and t1, · · · , tm ∈ R+ (in this paper we always
assume that t1, · · · , tm are different from each other), we set

Tt1,··· ,tm [φ( · )] := E [φ(ωt1 , · · · , ωtm)], φ ∈ Lb(B[(Rd)m]). (3.1)

Since (ωt1 , · · · , ωtm) can be regarded as an Rm×d-valued random variable, Tt1,··· ,tm [φ( · )] is
a nonlinear pre-expectation defined on Lb(B[(Rd)m]).

As in classical situations, this family of distributions is consistent in the following sense.
Let Πm be the set of all permutations of (1, 2, · · · ,m), i.e., for each π ∈ Πm,

π(1, 2, · · · ,m) = (π(1), π(2), · · · , π(m)).

For each π ∈ Πm and φ ∈ Lb(B[(Rd)m]), we also denote

φπ(x1, · · · , xm) := φ(xπ(1), · · · , xπ(m)).

We have the following obvious properties.

Lemma 3.1. The family of finite-dimensional nonlinear distributions of the process
(ωt)t∈[0,∞) defined in (3.1) satisfies

(k0) Tt1,··· ,tm [φ( · )] is a nonlinear pre-expectation on Lb(B[(Rd)m]);
(k1) Tt1,··· ,tm [φ( · )] = Ttπ(1),··· ,tπ(m) [φ

π( · )], ∀π ∈ Πm;
(k2) If φ ∈ Lb(B[(Rd)m]) does not depend on xm, i.e., φ = φ(x1, · · · , xm−1), then

Tt1,··· ,tm [φ( · )] = Tt1,··· ,tm−1 [φ( · )].

From (3.1) we immediately have

Lemma 3.2. Let E1 and E2 be two pre-expectations defined on Lb(F) and let {T 1
t1,··· ,tm

}
and {T 2

t1,··· ,tm
} be the corresponding families of finite-dimensional distributions respectively

induced by E1 and E2 in the sense of (3.1). If E1 is E2-dominated (resp. strongly domi-
nated ), then for each t1, · · · , tm ∈ R+, T 1

t1,··· ,tm
is also T 2

t1,··· ,tm
-dominated (resp. strongly

dominated ):

T 1
t1,··· ,tm

[φ(·)] − T 1
t1, · s,tm

[ψ( · )] ≤ T 2
t1,··· ,tm

[(φ − ψ)( · )], ∀φ, ψ ∈ Lb(B[(Rd)m]).

Namely {T 1
t1,··· ,tm

} is dominated (resp. strongly dominated ) by {T 2
t1,··· ,tm

}. In particular, if
E∗ is self-dominated (resp. strongly self-dominated ), then the family of finite-dimensional
distributions {T ∗

t1,··· ,tm
} is also self-dominated (resp. strongly self-dominated ).

We shall give an extension of Kolmogorov’s consistence theorem to nonlinear situations.

Theorem 3.1. (Nonlinear Kolmogorov Theorem)
( i ) Let

{Tt1,··· ,tm [φ( · )], m ≥ 1, t1, · · · , tm ∈ R+, φ ∈ Lb(B[(Rd)m])}
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be a family of nonlinear pre-distributions satisfying (k0), (k1) and (k2). Then there exists
a unique nonlinear pre-expectation E [ · ] defined on L0(F) such that

E [X ] = Tt1,··· ,tm [φ( · )], ∀m ≥ 1, t1, · · · , tm ∈ R+, ∀X ∈ L0(F)

with X(ω) = φ(ωt1 , · · · , ωtm), φ ∈ Lb(B[(Rd)m]).

(ii) If a family of nonlinear pre-distributions

{T ∗
t1,··· ,tm

[φ( · )], m ≥ 1, t1, · · · , tm−1 ∈ R+, φ ∈ Lb(B[(Rd)m])}

satisfying (k0), (k1) and (k2) is self-dominated (resp. strongly self-dominated ), then the
corresponding nonlinear pre-expectation E∗[ · ] is also self-dominated (resp. strongly self-
dominated). Consequently, we can use Theorem 2.1 to extend E∗ to the Fréchet space
[L0(F)]∗ under the quasi-norm ‖X‖∗ := E∗[|X |]. The extension E∗ is a self-dominated
(resp. strongly self-dominated ) nonlinear expectation.

(iii) Furthermore, if a family of nonlinear pre-distributions {Tt1,··· ,tm} satisfying con-
ditions in (i) is {T ∗

t1,··· ,tm
}-dominated (resp. strongly dominated ), then the corresponding

nonlinear pre-expectation E is also E∗-dominated (resp. strongly dominated ). Consequently,
we can use Theorem 2.1 to extend E to a E∗-dominated (resp. strongly dominated ) nonlinear
expectation on [L0(F)]∗.

