Two New Families in the Stable Homotopy Groups of Sphere and Moore Spectrum**

Jinkun LIN*

Abstract

This paper proves the existence of an order p element in the stable homotopy group of sphere spectrum of degree $p^{n} q+p^{m} q+q-4$ and a nontrivial element in the stable homotopy group of Moore spectum of degree $p^{n} q+p^{m} q+q-3$ which are represented by $h_{0}\left(h_{m} b_{n-1}-h_{n} b_{m-1}\right)$ and $i_{*}\left(h_{0} h_{n} h_{m}\right)$ in the E_{2}-terms of the Adams spectral sequence respectively, where $p \geq 7$ is a prime, $n \geq m+2 \geq 4, q=2(p-1)$.

Keywords Stable homotopy groups of spheres, Adams spectral sequence, Toda spectrum
2000 MR Subject Classification 55Q45

1 Introduction

Let A be the $\bmod p$ Steenrod algebra and S the sphere spectrum localized at an odd prime p. To determine the stable homotopy groups of spheres $\pi_{*} S$ is one of the central problem in homotopy theory. One of the main tools to reach it is the Adams spectral sequence (ASS) $E_{2}^{s, t}=\operatorname{Ext}_{A}^{s, t}\left(Z_{p}, Z_{p}\right) \Longrightarrow \pi_{t-s} S$, where the $E_{2}^{s, t}$-term is the cohomology of A. If a family of generators x_{i} in $E_{2}^{s, t}$ converges nontrivially in the ASS, then we get a family of nontrivial homotopy elements f_{i} in $\pi_{*} S$ and we call f_{i} is represented by $x_{i} \in E_{2}^{s, t}$ and has filtration s in the ASS. So far, not so many families of homotopy elements in $\pi_{*} S$ have been detected. For example, a family $\zeta_{n-1} \in \pi_{p^{n} q+q-3} S$ for $n \geq 2$ which has filtration 3 and is represented by $h_{0} b_{n-1} \in \operatorname{Ext}_{A}^{3, p^{n} q+q}\left(Z_{p}, Z_{p}\right)$ has been detected in [2], where $q=2(p-1)$.

From [5], $\operatorname{Ext}_{A}^{1, *}\left(Z_{p}, Z_{p}\right)$ has Z_{p}-base consisting of $a_{0} \in \operatorname{Ext}_{A}^{1,1}\left(Z_{p}, Z_{p}\right), h_{i} \in \operatorname{Ext}_{A}^{1, p^{i} q}\left(Z_{p}, Z_{p}\right)$ for all $i \geq 0$ and $\operatorname{Ext}_{A}^{2, *}\left(Z_{p}, Z_{p}\right)$ has Z_{p}-base consisting of $\tilde{\alpha}_{2}, a_{0}^{2}, a_{0} h_{i}(i>0), g_{i}(i \geq 0), k_{i}(i \geq$ $0)$, $b_{i}(i \geq 0)$ and $h_{i} h_{j}(j \geq i+2, i \geq 0)$ whose internal degrees are $2 q+1,2, p^{i} q+1, p^{i+1} q+$ $2 p^{i} q, 2 p^{i+1} q+p^{i} q, p^{i+1} q$ and $p^{i} q+p^{j} q$ respectively.

Let M be the Moore spectrum given by the cofibration

$$
\begin{equation*}
S \xrightarrow{p} S \xrightarrow{i} M \xrightarrow{j} \Sigma S \tag{1.1}
\end{equation*}
$$

and K be the cofibre of the Adams map $\alpha: \Sigma^{q} M \rightarrow M$ given by the cofibration

$$
\begin{equation*}
\Sigma^{q} M \xrightarrow{\alpha} M \xrightarrow{i^{\prime}} K \xrightarrow{j^{\prime}} \Sigma^{q+1} M . \tag{1.2}
\end{equation*}
$$

The above spectrum K actually is the Toda-Smith spectrum $V(1)$.

[^0]From [8, Theorem 1.2.14, p.11], there is a nontrivial differential in the ASS

$$
\begin{equation*}
d_{2}\left(h_{n}\right)=a_{0} b_{n-1} \in E_{2}^{3, t q+1}=\operatorname{Ext}_{A}^{3, t q+1}\left(Z_{p}, Z_{p}\right), \quad n \geq 1 \tag{1.3}
\end{equation*}
$$

The elements $h_{n} \in \operatorname{Ext}_{A}^{1, p^{n} q}\left(Z_{p}, Z_{p}\right)$ and $b_{n-1} \in \operatorname{Ext}_{A}^{2, p^{n} q}\left(Z_{p}, Z_{p}\right)$ are called a pair of a_{0}-related elements. Theorem IV in [2] states the following result on the a_{0}-related elements h_{n} and b_{n-1} : $h_{0} b_{n-1} \in \operatorname{Ext}_{A}^{3, p^{n} q+q}\left(Z_{p}, Z_{p}\right)$ is a permanent cycle in the ASS and it converges to a homotopy element $\zeta_{n-1} \in \pi_{p^{n} q+q-3} S$ of order p; moreover, $i_{*}\left(h_{0} h_{n}\right) \in \operatorname{Ext}_{A}^{2, p^{n} q+q}\left(H^{*} M, Z_{p}\right)$ also is a permanent cycle in the ASS which converges to a nontrivial element in $\pi_{p^{n} q+q-2} M$.

As a consequence of (1.3) we have

$$
\begin{equation*}
d_{2}\left(h_{n} h_{m}\right)=a_{0}\left(h_{m} b_{n-1}-h_{n} b_{m-1}\right) \in E_{2}^{4, t q+1}=\operatorname{Ext}_{A}^{4, t q+1}\left(Z_{p}, Z_{p}\right) \tag{1.4}
\end{equation*}
$$

with $t q=p^{n} q+p^{m} q, n \geq m+2 \geq 3$. That is, $h_{n} h_{m}$ and $\left(h_{m} b_{n-1}-h_{n} b_{m-1}\right)$ are another pair of a_{0}-related elements. The main purpose of this paper is to prove the following result on these a_{0}-related elements which is an analogue of Theorem IV in [2].

Theorem A Let $p \geq 7, n \geq m+2 \geq 4$. Then

$$
h_{0}\left(h_{m} b_{n-1}-h_{n} b_{m-1}\right) \in \operatorname{Ext}_{A}^{4, p^{n} q+p^{m} q+q}\left(Z_{p}, Z_{p}\right)
$$

is a permanent cycle in the ASS which converges to an element in $\pi_{p^{n} q+p^{m} q+q-4} S$ of order p. Moreover

$$
i_{*}\left(h_{0} h_{n} h_{m}\right) \in \operatorname{Ext}_{A}^{3, p^{n} q+p^{m} q+q}\left(H^{*} M, Z_{p}\right)
$$

also is a permanent cycle which converges to a nontrivial element in $\pi_{p^{n} q+p^{m} q+q-3} M$.
Remark The $h_{0}\left(h_{m} b_{n-1}-h_{n} b_{m-1}\right)$-map obtained in Theorem A is represented by $\beta_{p^{m-1} / p^{m-1}-1} \beta_{p^{n-1} / p^{n-1}}-\beta_{p^{n-1} / p^{n-1}-1} \beta_{p^{m-1} / p^{m-1}}+$ other terms $\in \operatorname{Ext}_{B P_{*} B P}^{4, p^{n} q+p^{m} q+q}\left(B P_{*}, B P_{*}\right)$ and $i_{*}\left(h_{0} h_{n} h_{m}\right)$-map in $\pi_{p^{n} q+p^{m} q+q-3} M$ is represented by

$$
h_{0} h_{n} h_{m}+\text { other terms } \in \operatorname{Ext}_{B P_{*} B P}^{3, p^{n} q+p^{m} q+q}\left(B P_{*}, B P_{*} M\right)
$$

in the Adams-Novikov spectral sequence, where

$$
\beta_{p^{n-1} / p^{n-1}-1} \in \operatorname{Ext}_{A}^{2, p^{n} q+q}\left(B P_{*}, B P_{*}\right), \quad \beta_{p^{n-1} / p^{n-1}} \in \operatorname{Ext}_{B P_{*} B P}^{2, p^{n} q}\left(B P_{*}, B P_{*}\right)
$$

such that the images under the Thom map are

$$
h_{0} h_{n} \in \operatorname{Ext}_{A}^{2, p^{n} q+q}\left(Z_{p}, Z_{p}\right), \quad b_{n-1} \in \operatorname{Ext}_{A}^{2, p^{n} q}\left(Z_{p}, Z_{p}\right)
$$

respectively and $h_{n} \in \operatorname{Ext}_{B P_{*} B P}^{1, p^{n} q}\left(B P_{*}, B P_{*} M\right)$ is the generator represented by $\left[t_{1}^{p^{n}}\right]$ in the cobar complex.

Theorem A will be proved by some arguments processing in the Adams resolution of certain spectra related to S and K. The only geometric input used in the proof is the nontrivial differential (1.4). After giving some preliminaries on low dimensional Ext groups in Section 2, the proof of Theorem A will be given in Section 3.

2 Some Preliminaries on Low Dimensional Ext Groups

In this section, we consider some result on low dimensional Ext groups and some spectra closely related to S which will be used in the proof of Theorem A.

Proposition 2.1 Let $p \geq 7, n \geq m+2 \geq 4, t q=p^{n} q+p^{m} q$. Then
(1) $\operatorname{Ext}_{A}^{4, t q+r q+u}\left(Z_{p}, Z_{p}\right)=0$ for $r=2,3,4, u=-1,0$ or $r=3,4, u=1$,
$\operatorname{Ext}_{A}^{4, t q}\left(Z_{p}, Z_{p}\right) \cong Z_{p}\left\{b_{n-1} b_{m-1}\right\}, \quad \operatorname{Ext}_{A}^{4, t q+1}\left(Z_{p}, Z_{p}\right) \cong Z_{p}\left\{a_{0} h_{n} b_{m-1}, a_{0} h_{m} b_{n-1}\right\}$,
$\operatorname{Ext}_{A}^{4, t q+q}\left(Z_{p}, Z_{p}\right) \cong Z_{p}\left\{h_{0} h_{n} b_{m-1}, h_{0} h_{m} b_{n-1}\right\}$.
(2) $\operatorname{Ext}_{A}^{5, t q+r q+1}\left(Z_{p}, Z_{p}\right)=0$ for $r=1,3,4, \quad \operatorname{Ext}_{A}^{5, t q+r q}\left(Z_{p}, Z_{p}\right)=0$ for $r=2,3$,
$\operatorname{Ext}_{A}^{5, t q+2 q+1}\left(Z_{p}, Z_{p}\right) \cong Z_{p}\left\{\tilde{\alpha}_{2} h_{n} b_{m-1}, \tilde{\alpha}_{2} h_{m} b_{n-1}\right\}$,
$\operatorname{Ext}_{A}^{5, t q+2}\left(Z_{p}, Z_{p}\right) \cong Z_{p}\left\{a_{0}^{2} h_{n} b_{m-1}, a_{0}^{2} h_{m} b_{n-1}\right\}, \quad \operatorname{Ext}_{A}^{5, t q+1}\left(Z_{p}, Z_{p}\right) \cong Z_{p}\left\{a_{0} b_{n-1} b_{m-1}\right\}$, $a_{0}^{2} b_{n-1} b_{m-1} \neq 0 \in \operatorname{Ext}_{A}^{6, t q+2}\left(Z_{p}, Z_{p}\right)$.
Proof From [8, Theorem 3.2.5, p.82], there is a May spectral sequence (MSS) $\left\{E_{r}^{s, t, *}, d_{r}\right\}$ which converges to $\operatorname{Ext}_{A}^{s, t}\left(Z_{p}, Z_{p}\right)$ with E_{1}-term

$$
E_{1}^{*, *, *}=E\left(h_{i, j} \mid i>0, j \geq 0\right) \otimes P\left(b_{i, j} \mid i>0, j \geq 0\right) \otimes P\left(a_{i} \mid i \geq 0\right)
$$

where E is the exterior algebra and P the polynomial algebra and

$$
h_{i, j} \in E_{1}^{1,2\left(p^{i}-1\right) p^{j}, 2 i-1}, \quad b_{i, j} \in E_{1}^{2,2\left(p^{i}-1\right) p^{j+1}, p(2 i-1)}, \quad a_{i} \in E_{1}^{1,2 p^{i}-1,2 i+1} .
$$

Observe the second degree of the following generators $\left(\bmod p^{n} q\right)$ for $0 \leq i \leq n, n \geq m+2 \geq 4$,

$$
\begin{aligned}
\left|h_{s, i}\right| & =\left\{\begin{array}{lll}
\left(p^{s+i-1}+\cdots+p^{i}\right) q & \left(\bmod p^{n} q\right), & 0 \leq i<s+i-1<n, \\
\left(p^{n-1}+\cdots+p^{i}\right) q & \left(\bmod p^{n} q\right), & 0 \leq i<s+i-1=n
\end{array}\right. \\
\left|b_{s, i-1}\right| & =\left\{\begin{array}{lll}
\left(p^{s+i-1}+\cdots+p^{i}\right) q & \left(\bmod p^{n} q\right), & 1 \leq i<s+i-1<n \\
\left(p^{n-1}+\cdots+p^{i}\right) q & \left(\bmod p^{n} q\right), & 1 \leq i<s+i-1=n,
\end{array}\right. \\
\left|a_{i+1}\right| & =\left(p^{i}+\cdots+1\right) q+1 \\
\left|a_{i+1}\right| & =\left(p^{n-1}+\cdots+1\right) q+1 \\
\left(\bmod p^{n} q\right), & 1 \leq i<n,
\end{aligned}, \begin{aligned}
& \left.\bmod p^{n} q\right), \\
& i=n .
\end{aligned}
$$

At degree $k=t q+r q+u$ with $0 \leq r \leq 4,-1 \leq u \leq 2, k=p^{m} q+r q+u\left(\bmod p^{n} q\right)$. Then, for $3 \leq w \leq 5, E_{1}^{w, t q+r q+u, *}$ has no generator which has factors consisting of the above elements, because such a generator will have second degree $\left(c_{n} p^{n-1}+\cdots+c_{1} p+c_{0}\right) q+d\left(\bmod p^{n} q\right)$ with some $c_{i} \neq 0(1 \leq i \leq m-1$ or $m<i<n)$, where $0 \leq c_{l}<p, l=0, \cdots, n, 0 \leq d \leq 5$. Moreover, the second degree $\left|b_{1, i-1}\right|=p^{i} q\left(\bmod p^{n} q\right)$ for $1 \leq i \leq n,\left|h_{1, i}\right|=p^{i} q\left(\bmod p^{n} q\right)$ for $0 \leq i \leq n$. Then excluding the above factors and factors with second degree $\geq t q+p q$, we know that the only possibly factor of the generator in $E_{1}^{w, t q+r q+u, *}$ are $a_{1}, a_{0}, h_{1,0}, h_{1, n}, h_{1, m}$, $b_{1, n-1}, b_{1, m-1}$.

So, by degree reasons we have

$$
\begin{aligned}
& E_{1}^{4, t q+r q+1, *}=0 \text { for } r=3,4, \quad E_{1}^{4, t q+r q+u, *}=0 \text { for } r=2,3,4, u=-1,0, \\
& E_{1}^{4, t q, *}=Z_{p}\left\{b_{1, n-1} b_{1, m-1}\right\}, \quad E_{1}^{4, t q+1, *} \cong Z_{p}\left\{a_{0} h_{1, n} b_{1, m-1}, a_{0} h_{1, m} b_{1, n-1}\right\},
\end{aligned}
$$

$$
\begin{aligned}
& E_{1}^{4, t q+2, *}=Z_{p}\left\{a_{0}^{2} h_{1, n} h_{1, m}\right\}, \\
& E_{1}^{4, t q+2 q+1, *}=Z_{p}\left\{h_{1,0} a_{1} h_{1, n} h_{1, m}\right\}, \quad E_{1}^{4, t q+q, *}=Z_{p}\left\{h_{1,0} h_{1, n} b_{1, m-1}, h_{1,0} h_{1, m} b_{1, n-1}\right\}, \\
& E_{1}^{3, t q+1, *}=Z_{p}\left\{a_{0} h_{1, n} h_{1, m}\right\}, \quad E_{1}^{3, t q, *}=Z_{p}\left\{h_{1, n} b_{1, m-1}, h_{1, m} b_{1, n-1}\right\}, \\
& E_{1}^{3, t q+q, *}=Z_{p}\left\{h_{1,0} h_{1, n} h_{1, m}\right\}, \quad E_{1}^{3, t q+2 q+1, *}=0 .
\end{aligned}
$$

Note that the differential in the MSS is derivative, that is,

$$
d_{r}(x y)=d_{r}(x) y+(-1)^{s} x d_{r}(y) \quad \text { for } x \in E_{1}^{s, t, *}, y \in E_{1}^{s^{\prime}, t^{\prime}, *}
$$

Moreover, $a_{0}, h_{1, n}, b_{1, n-1}, h_{1,0} a_{1}$ are permanent cycles in the MSS which converge to

$$
a_{0}, h_{n}, b_{n-1}, \tilde{\alpha}_{2} \in \operatorname{Ext}_{A}^{*, *}\left(Z_{p}, Z_{p}\right)
$$

respectively. Then the differential $d_{r} E_{r}^{3, t q+s q+u, *}=0$ for all $r \geq 1$ and $s=u=0$ or $s=1, u=0$ or $s=0, u=1$ or $s=2, u=1$. Hence,

$$
b_{1, n-1} b_{1, m-1}, a_{0} h_{1, n} b_{1, m-1}, a_{0} h_{1, m} b_{1, n-1}, h_{1,0} h_{1, n} b_{1, m-1}, h_{1,0} h_{1, m} b_{1, n-1} \in E_{r}^{4, *, *}
$$

do not bound in the MSS and so $b_{n-1} b_{m-1}, a_{0} h_{n} b_{m-1}, a_{0} h_{m} b_{n-1}, h_{0} h_{n} b_{m-1}, h_{0} h_{m} b_{n-1}$ are all nonzero in $\operatorname{Ext}_{A}^{4, *}\left(Z_{p}, Z_{p}\right)$. This completes the proof of (1).