Proof. (i). From (k0), (k1) and (k2) we can consistently define a functional E [ · ] :
L0(F) → R such that

E [φ(ωt1 , · · · , ωtm)] := Tt1,··· ,tm [φ( · )], ∀φ ∈ Lb(B[(Rd)m]).

The uniqueness is clear. From the monotonicity and constant-preserving of T , we have

E [X ] − E [Y ] ≥ 0, if X ≥ Y, (3.2)

E [c] = c. (3.3)

Thus E∗ is a nonlinear pre-expectation on L0(F).
(ii) and (iii). Thanks to the self-domination of T ∗, we have

T ∗
t1,··· ,tm

[φ( · )] − T ∗
t1,··· ,tm

[ψ( · )] ≤ T ∗
t1,··· ,tm

[|φ− ψ|( · )], ∀φ, ψ ∈ Lb(B[(Rd)m]).

In other words,
E∗[X ] − E∗[Y ] ≤ E∗[|X − Y |], ∀X,Y ∈ L0(F). (3.4)

The rest of the conclusions follows directly from Theorem 2.1 and its corollaries.

§ 4 . Nonlinear Markov Chains

4.1. Nonlinear markov chains

For simplification, we only consider time-homogeneous nonlinear Markov chains. Non-
homogeneous situation can be treated similarly. We consider the following family of nonlin-
ear pre-expectations, parametrized by t ∈ R+,

Tt[φ] : Lb(B(Rd)) −→ Lb(B(Rd)), t ≥ 0. (4.1)
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In certain cases it is convenient to consider some (lattice) subspaces of Lb(B(Rd)), such as
Cb(Rd) (uniformly continuous and bounded real functions on Rd), instead of Lb(B(Rd)).

Definition 4.1. A family of nonlinear pre-expectations (4.1) is called a Markov chain if
it satisfies

(m1) For each fixed (t, x) ∈ R+ ×Rd, Tt[φ](x) is a nonlinear pre-expectation defined on
Lb(B(Rd)).

(m2) T0[φ](x) = φ(x).
(m3) Tt[φ](x) satisfies the following Chapman (semigroup) formula

Tt ◦ Ts[φ] := Ts[Ts[φ]] = Tt+s[φ]. (4.2)

Definition 4.2. Let T 1
· , T 2

· be two Markov chains defined on Lb(B(Rd)). T 1
· is said

to be dominated (resp. strongly dominated ) by T 2
· if for each t ∈ R+, the pre-expectation

T 1
t [ · ] is dominated (resp. strongly dominated ) by T 2

t [ · ]. A Markov chain T · defined on
Lb(B(Rd)) is said to be self-dominated (resp. strongly self-dominated ) if it is dominated
(resp. strongly dominated ) by itself.

4.2. Examples

Example 4.1. For φ ∈ Lb(B(Rd)), we set

T 0
t φ(x) := (2πt)−

d
2

∫
Rd

φ(y) exp
[
− |y − x|2

2t

]
dy. (4.3)

This semigroup is induced by a standard d-dimensional Brownian motion (Bt)t≥0 by T 0
t φ(x)

= E[φ(x+Bt)]. It is well known that u(t, x) := T 0
t φ(x) is the solution of the following heat

equation

∂u

∂t
(t, x) =

1
2
Δu(t, x), (t, x) ∈ [0,∞) ×Rd,

u(0, · ) = φ( · ) ∈ Lb(B(Rd)). (4.4)

Example 4.2. (A Nonlinear Generalization of T 0) For some fixed μ ∈ R and for each
φ( · ) ∈ Lb(B(Rd)), we first solve the following nonlinear equation

∂uμ

∂t
(t, x) =

1
2
Δuμ(t, x) + μ|∇uμ|, (t, x) ∈ [0,∞) ×Rd,

uμ(0, · ) = φ( · ) ∈ Lb(B(Rd)). (4.5)

Then we define

T μ
t φ(x) := uμ(t, x), x ∈ Rd.

It is also easy to check that (T μ
t )t≥0 is a semigroup defined on L∞(Rn) . By Comparison

Theorem of Parabolic PDE, if μ ≥ ν, then

T μ
t φ(x) ≥ T ν

t φ(x).
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When μ ≥ 0, it is not hard to check that T μ is convex

T μ
t (αφ + (1 − α)ψ)(x) ≥ α(T μ

t φ)(x) + (1 − α)(T μ
t ψ)(x)

as well as homogeneous
T μ

t [μ|φ|](x) = μT μ
t [|φ|](x).

It is a strongly self-dominated nonlinear Markov chain.

Example 4.3. (A Generalization of T μ) Let g(x, z) : Rd × Rd �−→ R be a given
continuous function satisfying{

g(x, 0) ≡ 0, ∀x ∈ Rd,

|g(x, z1) − g(x, z2)| ≤ μ|z1 − z2|, z1, z2 ∈ Rd.
(4.6)

By analogy to the previous example, we first solve the following nonlinear equation

∂u

∂t
(t, x) =

1
2
Δu(t, x) + g(x,∇u), (t, x) ∈ [0,∞) ×Rd,

u(0, · ) = φ( · ) ∈ L∞(Rd). (4.7)

Then we define
T g

t φ(x) := u(t, x), x ∈ Rd. (4.8)

T g
· is strongly dominated by T μ

· .

The following example gives a fully nonlinear self-dominated Markov chain.

Example 4.4. Let a(x, v) : Rn ×Rk → Rn×n and b(x, v) : Rn ×Rk → Rn be uniformly
continuous and bounded functions such that aij = aji, a and b are uniformly Lipschitz
functions of x. Let V be a closed and bounded subset of Rk. We consider the following fully
nonlinear parabolic PDE

∂u

∂t
(t, x) = sup

v∈V

{ n∑
i,j=1

aij(x, v)∂xixju+
n∑

i=1

bi(x, v)∂xiu
}
, (t, x) ∈ [0,∞) ×Rd,

u(0, · ) = φ( · ) ∈ Cb(Rd). (4.9)

Under the notion of viscosity solution, this equation has a unique solution in Cb(Rd). Then
we define T ∗

t φ(x) := u(t, x), x ∈ Rd. This is a strongly self-dominated Markov chain defined
on Cb(Rd). We alos have T ∗

t [λφ] = λT ∗
t [φ], for λ ≥ 0.

Remark 4.1. Equation (4.9) is known as Hamilton-Jacobi-Bellman equation. It is a
fully nonlinear equation. For detailed studies of this equation, we refer to [9], also [4, 21,
22, 27, 31, 32, 43].

Example 4.5. We can also consider a situation similar to Example 4 where (4.9) is
replaced by

∂u

∂t
(t, x) = inf

v∈V

{ n∑
i,j=1

aij(x, v)∂xixju+
n∑

i=1

bi(x, v)∂xiu
}
.

The corresponding nonlinear Markov chain is dominated by T ∗
· .

Remark 4.2. We can also consider a combination of the last two examples (see [34]).
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§ 5 . Filtration-Consistent Expectation Generated
by Nonlinear Markov Chain

We shall introduce a filtration in the canonical space (Ω,F). A typical example is for
(Ω,F) = (Cd(R+),B(Cd(R+))). In this case we set

Cd
0,t(R

+) :=
{
ω ∈ Cd(R+); ω(s) ≡ ω(t), ∀ s ≥ t

}
and Ft := B(Cd

x,t(R+)). It is clear that (Ft)t≥0 is a filtration and F = σ
{ ⋃

t
Ft

}
. Similarly

to the notions Lb(F) and L0(F), we can define Lb(Ft) and L0(Ft).

5.1. Nonlinear expectation generated by nonlinear Markov chains

Let (Tt)t≥0 be a given nonlinear Markov chain satisfying (m1), (m2) and (m3). For a
fixed x0 ∈ Rd, we can induce a family of finite-dimensional nonlinear distributions in the
following way. For each given integer m ≥ 1 and φ ∈ Lb(B(Rm×d)) and 0 < t1 < · s < tm,
we successively define functions φi ∈ Lb(R(m−i)×d), i = 1, · · · ,m, by

φ1(x1, · · · , xm−1) := Ttm−tm−1 [φ(x1, · · · , xm−1, · )](xm−1),

φ2(x1, · · · , xm−2) := Ttm−1−tm−2 [φ1(x1, · · · , xm−2, · )](xm−2),
...

φm−1(x1) := Tt2−t1 [φm−2(x1, · )](x1),

φm(x0) := Tt1 [φm−1( · )](x0). (5.1)

We then set
T x0

t1,··· ,tm
[φ] := φm(x0) : Lb(B[(Rd)m]) −→ R. (5.2)

We have the following lemmas.

Lemma 5.1. The functional T x0
t1,··· ,tm

[ · ] defined in (5.2) is a nonlinear pre-expectation
on Lb(B[(Rd)m]).

Proof. This assertion follows from the fact that (Tt)t≥0 are pre-expectations.

Lemma 5.2. If φ ∈ Lb(B[(Rd)m]) does not depend on xi for some 1 ≤ i ≤ m, i.e.,

φ = φ(x1, · · · , xi−1, xi+1, · · ·xm),

then φ can also be treated as an element of Lb(B[(Rd)m−1]) and we can use Tt[c] = c to get

T x0
t1,··· ,tm

[φ] = T x0
t1,···ti−1,ti+1··· ,tm

[φ]. (5.3)