Similarly, by degree reasons we have

$$
\begin{aligned}
& E_{1}^{5, t q+q+1, *} \cong Z_{p}\left\{a_{0} h_{1,0} h_{1, n} b_{1, m-1}, a_{0} h_{1,0} h_{1, m} b_{1, n-1}, a_{1} b_{1, n-1} b_{1, m-1}\right\}, \\
& E_{1}^{5, t q+r q+1, *}=0 \text { for } r=3,4, \quad E_{1}^{5, t q+r q, *}=0 \text { for } r=2,3, \\
& E_{1}^{5, t q+2 q+1, *} \cong Z_{p}\left\{h_{1,0} a_{1} h_{1, n} b_{1, m-1}, h_{1,0} a_{1} h_{1, m} b_{1, n-1}\right\}, \\
& E_{1}^{5, t q+1, *}=Z_{p}\left\{a_{0} b_{1, n-1} b_{1, m-1}\right\}, \quad E_{1}^{5, t q+2, *}=Z_{p}\left\{a_{0}^{2} h_{1, m} b_{1, n-1}, a_{0}^{2} h_{1, n} b_{1, n-1}\right\}, \\
& E_{1}^{4, t q+2 q+1, *} \cong Z_{p}\left\{h_{1,0} a_{1} h_{1, n} h_{1, m}\right\} .
\end{aligned}
$$

The generators in $E_{1}^{5, t q+q+1, *}$ all die in the MSS since

$$
\begin{aligned}
& a_{0} h_{1,0} h_{1, n} b_{1, m-1}=-d_{1}\left(a_{1} h_{1, n} b_{1, m-1}\right), \quad a_{0} h_{1,0} h_{1, m} b_{1, n-1}=-d_{1}\left(a_{1} h_{1, m} b_{1, n-1}\right), \\
& d_{1}\left(a_{1} b_{1, n-1} b_{1, m-1}\right)=-a_{0} h_{1,0} b_{1, n-1} b_{1, m-1} \neq 0 \in E_{1}^{5, t q+q+1, *}
\end{aligned}
$$

then $\operatorname{Ext}_{A}^{5, t q+q+1}\left(Z_{p}, Z_{p}\right)=0$. Moreover, by the same reason as shown in the proof of (1),

$$
d_{r} E_{r}^{4, t q+u, *}=0, \quad d_{r} E_{r}^{4, t q+2 q+1, *}=0 \quad \text { for all } r \geq 1, u=1,2 .
$$

So the generators in $E_{1}^{5, *, *}$ converges nontrivially in the MSS to

$$
\tilde{\alpha}_{2} h_{n} b_{m-1}, \quad \tilde{\alpha}_{2} h_{m} b_{n-1}, \quad a_{0} b_{n-1} b_{m-1}, \quad a_{0}^{2} h_{m} b_{n-1}, \quad a_{0}^{2} h_{n} b_{m-1}
$$

respectively. For the last result, note that $d_{r} E_{r}^{5, t q+2, *}=0$ for all $r \geq 1$ and so

$$
a_{0}^{2} b_{n-1} b_{m-1} \neq 0 \in \operatorname{Ext}_{A}^{6, t q+2}\left(Z_{p}, Z_{p}\right)
$$

This completes the proof of (2).

Now we consider some spectra related to S, M or K. Let L be the cofibre of $\alpha_{1}=j \alpha i$: $\Sigma^{q-1} S \rightarrow S$ given by the cofibration

$$
\begin{equation*}
\Sigma^{q-1} S \xrightarrow{\alpha_{1}} S \xrightarrow{i^{\prime \prime}} L \xrightarrow{j^{\prime \prime}} \Sigma^{q} S . \tag{2.1}
\end{equation*}
$$

Let Y be the cofibre of $i^{\prime} i: S \rightarrow K$ given by the cofibration

$$
\begin{equation*}
S \xrightarrow{i^{\prime} i} K \xrightarrow{\bar{r}} Y \xrightarrow{\epsilon} \Sigma S . \tag{2.2}
\end{equation*}
$$

Y actually is the Toda spectrum $V\left(1 \frac{1}{2}\right)$ and it also is the cofibre of $j \alpha: \Sigma^{q} M \rightarrow \Sigma S$ given by the cofibration

$$
\begin{equation*}
\Sigma^{q} M \xrightarrow{j \alpha} \Sigma S \xrightarrow{\bar{w}} Y \xrightarrow{\bar{u}} \Sigma^{q+1} M . \tag{2.3}
\end{equation*}
$$

This can be seen by the following homotopy commutative (up to sign) diagram of 3×3 Lemma in the stable homotopy category (cf. [9, pp.292-293])

Note that $\alpha_{1} \cdot p=p \cdot \alpha_{1}=0$, and then $p=j^{\prime \prime} \pi$ and $p=\xi i^{\prime \prime}$ with $\pi \in\left[\Sigma^{q} S, L\right]$ and $\xi \in[L, S]$. Since $\pi_{q} S=0$, we have $\pi_{q} L \cong Z_{(p)}\{\pi\}$. Moreover, $i^{\prime \prime} \xi i^{\prime \prime}=i^{\prime \prime} \cdot p=\left(p \wedge 1_{L}\right) i^{\prime \prime}$, and then $p \wedge 1_{L}=i^{\prime \prime} \xi+\lambda \pi j^{\prime \prime}$ for some $\lambda \in Z_{(p)}$. It follows that $p \cdot j^{\prime \prime}=j^{\prime \prime}\left(p \wedge 1_{L}\right)=\lambda j^{\prime \prime} \pi \cdot j^{\prime \prime}=\lambda p \cdot j^{\prime \prime}$. Then $\lambda=1$ and we have

$$
\begin{equation*}
p \wedge 1_{L}=i^{\prime \prime} \xi+\pi j^{\prime \prime} \tag{2.4}
\end{equation*}
$$

By the following commutative diagram of 3×3 Lemma in the stable homotopy category

we have a cofibration

$$
\begin{equation*}
\Sigma^{q} S \xrightarrow{\pi} L \xrightarrow{\bar{h}} \Sigma^{-1} Y \xrightarrow{j \bar{u}} \Sigma^{q+1} S \tag{2.5}
\end{equation*}
$$

with $\bar{u} \bar{h}=i \cdot j^{\prime \prime}, \bar{h} i^{\prime \prime}=\bar{w}$.
Since $2 \alpha i j \alpha=i j \alpha^{2}+\alpha^{2} i j$ (cf. [7, p.430]), we have $\alpha_{1} \alpha_{1}=0$ and so there is $\phi \in\left[\Sigma^{2 q-1} S, L\right]$ and $\left(\alpha_{1}\right)_{L} \in\left[\Sigma^{q-1} L, S\right]$ such that

$$
\begin{equation*}
j^{\prime \prime} \phi=\alpha_{1}=\left(\alpha_{1}\right)_{L} \cdot i^{\prime \prime} \tag{2.6}
\end{equation*}
$$

Let W be the cofibre of $\phi: \Sigma^{2 q-1} S \rightarrow L$. Then W also is the cofibre of $\left(\alpha_{1}\right)_{L}: \Sigma^{q-1} L \rightarrow S$. This can be seen by the commutative diagram of 3×3 Lemma in stable homotopy category

That is, we have two cofibrations

$$
\begin{align*}
& \Sigma^{2 q-1} S \xrightarrow{\phi} L \xrightarrow{w} W \xrightarrow{j^{\prime \prime} u} \Sigma^{2 q} S, \tag{2.7}\\
& \Sigma^{q-1} L \xrightarrow{\left(\alpha_{1}\right)_{L}} S \xrightarrow{w i^{\prime \prime}} W \xrightarrow{u} \Sigma^{q} L . \tag{2.8}
\end{align*}
$$

Since $\alpha_{1} \cdot\left(\alpha_{1}\right)_{L} \in\left[\Sigma^{2 q-2} L, S\right]=0$ by $\pi_{r q-2} S=0$ for $r=2,3$, we see that there is $\bar{\phi} \in$ $\left[\Sigma^{2 q-1} L, L\right]$ such that $j^{\prime \prime} \bar{\phi}=\left(\alpha_{1}\right)_{L} \in\left[\Sigma^{q-1} L, S\right]$ and $\bar{\phi} \cdot i^{\prime \prime} \in \pi_{2 q-1} L$. Since $\pi_{r q-1} S$ has a unique generator $\alpha_{1}=j \alpha i, \alpha_{2}=j \alpha^{2} i$ for $r=1,2$ respectively and $j^{\prime \prime} \phi \cdot p=\alpha_{1} \cdot p=0$, we have $\phi \cdot p=i^{\prime \prime} \alpha_{2}$ up to a scalar. That is, $i_{*}^{\prime \prime} \pi_{2 q-1} S$ also is generated by ϕ and so we know that $\pi_{2 q-1} L \cong Z_{p^{s}}\{\phi\}$ for some $s \geq 1$. Hence, $\bar{\phi} i^{\prime \prime}=\lambda \phi$ for some $\lambda \in Z_{(p)}$ and $\lambda \alpha_{1}=\lambda j^{\prime \prime} \phi=$ $j^{\prime \prime} \bar{\phi} i^{\prime \prime}=\left(\alpha_{1}\right)_{L} i^{\prime \prime}=\alpha_{1}$ so that $\lambda=1(\bmod p)$. Moreover, $\left(\alpha_{1}\right)_{L} \bar{\phi} \in\left[\Sigma^{3 q-2} L, S\right]=0$ since $\pi_{r q-2} S$ $=0$ for $r=3,4$. Then by (2.8), there is $\bar{\phi}_{W} \in\left[\Sigma^{3 q-1} L, W\right]$ such that $u \bar{\phi}_{W}=\bar{\phi}$. Concludingly we have elements $\bar{\phi} \in\left[\Sigma^{2 q-1} L, L\right], \bar{\phi}_{W} \in\left[\Sigma^{3 q-1} L, W\right]$ such that

$$
\begin{equation*}
j^{\prime \prime} \bar{\phi}=\left(\alpha_{1}\right)_{L}, \quad \bar{\phi} i^{\prime \prime}=\lambda \phi \quad(\lambda=1(\bmod p)), \quad u \bar{\phi}_{W}=\bar{\phi}, \quad \pi_{2 q-1} L \cong Z_{p^{s}}\{\phi\} . \tag{2.9}
\end{equation*}
$$