From the Chapman relation of Tt, it is easy to check

Lemma 5.3. For each φ ∈ Lb(B[(Rd)n+m]) and 0 < t1 < · · · < tm+n,

T x0
t1,··· ,tn

◦ T ·
tn+1−tn,··· ,tn+m−tn

[φ] := T x0
t1,··· ,tn

[T ·
tn+1−tn,··· ,tn+m−tn

[φ]] = T x0
t1,··· ,tn+m

[φ].
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Here the meaning of the left hand side is as follows. We first take (x1, · · · , xn) as a fixed
parameter and calculate ψ(x1, · · · , xn) = T xn

tn+1−tn,··· ,tn+m−tn
[φ(x1, · · · , xn, ·)]. Then we cal-

culate
T x0

t1,··· ,tn
[T ·

tn+1−tn,··· ,tn+m−tn
φ] = T x0

t1,··· ,tn
[ψ( · )]. (5.4)

Lemma 5.4. We define the family of nonlinear distributions related to the Markov chain
Tt by

{Tπ(t1),···,π(tm)[φπ ] := T 0
t1,··· ,tm

[φ], ∀m ≥ 0, 0 <t1< · · ·<tm, φ∈Lb(B((Rd)m), π∈Πm}.

This family satisfies the generalized Kolmogorov consistence conditions (k0), (k1) and (k2).

Proof. (k0) is due to Lemma 5.1. (k1) property of T 0
t1,··· ,tm

is simply due to its definition
(5). The (k2) property is from (5.3) of Lemma 5.2.

Lemma 5.5. Let T · and T ′· be two Markov chain defined on Lb(B(Rd)) such that T ·
is dominated by T ′

· , and let T x0
t1,··· ,tm

[ · ] and T ′x0
t1,··· ,tm

[ · ] be the corresponding families of
nonlinear distributions related respectively to T · and T ′

· Then for each t1, · · · , tm ∈ R+,
T x0

t1,··· ,tm
[ · ] is dominated by T ′x0

t1,··· ,tm
[ · ].

Proof. Without loss of generality, we can suppose that 0 < t1 < · · · < tm,

T x0
t1,··· ,tm

[φ( · )] − T x0
t1,··· ,tm

[ψ( · )] = T x0
t1 [T ·

t2−t1,··· ,tm−t1 [φ]] − T x0
t1 [T ·

t2−t1,··· ,tm−t1 [ψ]]

≤ T ′x0
t1 [T ·

t2−t1,··· ,tm−t1 [φ] − T ·
t2−t1,··· ,tm−t1 [ψ]].

Repeating this procedure and applying (5.4) for T ′, we have T x0
t1,··· ,tm

[φ( · )]−T x0
t1,··· ,tm

[ψ( · )]
≤ T ′x0

t1,··· ,tm
[φ( · ) − ψ( · )]. This completes the proof.

Since the family T 0
t1,··· ,tm

, t1, · · · , tm ∈ R+ of finite-dimensional nonlinear distributions
satisfies the generalized Kolmogorov consistence conditions (k0), (k1) and (k2), from Non-
linear Kolmogorov Theorem 3.1, we have immediately

Theorem 5.1. ( i ) Let T · be a Markov chain defined on Lb(B(Rd)). Then there exists
a unique nonlinear pre-expectation E [ · ] defined on L0(F) such that the related family of
finite-dimensional nonlinear distributions of the canonical process (ωt)t∈R+ is {T 0

t1,··· ,tm
;

t1, · · · , tm ∈ R+} (defined in (5)). Particularly, for any X ∈ L0(F) with X = φ(ωt1 , · · · ,
ωtm), φ ∈ L∞((Rd)m) we have

E [X ] = T 0
t1,··· ,tm

[φ]. (5.5)

(ii) Let T 1
· and T 2

· be two Markov chains defined on Lb(B(Rd)) such that T 1 is dom-
inated (resp. strongly dominated) by T 2 and then the corresponding E1 is also dominated
(resp. strongly dominated) by E2. In particular, if a Markov chain T ∗ is self-dominated
(resp. strongly self-dominated), then the corresponding pre-expectation E∗ on L0(F) satis-
fying (5.5) is also self-dominated (resp. strongly self-dominated). Consequently E∗ can be
defined on the completion of [L0(F)]∗ under the quasi-norm ‖X‖∗ := E∗[|X |].

(iii) Moreover, if a Markov chain T · on Lb(B(Rd)) is dominated (resp. strongly dom-
inated ) by the above T ∗

· , then the corresponding nonlinear pre-expectation E can be also
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uniquely extended to [L0(F)]∗. The extended nonlinear expectation E is still dominated
(resp. strongly dominated ) by E∗.

5.2. Conditional nonlinear expectations under Ft

Let t > 0 and let X ∈ L0(F) be given as

X = φ(ωt1 , · · · , ωtn , ωtn+1 , · · · , ωtn+m), 0 < t1 < · · · < tn < · · · < tn+m, (5.6)

where φ ∈ Lb((Rd)n+m). Without loss of generality, we may assume tn = t. We consider,
for each fixed (x1, · · · , xn) ∈ (Rd)n, φ(x1, · · · , xn, ·) ∈ Lb(B[(Rd)m]) and set

Φ(x1, · s, xn) := T xn
tn+1−tn,··· ,tn+m−tn

[φ(x1, · · · , xn, · )](xn). (5.7)

Definition 5.1. For any X ∈ L0(F) in form of (5.6) with t = tn, the conditional
nonlinear pre-expectation under Ft denoted by E [ · /Ft] : L0(F) −→ L0(Ft) is defined by

E [X/Ft] := Φ(ωt1 , · · · , ωtn). (5.8)

where Φ ∈ Lb(B[(Rd)m]) is given by (5.7).

Remark 5.1. The above formulations suggest that, in contrast to one’s intuition, an
FT -consistent expectation is calculated in a backward manner: from the terminal point T
to the initial time t = 0. In fact we first have data E [X/FT ] = X , then E [X/Ft] from t < T

till t = 0. In some sense, we are calculating a kind of backward SDE of type [33].

Lemma 5.6. For a given t = tn > 0 we have

E [1K(ωt1 , · · · , ωtn)X/Ft] = 1KE [X/Ft](ωt1 , · · · , ωtn), ∀K ∈ B((Rd)n), (5.9)

E [E [X/Ft]/Fs] = E [X/Ft∧s]. (5.10)

Proof. When (x1, · · · , xn) is considered as a parameter, it is clear that

T xn
tn+1−tn,··· ,tn+m−tn

[1K(x1, · · · , xn)φ(x1, · · · , xn, · )]

= 1K(x1, · · · , xn)T xn
tn+1−tn,··· ,tn+m−tn

[φ(x1, · · · , xn, · )]. (5.11)

Thus (5.9) holds. (5.10) is simply from the definition.

Remark 5.2. The above definition (5.8) is applied for any t ∈ R+. Indeed, if t �∈
{t1, · · · , tn+m} then we can use Lemma 5.2 to treat φ as an element in L∞((Rd)n+m+1).

The following result is a simple consequence of Lemma 5.5.

Lemma 5.7. Let T 1· and T 2· be two Markov chains defined on Lb(B(Rd)) such that T 1

is dominated (resp. strongly dominated ) by T 2 and then the corresponding conditional non-
linear pre-expectations E1[ · /Ft] is also dominated (resp. strongly dominated ) by E2[ · /Ft],
i.e.,

E1[X/Ft](ω) − E1[Y/Ft](ω) ≤ E2[|X − Y |/Ft](ω), ∀ω ∈ Ω

(resp. E1[X/Ft](ω) − E1[Y/Ft](ω) ≤ E2[X − Y/Ft](ω), ∀ω ∈ Ω).
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In particular, if T ∗ is a self-dominated (resp. strongly self-dominated ) Markov chain, then
the corresponding E∗[ · /Ft] is also self-dominated (resp. strongly dominated ).

Now let E [ · ] and E [ · /Ft] be induced by T which is dominated by the above T ∗. From

E [X/Ft] − E [Y/Ft] ≤ E∗[|X − Y |/Ft], ∀X,Y ∈ L0(F), (5.12)

we have |E [X/Ft]−E [Y/Ft]| ≤ E∗[|X−Y |/Ft], ∀X,Y ∈ L0(F). It follows from E∗[E∗[ · /Ft]]
= E∗[ · ] that ∀X,Y ∈ L0(F),

‖E [X/Ft] − E [Y/Ft]‖∗ ≤ ‖X − Y ‖∗ . (5.13)

We then have

Propsition 5.1. Under the constraint (5.13), the conditional nonlinear pre-expectation
E [ · /Ft] defined on L0(F) can be uniquely extended to a continuous mapping

E [ · /Ft] : [L0(F)]∗ −→ [L0(Ft)]∗.

We have, for each X, X ′ ∈ [L0(F)]∗,

( i ) E [X/Ft] = X, if X ∈ [L0(Ft)]∗;

( ii ) If X ≥ X ′, then E [X/Ft] ≥ E [X ′/Ft];

(iii) E [E [X/Ft]/Fs] = E [X/Ft∧s], E [E [X/Ft]] = E [X ];

(iv) E [1K(ωt1 , · · · , ωtn)X/Ft] = 1K(ωt1 , · · · , ωtn)E [X/Ft];

( v ) E [X/Ft] − E [Y/Ft] ≤ E∗[X − Y/Ft], ∀X,Y ∈ [L0(F)]∗.

Remark 5.3. From Example 4.4 we see that the Ft-consistent nonlinear expectations
introduced in this section can be fully nonlinear. Thus the framework of this section largely
generalizes the notion of g-expectation.