Proposition 2.2 Let $p \geq 7$. Then up to $a \bmod p$ nonzero scalar we have
(1) $\phi \cdot p=i^{\prime \prime} \alpha_{2}=\pi \cdot \alpha_{1} \neq 0,\left(\alpha_{1}\right)_{L} \cdot \pi=\alpha_{2}, p \cdot\left(\alpha_{1}\right)_{L}=\alpha_{2} \cdot j^{\prime \prime}=\left(\alpha_{1}\right)_{L} \pi j^{\prime \prime} \neq 0,\left[\Sigma^{2 q-1} L, L\right]$ has a unique generator $\bar{\phi}$ modulo some elements of filtration ≥ 2.
(2) $\bar{h} \bar{\phi}\left(p \wedge 1_{L}\right) \neq 0 \in\left[\Sigma^{2 q} L, Y\right]$.
(3) $\bar{h} \tilde{\phi}\left(\pi \wedge 1_{L}\right)\left(p \wedge 1_{L}\right) \neq 0 \in\left[\Sigma^{3 q} L, Y\right], j^{\prime \prime} \tilde{\phi}\left(\pi \wedge 1_{L}\right) \pi=j \alpha^{3} i \in \pi_{3 q-1} S$ up to a $\bmod p$ nonzero scalar and $\bar{h} \tilde{\phi}\left(\pi \wedge 1_{L}\right) \pi \neq 0 \in \pi_{4 q} Y$, where $\tilde{\phi} \in\left[\Sigma^{2 q-1} L \wedge L, L\right]$ such that $\tilde{\phi}\left(1_{L} \wedge i^{\prime \prime}\right)=\bar{\phi}$.
(4) $\pi_{4 q} Y$ has a unique generator $\bar{h} \tilde{\phi}\left(\pi \wedge 1_{L}\right) \pi$ such that $\bar{h} \tilde{\phi}\left(\pi \wedge 1_{L}\right) \pi \cdot p=0$.

Proof (1) Since $j^{\prime \prime} \phi \cdot p=\alpha_{1} \cdot p=0=j^{\prime \prime} \pi \cdot \alpha_{1}$ and $\pi_{2 q-1} S \cong Z_{p}\left\{\alpha_{2}\right\}$, we have $\phi \cdot p=$ $i^{\prime \prime} \alpha_{2}=\pi \cdot \alpha_{1}$ up to a scalar. We claim that $\phi \cdot p \neq 0$, which can be shown as follows. Look at the following exact sequence

$$
Z_{p}\left\{j \alpha^{2}\right\} \cong\left[\Sigma^{2 q-1} M, S\right] \xrightarrow{i_{*}^{\prime \prime}}\left[\Sigma^{2 q-1} M, L\right] \xrightarrow{j_{*}^{\prime \prime}}\left[\Sigma^{q-1} M, S\right] \xrightarrow{\left(\alpha_{1}\right)_{*}}
$$

induced by (2.1). The right group has a unique generator $j \alpha$ satisfying $\left(\alpha_{1}\right)_{*} j \alpha=j \alpha i j \alpha=$ $\frac{1}{2} j \alpha \alpha i j \neq 0$. Then the above $\left(\alpha_{1}\right)_{*}$ is monic, $\operatorname{im} j_{*}^{\prime \prime}=0$ and so $\left[\Sigma^{2 q-1} M, L\right] \cong Z_{p}\left\{i^{\prime \prime} j \alpha^{2}\right\}$. Suppose in contrast that $\phi \cdot p=0$. Then $\phi \in i^{*}\left[\Sigma^{2 q-1} M, L\right]$ so that $\phi=i^{\prime \prime} j \alpha^{2} i$ and so $\alpha_{1}=j^{\prime \prime} \phi=j^{\prime \prime} i^{\prime \prime} \alpha_{2}=0$, which is a contradiction. This shows that $\phi \cdot p \neq 0$ and so the above scalar is nonzero $(\bmod p)$.

The proof of the second result is similar. For the last result, let x be any element in $\left[\Sigma^{2 q-1} L, L\right]$. Then $j^{\prime \prime} x \in\left[\Sigma^{q-1} L, S\right] \cong Z_{p^{s}}\left\{\left(\alpha_{1}\right)_{L}\right\}$ for some $s \geq 2$ (similar to the last of (2.9)). Consequently, $j^{\prime \prime} x=\lambda j^{\prime \prime} \bar{\phi}$ for some $\lambda \in Z_{p^{s}}$ and so $x=\lambda \bar{\phi}+i^{\prime \prime} x^{\prime}$ with $x^{\prime} \in\left[\Sigma^{2 q-1} L, S\right]$. Since $x^{\prime} i^{\prime \prime} \in \pi_{2 q-1} S \cong Z_{p}\left\{j \alpha^{2} i\right\}$ and $\pi_{3 q-1} S \cong Z_{p}\left\{j \alpha^{3} i\right\}, x^{\prime}$ is an element of filtration ≥ 2. This shows the result.
(2) Suppose in contrast that $\bar{h} \bar{\phi}\left(p \wedge 1_{L}\right)=0$. Then by (2.5) we have $\bar{\phi}\left(p \wedge 1_{L}\right)=\lambda^{\prime} \pi \cdot\left(\alpha_{1}\right)_{L}$ with $\lambda^{\prime} \in Z_{(p)}$. Note that $\pi \wedge 1_{M}=\left(i^{\prime \prime} \wedge 1_{M}\right) \alpha$ since $j^{\prime \prime} \pi \wedge 1_{M}=p \wedge 1_{M}=0$. It follows that $\lambda^{\prime}\left(\pi \wedge 1_{M}\right) i \cdot\left(\alpha_{1}\right)_{L}=\lambda^{\prime}\left(1_{L} \wedge i\right) \pi\left(\alpha_{1}\right)_{L}=0$. Then $\lambda^{\prime}\left(i^{\prime \prime} \wedge 1_{M}\right) \alpha i\left(\alpha_{1}\right)_{L}=\lambda^{\prime}\left(\pi \wedge 1_{M}\right) i\left(\alpha_{1}\right)_{L}=$ 0 and so $\lambda^{\prime} \alpha i\left(\alpha_{1}\right)_{L} \in\left(\alpha_{1} \wedge 1_{M}\right)\left[\Sigma^{q} L, M\right]$ and $\lambda^{\prime} \alpha i \alpha_{1} \in\left(\alpha_{1} \wedge 1_{M}\right)\left(i^{\prime \prime}\right)^{*}\left[\Sigma^{q} L, M\right]=0$ by the following exact sequence

$$
\left[\Sigma^{2 q} S, M\right] \xrightarrow{\left(j^{\prime \prime}\right)^{*}}\left[\Sigma^{q} L, M\right] \xrightarrow{\left(i^{\prime \prime}\right)^{*}}\left[\Sigma^{q} S, M\right] \xrightarrow{\left(\alpha_{1}\right)^{*}},
$$

where the right group has a unique generator αi satisfying $\left(\alpha_{1}\right)^{*} \alpha i=\alpha i j \alpha i \neq 0$ so that $\left(i^{\prime \prime}\right)^{*}\left[\Sigma^{q} L, M\right]=0$. This implies that $\lambda^{\prime}=0$ and so $\bar{\phi}\left(p \wedge 1_{L}\right)=0$, which contradicts the fact $j^{\prime \prime} \bar{\phi}\left(p \wedge 1_{L}\right)=p \cdot\left(\alpha_{1}\right)_{L} \neq 0$ in (1). This shows the result on $\bar{h} \bar{\phi}\left(p \wedge 1_{L}\right) \neq 0$.
(3) Note that $\bar{\phi}\left(1_{L} \wedge \alpha_{1}\right) \in\left[\Sigma^{3 q-2} L, L\right]=0$ since $\pi_{r q-2} S=0$ for $r=2,3,4$. Then there is $\tilde{\phi} \in\left[\Sigma^{2 q-1} L \wedge L, L\right]$ such that $\tilde{\phi}\left(1_{L} \wedge i^{\prime \prime}\right)=\bar{\phi}$. We first prove that $\tilde{\phi}\left(\pi \wedge 1_{L}\right)\left(p \wedge 1_{L}\right) \neq 0$. For otherwise, if it is zero, then $\bar{\phi} \pi \cdot p=\tilde{\phi}\left(\pi \wedge 1_{L}\right)\left(p \wedge 1_{L}\right) i^{\prime \prime}=0$ and so $\bar{\phi} \pi \in i^{*}\left[\Sigma^{3 q-1} M, L\right]$. However, $\left(j^{\prime \prime}\right)_{*}\left[\Sigma^{3 q-1} M, L\right] \subset\left[\Sigma^{2 q-1} M, S\right]$ which has a unique generator $j \alpha^{2}$ satisfying $\left(\alpha_{1}\right)_{*}\left(j \alpha^{2}\right)=$ $j \alpha i j \alpha^{2} \neq 0$. Then $\left(j^{\prime \prime}\right)_{*}\left[\Sigma^{3 q-1} M, L\right]=0$ and so $\left(\alpha_{1}\right)_{L} \pi=j^{\prime \prime} \bar{\phi} \pi \in i^{*}\left(j^{\prime \prime}\right)_{*}\left[\Sigma^{3 q-1} M, L\right]=0$, which contradicts the result in (1).