§ 6 . Backward SDE Under Nonlinear Expectations

We are in the framework of the previous section. For each j = 1, · · · ,m, let E∗,j be
a self-dominated nonlinear expectation defined on [L0(F)]∗,j , the completion of L0(F) un-
der ‖ · ‖∗,j = E∗,j [| · |], and let Ej be E∗,j-dominated nonlinear expectation on [L0(F)]∗,j .
We assume that these E∗,j and Ej are Ft-consistent and satisfy all properties in Propo-
sition 5.1. We also assume that E∗,j [αX ] = αE∗,j [X ], ∀α > 0, X ∈ [L0(F)]∗,j . Under
this assumption, ‖ · ‖∗,j = E∗,j [| · |] becomes a norm. Thus [L0(F)]∗,j is a Banach spaces.
We assume that, for each j, [L0(F)]∗,j is a separable space under ‖ · ‖∗,j . An Rm-valued
random vector Y = (Y 1, · · · , Y m) is said to be in [L0(F)]∗ if Y j ∈ [L0(F)]∗,j for each
j = 1, · · · ,m. The norm of [L0(F)]∗ is defined by ‖ · ‖∗ := max

1≤j≤m
‖ · ‖∗,j . We also denote

E [Y ] := (E1[Y1], · · · , Em[Ym]), E [Y/Ft] := (E1[Y1/Ft], · · · , Em[Ym/Ft]).
We are interested in Rm-valued stochastic processes Yt(ω) : t ∈ [0, T ] −→ [L0(F)]∗. We

first consider the following space of stochastic processes:

L0(0, T ;Rm) =
{
Yt =

N∑
i=1

ξi1Ai(t), t ∈ [0, T ]; ∀N, ∀ ξi ∈ [L0(F)]∗, ∀ {Ai}N
i=1

}
,
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where {Ai}N
i=1 is an arbitrary partition of B([0, T ]), i.e., Ai ∈ B([0, T ]), Ai ∩Aj = ∅, when

i �= j with
N⋃

i=1

Ai = [0, T ]. A process is said to be B([0, T ])-strongly measurable if there exists

a sequence {Y i}∞i=1 in L0(0, T ;Rm) such that
∥∥Y i

t − Yt

∥∥
∗ converges to zero for m(dt)-almost

all t ∈ [0, T ]. Here m(dt) = dt denotes the Lebesgue measure.

For each Y ∈ L0(0, T ;Rm) with Yt =
N∑

i=1

ξi1Ai(t), we define
∫ T

0
Ysds :=

N∑
i=1

ξim(Ai).

Since
∥∥∥ N∑

i=1

ξim(Ai)
∥∥∥
∗
≤

N∑
i=1

‖ξim(Ai)‖∗ =
N∑

i=1

‖ξit‖∗m(Ai), we then have

∥∥∥ ∫ T

0

Ysds
∥∥∥
∗
≤

∫ T

0

‖Ys‖∗ds, ∀Y ∈ L0(0, T ;Rm). (6.1)

It is clear that
∫ T

0
‖ · ‖∗ ds constitutes a norm on L0(0, T ;Rm). The completion of L0(0, T ;

Rm) under this norm is a Banach space and is denoted by L∗(0, T ;Rm). For each (Yt)t≥0

∈ L∗(0, T ;Rm) we can define
∫ T

0 Ysds := lim
i→∞

∫ T

0 Y i
s ds, where {Y i}∞i=1 is a sequence in

L0(0, T ;Rm) which converges to Y under the norm
∫ T

0
‖ · ‖∗ ds. By (6.1) this integral is

uniquely defined. Furthermore

∥∥∥ ∫ T

0

Ysds
∥∥∥
∗
≤

∫ T

0

‖Ys‖∗ ds, ∀Y ∈ L∗(0, T ;Rm). (6.2)

∫ T

0 Ysds is called the Bochner’s integral of (Yt)t≥0 (see e.g. [44]). It is easy to see that,
for each Y ∈ L∗(0, T ;Rm), the process

∫ t

0 Ysds :=
∫ T

0 Ys1[0,t](s)ds, t ∈ [0, T ] is still in
L∗(0, T ;Rm). We also define a space of adapted processes

M∗(0, T ;Rm) := {Y ∈ L∗(0, T ;Rm); Yt is Ft-measurable for each t ∈ [0, T ]}.

We assume

For each X ∈ [L0(F)]∗, E [X/Ft]t∈[0,T ] ∈M∗(0, T ;Rm), (6.3)

lim
δ↘0

‖E [X/Ft+δ] − E [X/Ft]‖∗ = 0. (6.4)

We also assume that

E [X+η/Ft] = E [X/Ft]+η, ∀X ∈ [L0(F)]∗, η ∈ [L0(Ft)]∗, ∀ t ≥ 0. (6.5)

Let a function f : (ω, t, y) ∈ Ω × [0, T ]×Rm �−→ Rm be given such that{
f( · , y) ∈M∗(0, T ;Rm), ∀ y ∈ Rm;

|f(t, y1) − f(t, y2)| ≤ C1|y1 − y2|, ∀ y1, y2 ∈ R,
(6.6)

where C1 is a fixed constant. For a given terminal data X ∈ [L0(F)]∗, we consider the
following type of Backward Stochastic Differential Equation (BSDE):

Yt = E
[
X +

∫ T

t

f(s, Ys)ds|Ft

]
. (6.7)
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Theorem 6.1. We assume (6.3)–(6.6). Then there exists a unique process Y ∈M∗(0, T ;
Rm) solution of (6.7). Moreover, Yt is continuous in t in the following sense:

lim
δ↘0

‖Yt+δ − Yt‖∗ = 0, ∀ t ∈ [0, T ).