Now suppose in contrast that $\bar{h} \tilde{\phi}\left(\pi \wedge 1_{L}\right)\left(p \wedge 1_{L}\right)=0$. Then, by (2.5), $\tilde{\phi}\left(\pi \wedge 1_{L}\right)\left(p \wedge 1_{L}\right)$ $=\pi \cdot \omega$ with $\omega \in\left[\Sigma^{2 q-1} L, S\right]$ which satisfies $\omega i^{\prime \prime}=\lambda_{1} \alpha_{2}$ for some $\lambda_{1} \in Z_{p}$. It follows that $\left(i^{\prime \prime} \wedge 1_{M}\right) \alpha i \omega=\left(1_{L} \wedge i\right) \pi \cdot \omega=0$. Then $\alpha i \omega \in\left(\alpha_{1} \wedge 1_{M}\right)_{*}\left[\Sigma^{2 q} L, M\right]$ and so $\lambda_{1} \alpha i \alpha_{2}=\alpha i \omega i^{\prime \prime} \in$ $\left(\alpha_{1} \wedge 1_{M}\right)_{*}\left(i^{\prime \prime}\right)^{*}\left[\Sigma^{2 q} L, M\right]=\left(\alpha_{1}\right)^{*}\left(i^{\prime \prime}\right)^{*}\left[\Sigma^{2 q} L . M\right]=0$. This shows that $\lambda_{1}=0$ since $\alpha i \alpha_{2}=$ $\alpha i j \alpha^{2} i \neq 0$. Consequently, $\omega=\lambda_{2} j \alpha^{3} i \cdot j^{\prime \prime}$ and $\tilde{\phi}\left(\pi \wedge 1_{L}\right)\left(p \wedge 1_{L}\right)=\lambda_{2} \pi \cdot j \alpha^{3} i \cdot j^{\prime \prime}$ for some $\lambda_{2} \in Z_{(p)}$. It follows that $\bar{\phi} \pi \cdot p=\tilde{\phi}\left(\pi \wedge 1_{L}\right)\left(p \wedge 1_{L}\right) i^{\prime \prime}=0$ and so $\bar{\phi} \pi \in i^{*}\left[\Sigma^{3 q-1} M, L\right]$ so that $\left(\alpha_{1}\right)_{L} \pi=j^{\prime \prime} \bar{\phi} \pi \in i^{*}\left(j^{\prime \prime}\right)_{*}\left[\Sigma^{3 q-1} M, L\right]=0$. This contradicts the result in (1) on $\left(\alpha_{1}\right)_{L} \pi \neq 0$.

For the second result, since $\pi \cdot j=i^{\prime \prime} j \alpha$ by the diagram above (2.5), we have $j^{\prime \prime} \tilde{\phi}\left(\pi \wedge 1_{L}\right) \pi \cdot j=$ $j^{\prime \prime} \tilde{\phi}\left(\pi \wedge 1_{L}\right) i^{\prime \prime} j \alpha=j^{\prime \prime} \bar{\phi} \pi j \alpha=\left(\alpha_{1}\right)_{L} \pi j \alpha=\alpha_{2} j \alpha=j \alpha^{3} i j$ (up to a mod p nonzero scalar). Consequently we have $j^{\prime \prime} \tilde{\phi}\left(\pi \wedge 1_{L}\right) \pi=j \alpha^{3} i$ (up to nonzero scalar) since $\pi_{3 q-1} S \cong Z_{p}\left\{\alpha_{3}\right\}$ so that $p^{*} \pi_{3 q-1} S=0$.

For the last result, we first prove that $\tilde{\phi}\left(\pi \wedge 1_{L}\right) \pi \neq 0$. For otherwise, if it is zero, then $0=\tilde{\phi}\left(\pi \wedge 1_{L}\right) \pi \cdot j=\tilde{\phi}\left(\pi \wedge 1_{L}\right) i^{\prime \prime} j \alpha=\bar{\phi} \pi j \alpha$ and so $\alpha_{2} j \alpha=\left(\alpha_{1}\right)_{L} \pi j \alpha==j^{\prime \prime} \bar{\phi} \pi j \alpha=0$ which is a contradiction since $\alpha_{2} j \alpha=j \alpha^{2} i j \alpha \neq 0 \in\left[\Sigma^{3 q-2} M, S\right]$. Now suppose in contrast that $\bar{h} \tilde{\phi}\left(\pi \wedge 1_{L}\right) \pi=0$. Then, by (2.5) and $\pi_{3 q-1} S \cong Z_{p}\left\{\alpha_{3}\right\}$ we have $\tilde{\phi}\left(\pi \wedge 1_{L}\right) \pi=\lambda \pi \cdot j \alpha^{3} i=\lambda i^{\prime \prime} j \alpha^{4} i$ for some $\lambda \in Z_{p}$ and so $j^{\prime \prime} \tilde{\phi}\left(\pi \wedge 1_{L}\right) \pi=0$ which contradicts the second result.
(4) Since $(\bar{u})_{*} \pi_{4 q} Y \subset \pi_{3 q-1} M$ which has a unique generator $i j \alpha^{3} i=i j^{\prime \prime} \tilde{\phi}\left(\pi \wedge 1_{L}\right) \pi=$ $\bar{u} \bar{h} \tilde{\phi}\left(\pi \wedge 1_{L}\right) \pi$ (up to a nonzero scalar) and $\pi_{4 q-1} S \cong Z_{p}\left\{j \alpha^{4} i\right\}$ so that $(\bar{w})_{*} \pi_{4 q-1} S=0$, we see that $\pi_{4 q} Y$ has a unique generator $\bar{h} \tilde{\phi}\left(\pi \wedge 1_{L}\right) \pi$. Moreover, by (2.4), $\bar{h} \tilde{\phi}\left(\pi \wedge 1_{L}\right) \pi \cdot p=$ $\bar{h}\left(p \wedge 1_{L}\right) \tilde{\phi}\left(\pi \wedge 1_{L}\right) \pi=\bar{h} i^{\prime \prime} \xi \tilde{\phi}\left(\pi \wedge 1_{L}\right) \pi=\bar{w} j \alpha^{4} i=0$. This shows the result.

Proposition 2.3 Let $p \geq 7, n \geq m+2 \geq 4, t q=p^{n} q+p^{m} q$. Then

$$
\operatorname{Ext}_{A}^{3, t q+q}\left(H^{*} L, Z_{p}\right)=0, \quad \operatorname{Ext}_{A}^{3, t q}\left(H^{*} L, H^{*} L\right) \cong Z_{p}\left\{\left(h_{n} b_{m-1}\right)^{\prime},\left(h_{m} b_{n-1}\right)^{\prime}\right\}
$$

which satisfies $\left(i^{\prime \prime}\right)^{*}\left(h_{n} b_{m-1}\right)^{\prime}=\left(i^{\prime \prime}\right)_{*}\left(h_{n} b_{m-1}\right),\left(i^{\prime \prime}\right)^{*}\left(h_{m} b_{n-1}\right)^{\prime}=\left(i^{\prime \prime}\right)_{*}\left(h_{m} b_{n-1}\right)$.
Proof Consider the following exact sequence

$$
\operatorname{Ext}_{A}^{3, t q+q}\left(Z_{p}, Z_{p}\right) \xrightarrow{i_{*}^{\prime \prime}} \operatorname{Ext}_{A}^{3, t q+q}\left(H^{*} L, Z_{p}\right) \xrightarrow{j_{*}^{\prime \prime}} \operatorname{Ext}_{A}^{3, t q}\left(Z_{p}, Z_{p}\right) \xrightarrow{\left(\alpha_{1}\right)_{*}}
$$

induced by (2.1). The right group has two generators $h_{n} b_{m-1}, h_{m} b_{n-1}$ by [1, Table 8.1] which satisfies

$$
\left(\alpha_{1}\right)_{*}\left(h_{n} b_{m-1}\right)=h_{0} h_{n} b_{m-1} \neq 0, \quad\left(\alpha_{1}\right)_{*}\left(h_{m} b_{n-1}\right)=h_{0} h_{m} b_{n-1} \neq 0 \in \operatorname{Ext}_{A}^{4, t q+q}\left(Z_{p}, Z_{p}\right)
$$