Proof. We first consider a special situation of (6.7) when f = φ ∈ M∗(0, T ;Rm). It is
clear that for any 0 ≤ a < b ≤ T , X +

∫ b

a φsds ∈ [L0(F)]∗. Moreover we have

Yt = E
[
X +

∫ T

t

φsds|Ft

]
= E

[
X +

∫ T

0

φsds|Ft

]
+

∫ t

0

φsds.

Thus Y ∈ M∗(0, T ;Rm). The first term of the right hand side is continuous in time, so is
the second term since∥∥∥ ∫ t+δ

0

φsds−
∫ t

0

φsds
∥∥∥
∗
≤

∫ t+δ

t

‖φs‖∗ ds ↘ 0, as δ ↘ 0.

We now consider the general situation. By the above discussion, we define a mapping
Λt(y · ) : L1∗

F (0, T ;Rm) �−→ L1∗
F (0, T ;Rm) by Λt(y · ) = E

[
X +

∫ T

t f(s, y(s))ds/Ft

]
. For each

t, we have

‖Λt(y · ) − Λt(y′· )‖∗ ≤
∥∥∥ ∫ T

t

[f(s, ys) − f(s, y′s)]ds
∥∥∥
∗

≤
∫ T

t

‖f(s, ys) − f(s, y′s)‖∗ ds ≤ C1

∫ T

t

‖ys − y′s‖∗ ds.

We observe that, for any finite number β, the following two norms are equivalent in M∗(0, T ;
Rm)

∫ T

0 ‖φs‖∗ dt ∼
∫ T

0 ‖φs‖∗ eβtdt. Thus we multiply e2C1t on both sides of the above
inequality and then integrate them on [0, T ]. It follows that

∫ T

0

‖Λt(y · ) − Λt(y′· )‖∗e2C1tdt ≤ C1

∫ T

0

e2C1t

∫ T

t

‖ys − y′s‖∗ ds

= C1

∫ T

0

∫ s

0

e2C1tdt ‖ys − y′s‖∗ ds = (2C1)−1C1

∫ T

0

(e2C1s − 1) ‖ys − y′s‖∗ ds.

We then have ∫ T

0

‖Λt(y · ) − Λt(y′· )‖∗ e2C1tdt ≤ 1
2

∫ T

0

‖yt − y′t‖∗ e2C1tdt.

Namely, Λ is a contract mapping on M∗(0, T ;Rm). It follows that this mapping has a unique
fixed point Y : Yt = E [X +

∫ T

t
f(s, Ys)ds|Ft].

We now consider the difference of the solution of BSDE (6.7) and the one of the following
BSDE:

Y ′
t = E

[
X ′ +

∫ T

t

[f(s, Y ′
s ) + φs]ds|Ft

]
. (6.8)

where X ′ ∈ [L0(F)]∗ and φ ∈M∗(0, T ;Rm) are given. The following continuous dependence
theorem estimates the distance between the solutions of (6.7) and (6.8).
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Proposition 6.1. We have

∫ T

0

‖Yt − Y ′
t ‖∗ e2C1tdt ≤ C0 ‖X −X ′‖∗ + C0

∫ T

0

e2C1t ‖φt‖∗ dt, (6.9)

where the constant C0 depends only on C1, the Lipschitz constant of f(t, y) with respect to
y and T .

Proof. We have

‖Yt − Y ′
t ‖∗ ≤

∥∥∥X −X ′ +
∫ T

t

[f(s, Ys) − f(s, Y ′
s)]ds

∥∥∥
∗

≤ ‖X −X ′‖∗ +
∫ T

t

‖f(s, Ys) − f(s, Y ′
s )‖∗ ds

≤ ‖X −X ′‖∗ +
∫ T

t

[C1 ‖Ys − Y ′
s‖∗ + ‖φs‖∗]ds.

As in the previous proof, we multiply e2C1t on both sides of the above inequality and then
integrate them on [0, T ]:

∫ T

0

‖Yt − Y ′
t ‖∗ e2C1tdt

≤ ‖X −X ′‖∗
∫ T

0

e2C1tdt+
∫ T

0

e2C1t

∫ T

t

[C1 ‖Ys − Y ′
s‖∗ + ‖φs‖∗]dsdt

≤ ‖X −X ′‖∗ (e2C1T − 1) +
∫ T

0

e2C1t2−1C−1
1 [C1 ‖Yt − Y ′

t ‖∗ + ‖φt‖∗]dt.