(cf. Proposition 2.1(1)). Then the above $\left(\alpha_{1}\right)_{*}$ is monic and so im $j_{*}^{\prime \prime}=0$. Moreover, the left group has a unique generator $h_{0} h_{n} h_{m}=\left(\alpha_{1}\right)_{*}\left(h_{n} h_{m}\right)$ by [1, Table 8.1], so we have that im $i_{*}^{\prime \prime}$ $=0$ and $\operatorname{Ext}_{A}^{3, t q+q}\left(H^{*} L, Z_{p}\right)=0$. Look at the following exact sequence

$$
0=\operatorname{Ext}_{A}^{3, t q+q}\left(H^{*} L, Z_{p}\right) \xrightarrow{\left(j^{\prime \prime}\right)^{*}} \operatorname{Ext}_{A}^{3, t q}\left(H^{*} L, H^{*} L\right) \xrightarrow{\left(i^{\prime \prime}\right)^{*}} \operatorname{Ext}_{A}^{3, t q}\left(H^{*} L, Z_{p}\right) \xrightarrow{\left(\alpha_{1}\right)^{*}}
$$

induced by (2.1). Since $\operatorname{Ext}_{A}^{3, t q-r q}\left(Z_{p}, Z_{p}\right) \cong Z_{p}\left\{h_{n} b_{m-1}, h_{m} b_{n-1}\right\}$ for $r=0$ and is zero for $r=1$ in [1, Table 8.1], we see that the right group has two generators $\left(i^{\prime \prime}\right)_{*}\left(h_{n} b_{m-1}\right)$ and $\left(i^{\prime \prime}\right)_{*}\left(h_{m} b_{n-1}\right)$ whose images under $\left(\alpha_{1}\right)^{*}$ are zero. So the middle group has two generators as desired.

Proposition 2.4 Let $p \geq 7, n \geq m+2 \geq 4, t q=p^{n} q+p^{m} q$. Then
(1) $\operatorname{Ext}_{A}^{5, t q+3 q+1}\left(H^{*} L, Z_{p}\right) \cong Z_{p}\left\{\bar{\phi}_{*} \pi_{*}\left(h_{n} b_{m-1}\right), \bar{\phi}_{*} \pi_{*}\left(h_{m} b_{n-1}\right)\right\}$.
(2) $\operatorname{Ext}_{A}^{5, t q+3 q+2}\left(H^{*} Y, H^{*} L\right) \cong Z_{p}\left\{\bar{h}_{*} \tilde{\phi}_{*}\left(\pi \wedge 1_{L}\right)_{*}\left(h_{n} b_{m-1}\right)^{\prime}, \bar{h}_{*} \tilde{\phi}_{*}\left(\pi \wedge 1_{L}\right)_{*}\left(h_{m} b_{n-1}\right)^{\prime}\right\}$, where $\tilde{\phi} \in\left[\Sigma^{2 q-1} L \wedge L, L\right]$ such that $\tilde{\phi}\left(1_{L} \wedge i^{\prime \prime}\right)=\bar{\phi} \in\left[\Sigma^{2 q-1} L, L\right]$ as in Proposition 2.2(3).

Proof (1) Consider the following exact sequence

$$
\operatorname{Ext}_{A}^{5, t q+3 q+1}\left(Z_{p}, Z_{p}\right) \xrightarrow{i_{*}^{\prime \prime}} \operatorname{Ext}_{A}^{5, t q+3 q+1}\left(H^{*} L, Z_{p}\right) \xrightarrow{j_{*}^{\prime \prime}} \operatorname{Ext}_{A}^{5, t q+2 q+1}\left(Z_{p}, Z_{p}\right) \xrightarrow{\left(\alpha_{1}\right)_{*}}
$$

induced by (2.1). The left group is zero and the right group has two generators $\tilde{\alpha}_{2} h_{n} b_{m-1}$, $\tilde{\alpha}_{2} h_{m} b_{n-1}$ by Proposition 2.1(2). Note that $j \alpha \alpha i=\left(\alpha_{1}\right)_{L} \cdot \pi=j^{\prime \prime} \bar{\phi} \cdot \pi \in \pi_{2 q-1} S$, (cf. Proposition 2.2(1)). Then $\tilde{\alpha}_{2} h_{n} b_{m-1}=j_{*} \alpha_{*} \alpha_{*} i_{*}\left(h_{n} b_{m-1}\right)=j_{*}^{\prime \prime} \bar{\phi}_{*} \pi_{*}\left(h_{n} b_{m-1}\right)$ and $\tilde{\alpha}_{2}\left(h_{m} b_{n-1}\right)=$ $j_{*}^{\prime \prime} \bar{\phi}_{*} \pi_{*}\left(h_{m} b_{n-1}\right)$ and so the middle group has the two generators as desired.
(2) Look at the exact sequence

$$
0=\operatorname{Ext}_{A}^{5, t q+4 q+1}\left(H^{*} L, Z_{p}\right) \xrightarrow{\left(j^{\prime \prime}\right)^{*}} \operatorname{Ext}_{A}^{5, t q+3 q+1}\left(H^{*} L, H^{*} L\right) \xrightarrow{\left(i^{\prime \prime}\right)^{*}} \operatorname{Ext}_{A}^{5, t q+3 q+1}\left(H^{*} L, Z_{p}\right) \xrightarrow{\left(\alpha_{1}\right)^{*}}
$$

induced by (2.1). The left group is zero since $\operatorname{Ext}_{A}^{5, t q+r q+1}\left(Z_{p}, Z_{p}\right)=0$ for $r=3,4$ (cf. Proposition 2.1(2)). By (1) and $\bar{\phi}=\tilde{\phi}\left(1_{L} \wedge i^{\prime \prime}\right)$, the right group has two generators

$$
\bar{\phi}_{*} \pi_{*}\left(h_{n} b_{m-1}\right)=\left(i^{\prime \prime}\right)^{*} \tilde{\phi}_{*}\left(\pi \wedge 1_{L}\right)_{*}\left(h_{n} b_{m-1}\right)^{\prime}, \quad \bar{\phi}_{*} \pi_{*}\left(h_{m} b_{n-1}\right)=\left(i^{\prime \prime}\right)^{*} \tilde{\phi}_{*}\left(\pi \wedge 1_{L}\right)_{*}\left(h_{m} b_{n-1}\right)^{\prime}
$$

whose image under $\left(\alpha_{1}\right)^{*}$ is zero. Then the middle group has two generators

$$
\tilde{\phi}_{*}\left(\pi \wedge 1_{L}\right)_{*}\left(h_{n} b_{m-1}\right)^{\prime}, \quad \tilde{\phi}_{*}\left(\pi \wedge 1_{L}\right)_{*}\left(h_{m} b_{n-1}\right)^{\prime} .
$$

Moreover, by $\operatorname{Ext}_{A}^{5, t q+r q}\left(Z_{p}, Z_{p}\right)=0$ for $r=2,3$ in Proposition 2.1(2), we know that

$$
\operatorname{Ext}_{A}^{5, t q+2 q}\left(Z_{p}, H^{*} L\right)=0
$$

Then, by (2.5), $\operatorname{Ext}_{A}^{5, t q+3 q+2}\left(H^{*} Y, H^{*} L\right)=\bar{h}_{*} \operatorname{Ext}_{A}^{5, t q+3 q+1}\left(H^{*} L, H^{*} L\right)$ has the two generators as desired.

Proposition 2.5 Let $p \geq 7, n \geq m+2 \geq 4, t q=p^{n} q+p^{m} q$. Then
(1) $\operatorname{Ext}_{A}^{4, t q+3 q+1}\left(H^{*} Y, H^{*} L\right)=0, \quad \operatorname{Ext}_{A}^{4, t q+4 q+2}\left(H^{*} Y, Z_{p}\right)=0$.
(2) $\operatorname{Ext}_{A}^{3, t q+3 q+r}\left(H^{*} Y, H^{*} L\right)=0$ for $r=0,1$.

Proof (1) Consider the following exact sequence

$$
\operatorname{Ext}_{A}^{4, t q+3 q}\left(H^{*} L, H^{*} L\right) \xrightarrow{(\bar{h})_{*}} \operatorname{Ext}_{A}^{4, t q+3 q+1}\left(H^{*} Y, H^{*} L\right) \xrightarrow{(j \bar{u})_{*}} \operatorname{Ext}_{A}^{4, t q+2 q-1}\left(Z_{p}, H^{*} L\right) \xrightarrow{(\pi)_{*}}
$$

induced by (2.5). The left group is zero since $\operatorname{Ext}_{A}^{4, t q+r q}\left(Z_{p}, Z_{p}\right)=0$ for $r=2,3,4$ by Proposition 2.1(1). The right group also is zero since $\operatorname{Ext}_{A}^{4, t q+r q-1}\left(Z_{p}, Z_{p}\right)=0$ for $r=2,3$ by Proposition 2.1(1). Then the middle group is zero as desired.