Thus we have (6.8).

Remark 6.1. Unlike the classical theorem of BSDE, the above result of existence and
uniqueness does not require the conditions for the FT -measurability of X . If X is assumed
to be FT -measurable, then we have YT = X .

§ 7 . Nonlinear Expectations, Nonlinear Expected Utilities
and Risk Measures

To measure the preference of an agent A, a fundamental tool in economics is the utility
functional of A. Under this framework, A prefers a random choice X than Y is formulated
by U(X) ≥ U(Y ). We shall work in L∞

∗ (F) space introduced in Subsection 2.4. A utility
functional of the agent A is a real functional U( · ) : L∞

∗ (F) −→ R. This functional satisfies
the following obvious axioms:

(u1) Monotonicity: if X ≥ Y in L∞∗ (F), then U(X) ≥ U(Y ), and if X ≥ Y and
‖X − Y ‖∗ > 0, then U(X) > U(Y );

(u2) Continuity: if ‖Xi −X‖∗∞ → 0, then U(Xi) → U(X).
We observe that if we assume moreover that U is constant-preserving, then it is a non-

linear expectation defined on L∞
∗ (F). In general, a utility is not constant-preserving. But
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we have the following nonlinear expected utility theorem which generalized the well-known
von Neuman-Morgenstern’s axiom on expected utility.

Proposition 7.1. Let E [ · ] be a strictly monotonic expectation satisfying (E1), (E2) in
Definition 2.1. We assume that E is continuous in L∞∗ (F) and let u be a continuous and
strictly increasing function u( · ) : R −→ R. Then the functional U defined by

U(X) := E [u(X)] (7.1)

is a utility functional satisfying (u1) and (u2).
Conversely, for each given utility U( · ) satisfying (u1) and (u2), there exist a strict

monotonic nonlinear expectation E [ · ] and a continuous and strictly increasing function
u( · ) : R −→ R such that (7.1) holds.

Proof. The first claim is easy. For the second one, we set

u(x) := U(x), ∀x ∈ R. (7.2)

By (u1) and (u2) it is clear that u( · ) : R −→ R is continuous and strictly increasing, so is
its inverse u−1. It follows that for each X ∈ L∞∗ (F), u−1(X) is also a bounded element in
L∞
∗ (F). We then can set

E [X ] := U(u−1(X)). (7.3)

Obviously (7.1) holds for this functional. It remains to prove that E is a nonlinear expectation
defined on L∞

∗ (F). It is clear that this functional E [ · ] also satisfies the same properties (u1)
and (u2) for that of U( · ). Moreover, according to the definition of U , E is constant-
preserving: E [c] = U(u−1(c)) = u(u−1(c)) = c. Thus E [ · ] is a nonlinear expectation in the
sense of Definition 2.1.

Remark 7.1. In [42] von Neumann and Morgenstern have introduced the well-known
expected utility and the related axiomatic system. It is widely used in economics, e.g.,
financial economics. They claimed that U can be characterized by U(X) = E[U(X)]. Here
U : R → R is a continuous and strictly increasing function. E is the (linear) expectation in
some probability space (Ω,F , P ). It is clear that an expected utility satisfies (u1) and (u2).

But some real world utilities can not be represented by this expected utility. A well-
known counterexample is the well-known Allais paradox (see [1]). If an agent A equipped
with an expected utility has the following four random choices ξa, ξb, ξc and ξd with the
following distributions:

P (ξa = 100m) = 1;
P (ξb = 500m) = 0.10,
P (ξb = 100m) = 0.89, P (ξb = 0m) = 0.01;
P (ξc = 100m) = 0.11, P (ξc = 0m) = 0.89;
P (ξd = 500m) = 0.10, P (ξd = 0m) = 0.90;

then it is easy to check that, for any function U , we always have U(ξa)−U(ξb) = U(ξc)−U(ξd).
But most people tested in experiments prefer to choose ξa than ξb, and to choose ξd than ξc.
This contradicts the above equality. The notion of nonlinear expected utility of form (7.1)
can overcome this paradox.



NONLINEAR EXPECTATIONS AND NONLINEAR MARKOV CHAINS 183

Remark 7.2. (Dynamical Risk Measures in Finance) In quantitative risk management
of finance, risk measure is a central issue. Axiomatic definitions of measures of risk, called
coherent risk, were introduced in [2]. A more general type, called convex risk measures,
was then introduced in [23] (see also [24]). Recently Rosazza Gianin [41] considered a type
of dynamic risk measures induced from g-expectations, defined in Example 2.11. This g-
expectations provide naturally an Ft-consistent measure of risk (see [3, 5, 38–40]).
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complète, The Hague: M. Nijhov, 1888–1950, includes the original Latin, Huygens’s original Dutch,
and French translation in Vol. 14, 1657.

[27] Krylov, N. V., Controlled Diffusion Processes, Springer-Verlag, New York, 1980.
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