For the second result, look at the following exact sequence

$$
\operatorname{Ext}_{A}^{4, t q+4 q+1}\left(H^{*} L, Z_{p}\right) \xrightarrow{(\bar{h})_{*}} \operatorname{Ext}_{A}^{4, t q+4 q+2}\left(H^{*} Y, Z_{p}\right) \xrightarrow{(j \bar{u})_{*}} \operatorname{Ext}_{A}^{4, t q+3 q}\left(Z_{p}, Z_{p}\right)
$$

induced by (2.5). The left is zero since $\operatorname{Ext}_{A}^{4, t q+r q+1}\left(Z_{p}, Z_{p}\right)=0$ for $r=3,4$ by Proposition 2.1(1). The right group also is zero by Proposition 2.1(1). Then the middle group is zero as desired.
(2) Consider the following exact sequence $(r=0,1)$

$$
\operatorname{Ext}_{A}^{3, t q+3 q+r-1}\left(H^{*} L, H^{*} L\right) \xrightarrow{(\bar{h})_{*}} \operatorname{Ext}_{A}^{3, t q+3 q+r}\left(H^{*} Y, H^{*} L\right) \xrightarrow{(j \bar{u})_{*}} \operatorname{Ext}_{A}^{3, t q+2 q+r-2}\left(Z_{p}, H^{*} L\right)
$$

induced by (2.5). The left group is zero since $\operatorname{Ext}_{A}^{3, t q+k q+r-1}\left(Z_{p}, Z_{p}\right)=0$ for $k=2,3,4, r=0,1$ by [1, Table 8.1]. The right group also is zero since $\operatorname{Ext}_{A}^{3, t q+k q+r-2}\left(Z_{p}, Z_{p}\right)=0$ for $k=2,3, r=$ 0,1 by [1, Table 8.1] and so the middle group is zero as desired.

Proposition 2.6 Let $p \geq 7, n \geq m+2 \geq 4, t q=p^{n} q+p^{m} q$. Then
(1) $\operatorname{Ext}_{A}^{3, t q+3 q}\left(H^{*} W, H^{*} L\right) \cong Z_{p}\left\{\left(\bar{\phi}_{W}\right)_{*}\left(h_{n} h_{m}\right)^{\prime}\right\}$, where $\bar{\phi}_{W} \in\left[\Sigma^{3 q-1} L, W\right]$ satisfying $u \bar{\phi}_{W}=\bar{\phi} \in\left[\Sigma^{2 q-1} L, L\right]$ as in (2.9), $\left(h_{n} h_{m}\right)^{\prime} \in \operatorname{Ext}_{A}^{2, t q}\left(H^{*} L, H^{*} L\right)$ such that $\left(i^{\prime \prime}\right)^{*}\left(h_{n} h_{m}\right)^{\prime}=$ $\left(i^{\prime \prime}\right)_{*}\left(h_{n} h_{m}\right) \in \operatorname{Ext}_{A}^{2, t q}\left(H^{*} L, Z_{p}\right)$.
(2) $\operatorname{Ext}_{A}^{2, t q+3 q}\left(H^{*} Y, H^{*} L\right)=0, \quad \operatorname{Ext}_{A}^{2, t q+q-1}\left(H^{*} M, H^{*} L\right)=0$.

Proof (1) Consider the following exact sequence

$$
\operatorname{Ext}_{A}^{3, t q+3 q}\left(H^{*} L, H^{*} L\right) \xrightarrow{w_{*}} \operatorname{Ext}_{A}^{3, t q+3 q}\left(H^{*} W, H^{*} L\right) \xrightarrow{\left(j^{\prime \prime} u\right)_{*}} \operatorname{Ext}_{A}^{3, t q+q}\left(Z_{p}, H^{*} L\right) \xrightarrow{\phi_{*}}
$$

induced by (2.7). The left group is zero since $\operatorname{Ext}_{A}^{3, t q+r q}\left(Z_{p}, Z_{p}\right)=0$ for $r=2,3,4$ by [1, Table 8.1]. Since $\left(i^{\prime \prime}\right)^{*} \operatorname{Ext}_{A}^{3, t q+q}\left(Z_{p}, H^{*} L\right) \subset \operatorname{Ext}_{A}^{3, t q+q}\left(Z_{p}, Z_{p}\right)$ which has a unique generator $h_{0} h_{n} h_{m}=\left(\alpha_{1}\right)^{*}\left(h_{n} h_{m}\right)=\left(i^{\prime \prime}\right)^{*}\left(\left(\alpha_{1}\right)_{L}\right)^{*}\left(h_{n} h_{m}\right)$ and $\operatorname{Ext}_{A}^{3, t q+2 q}\left(Z_{p}, Z_{p}\right)=0$ by [1, Table 8.1], we see that the right group has a unique generator

$$
\left(\left(\alpha_{L}\right)\right)^{*}\left(h_{n} h_{m}\right)=\left(\left(\alpha_{1}\right)_{L}\right)_{*}\left(h_{n} h_{m}\right)^{\prime}=\left(j^{\prime \prime} u\right)_{*}\left(\bar{\phi}_{W}\right)_{*}\left(h_{n} h_{m}\right)^{\prime}
$$

with $\left(h_{n} h_{m}\right)^{\prime} \in \operatorname{Ext}_{A}^{2, t q}\left(H^{*} L, H^{*} L\right)$ satisfying $\left(i^{\prime \prime}\right)^{*}\left(h_{n} h_{m}\right)^{\prime}=\left(i^{\prime \prime}\right)_{*}\left(h_{n} h_{m}\right) \in \operatorname{Ext}_{A}^{2, t q}\left(H^{*} L, Z_{p}\right)$. Moreover, $\phi_{*}\left(\left(\alpha_{1}\right)_{L}\right)_{*}\left(h_{n} h_{m}\right)^{\prime}=0 \in \operatorname{Ext}_{A}^{4, t q+3 q}\left(H^{*} L, H^{*} L\right)$, so the middle group has a unique generator $\left(\bar{\phi}_{W}\right)_{*}\left(h_{n} h_{m}\right)^{\prime}$ as desired.
(2) Look at the following exact sequences

$$
\begin{aligned}
& \operatorname{Ext}_{A}^{2, t q+3 q-1}\left(H^{*} L, H^{*} L\right) \xrightarrow{\bar{h}_{*}} \operatorname{Ext}_{A}^{2, t q+3 q}\left(H^{*} Y, H^{*} L\right) \xrightarrow{(j \bar{u})_{*}} \operatorname{Ext}_{A}^{2, t q+2 q-2}\left(Z_{p}, H^{*} L\right), \\
& \operatorname{Ext}_{A}^{2, t q+q-1}\left(Z_{p}, H^{*} L\right) \xrightarrow{i_{*}} \operatorname{Ext}_{A}^{2, t q+q-1}\left(H^{*} M, H^{*} L\right) \xrightarrow{j_{*}} \operatorname{Ext}_{A}^{2, t q+q-2}\left(Z_{p}, H^{*} L\right)
\end{aligned}
$$

induced by (2.5) and (1.1) respectively. The upper left group is zero since $\operatorname{Ext}_{A}^{2, t q+r q-1}\left(Z_{p}, Z_{p}\right)$ $=0$ for $r=2,3,4$ and the upper right group also is zero since $\operatorname{Ext}_{A}^{2, t q+r q-2}\left(Z_{p}, Z_{p}\right)=0$ for $r=2,3$ (cf. [5]). Then the upper middle group is zero as desired. Similarly, the lower middle group also is zero as desired.

Proposition 2.7 Let $p \geq 7, n \geq m+2 \geq 4, t q=p^{n} q+p^{m} q$. Then

$$
\operatorname{Ext}_{A}^{5, t q+2}\left(H^{*} M, Z_{p}\right)=0, \quad \operatorname{Ext}_{A}^{3, t q+q+1}\left(H^{*} M \wedge L, Z_{p}\right) \cong Z_{p}\left\{\left(i \wedge 1_{L}\right)_{*} \pi_{*}\left(h_{n} h_{m}\right)\right\}
$$

Proof Consider the following exact sequence

$$
\operatorname{Ext}_{A}^{5, t q+2}\left(Z_{p}, Z_{p}\right) \xrightarrow{i_{*}} \operatorname{Ext}_{A}^{5, t q+2}\left(H^{*} M, Z_{p}\right) \xrightarrow{j_{*}} \operatorname{Ext}_{A}^{5, t q+1}\left(Z_{p}, Z_{p}\right) \xrightarrow{p_{*}}
$$

induced by (1.1). The right group has a unique generator $a_{0} b_{n-1} b_{m-1}$ which satisfies

$$
p_{*}\left(a_{0} b_{n-1} b_{m-1}\right)=a_{0}^{2} b_{n-1} b_{m-1}(\neq 0) \in \operatorname{Ext}_{A}^{6, t q+2}\left(Z_{p}, Z_{p}\right)
$$

by Proposition 2.1(2). Then $\operatorname{im} j_{*}=0$. The left group has two generators

$$
a_{0}^{2} h_{m} b_{n-1}=p_{*}\left(a_{0} h_{m} b_{n-1}\right), \quad a_{0}^{2} h_{n} b_{m-1}=p_{*}\left(a_{0} h_{n} b_{m-1}\right)
$$

so that $\operatorname{im} i_{*}=0$. So the middle group is zero as desired.
For the second result, look at the following exact sequence

$$
\operatorname{Ext}_{A}^{3, t q+q+1}\left(H^{*} L, Z_{p}\right) \xrightarrow{\left(i \wedge 1_{L}\right)_{*}} \operatorname{Ext}_{A}^{3, t q+q+1}\left(H^{*} M \wedge L, Z_{p}\right) \xrightarrow{\left(j \wedge 1_{L}\right)_{*}} \operatorname{Ext}_{A}^{3, t q+q}\left(H^{*} L, Z_{p}\right)
$$

induced by (1.1). The right group is zero by Proposition 2.3(1). Since

$$
\left(j^{\prime \prime}\right)_{*} \operatorname{Ext}_{A}^{3, t q+q+1}\left(H^{*} L, Z_{p}\right) \subset \operatorname{Ext}_{A}^{3, t q+1}\left(Z_{p}, Z_{p}\right) \cong Z_{p}\left\{a_{0} h_{n} h_{m}=\left(j^{\prime \prime}\right)_{*} \pi_{*}\left(h_{n} h_{m}\right)\right\}
$$

and $\operatorname{Ext}_{A}^{3, t q+q+1}\left(Z_{p}, Z_{p}\right)=0$ by [1, Table 8.1], we see that the left group has a unique generator $\pi_{*}\left(h_{n} h_{m}\right)$ and so the result follows.

3 Proof of the Main Theorem A

The proof of Theorem A will be done by an argument processing in the Adams resolution of certain spectra related to S which is equivalent to computing the differentials of the ASS. Let

$$
\begin{array}{cccc}
\cdots \xrightarrow{\bar{a}_{2}} & \Sigma^{-2} E_{2} & \xrightarrow{\bar{a}_{1}} & \Sigma^{-1} E_{1} \\
& \downarrow \bar{b}_{2} & & \xrightarrow{\bar{a}_{0}} \\
& \downarrow \bar{b}_{1} & & E_{0}=S \\
& \Sigma^{-2} K G_{2} & \Sigma^{-1} K G_{1} & K \bar{b}_{0}
\end{array}
$$

be the minimal Adams resolution of S satisfying
(1) $E_{s} \xrightarrow{\bar{b}_{s}} K G_{s} \xrightarrow{\bar{c}_{s}} E_{s+1} \xrightarrow{\bar{a}_{s}} \Sigma E_{s}$ are cofibrations for all $s \geq 0$ which induce short exact sequences $0 \longrightarrow H^{*} E_{s+1} \xrightarrow{\bar{c}_{s}^{*}} H^{*} K G_{s} \xrightarrow{\bar{b}_{s}^{*}} H^{*} E_{s} \longrightarrow 0$ in Z_{p}-cohomology.
(2) $K G_{s}$ is a wedge sum of Eilenberg-Maclane spectra of type $K Z_{p}$.
(3) $\pi_{t} K G_{s}$ are the $E_{1}^{s, t}$-terms, $\left(\bar{b}_{s} \bar{c}_{s-1}\right)_{*}: \pi_{t} K G_{s-1} \longrightarrow \pi_{t} K G_{s}$ are the $d_{1}^{s-1, t}$-differentials of the ASS and $\pi_{t} K G_{s} \cong \operatorname{Ext}_{A}^{s, t}\left(Z_{p}, Z_{p}\right)$ (cf. [3, p.180]).
Then, an Adams resolution of arbitrary spectrum V can be obtained by smashing V on the above minimal Adams resolution. We first prove the following lemma.

Lemma 3.1 Let $p \geq 7, m \geq n+2 \geq 4, t q=p^{n} q+p^{m} q, \sigma^{\prime}=h_{m} b_{n-1}-h_{n} b_{m-1}$. Then
(1) $d_{2}\left(h_{n} h_{m}\right)=a_{0} \sigma^{\prime} \in \operatorname{Ext}_{A}^{4, t q+1}\left(Z_{p}, Z_{p}\right)$, where $d_{2}: \operatorname{Ext}_{A}^{2, t q}\left(Z_{p}, Z_{p}\right) \rightarrow \operatorname{Ext}_{A}^{4, t q+1}\left(Z_{p}, Z_{p}\right)$ is the differential of the ASS.
(2) $\bar{c}_{3} \cdot h_{0} h_{n} h_{m}=\left(1_{E_{4}} \wedge \alpha_{1}\right) \kappa$ up to a scalar, where $\kappa \in \pi_{t q+1} E_{4}$ such that $\bar{c}_{2} \cdot h_{n} h_{m}=\bar{a}_{3} \cdot \kappa$ and $\bar{b}_{4} \cdot \kappa=a_{0} \sigma^{\prime} \in \pi_{t q+1} K G_{4} \cong \operatorname{Ext}_{A}^{4, t q+1}\left(Z_{p}, Z_{p}\right)$ by (1).

Proof (1) From [8, Theorem 1.2.14, p.11], $d_{2}\left(h_{n}\right)=a_{0} b_{n-1} \in \operatorname{Ext}_{A}^{3, p^{n} q+1}\left(Z_{p}, Z_{p}\right)$. Then, $d_{2}\left(h_{n} h_{m}\right)=d_{2}\left(h_{n}\right) h_{m}+(-1)^{1+p^{n} q} h_{n} d_{2}\left(h_{m}\right)=a_{0} b_{n-1} h_{m}-h_{n} a_{0} b_{m-1}=a_{0} \sigma^{\prime}$ as desired.
(2) The d_{1}-cycle $\left(1_{K G_{3}} \wedge i^{\prime \prime}\right) h_{0} h_{n} h_{m} \in \pi_{t q+q}\left(K G_{3} \wedge L\right)$ represents an element in $\operatorname{Ext}_{A}^{3, t q+q}$ $\left(H^{*} L, Z_{p}\right)=0$ by Proposition 2.3(1), so it is a d_{1}-boundary and $\left(\bar{c}_{3} \wedge 1_{L}\right)\left(1_{K G_{3}} \wedge i^{\prime \prime}\right) h_{0} h_{n} h_{m}=$ 0 and $\bar{c}_{3} \cdot h_{0} h_{n} h_{m}=\left(1_{E_{4}} \wedge \alpha_{1}\right) f^{\prime \prime}$ with $f^{\prime \prime} \in \pi_{t q+1} E_{4}$. It follows that $\bar{a}_{3} \cdot\left(1_{E_{4}} \wedge \alpha_{1}\right) f^{\prime \prime}=0$ and $\bar{a}_{3} \cdot f^{\prime \prime}=\left(1_{E_{3}} \wedge j^{\prime \prime}\right) f_{2}^{\prime \prime}$ for some $f_{2}^{\prime \prime} \in \pi_{t q+q}\left(E_{3} \wedge L\right)$. The d_{1}-cycle $\left(\bar{b}_{3} \wedge 1_{L}\right) f_{2}^{\prime \prime} \in \pi_{t q+q} K G_{3} \wedge L$ represents an element in $\operatorname{Ext}_{A}^{3, t q+q}\left(H^{*} L, Z_{p}\right)=0$. Then $\left(\bar{b}_{3} \wedge 1_{L}\right) f_{2}^{\prime \prime}=\left(\bar{b}_{3} \bar{c}_{2} \wedge 1_{L}\right) g^{\prime \prime}$ with $g^{\prime \prime} \in$ $\pi_{t q+q}\left(K G_{2} \wedge L\right)$ and so $f_{2}^{\prime \prime}=\left(\bar{c}_{2} \wedge 1_{L}\right) g^{\prime \prime}+\left(\bar{a}_{3} \wedge 1_{L}\right) f_{3}^{\prime \prime}$ for some $f_{3}^{\prime \prime} \in \pi_{t q+q+1} E_{4} \wedge L$. It follows that $\bar{a}_{3} \cdot f^{\prime \prime}=\bar{a}_{3}\left(1_{E_{4}} \wedge j^{\prime \prime}\right) f_{3}^{\prime \prime}+\bar{c}_{2}\left(1_{K G_{2}} \wedge j^{\prime \prime}\right) g^{\prime \prime}=\bar{a}_{3}\left(1_{E_{4}} \wedge j^{\prime \prime}\right) f_{3}^{\prime \prime}+\lambda \bar{c}_{2} \cdot h_{n} h_{m}=\bar{a}_{3}\left(1_{E_{4}} \wedge j^{\prime \prime}\right) f_{3}^{\prime \prime}+\lambda \bar{a}_{3} \cdot \kappa$ for some $\lambda \in Z_{p}$ since $\left(1_{K G_{2}} \wedge j^{\prime \prime}\right) g^{\prime \prime} \in \pi_{t q} K G_{2} \cong \operatorname{Ext}_{A}^{2, t q}\left(Z_{p}, Z_{p}\right) \cong Z_{p}\left\{h_{n} h_{m}\right\}$ (cf. [5]). Hence, $f^{\prime \prime}=\left(1_{E_{4}} \wedge j^{\prime \prime}\right) f_{3}^{\prime \prime}+\lambda \kappa+\bar{c}_{3} \cdot g_{2}^{\prime \prime}$ for some $g_{2}^{\prime \prime} \in \pi_{t q+1} K G_{3}$ and so

$$
\bar{c}_{3} \cdot h_{0} h_{n} h_{m}=\left(1_{E_{4}} \wedge \alpha_{1}\right) f^{\prime \prime}=\lambda\left(1_{E_{4}} \wedge \alpha_{1}\right) \kappa .
$$

Since $\bar{h} \phi \cdot p=\bar{h} i^{\prime \prime} j \alpha^{2} i=0$ by Proposition 2.2(1) and (2.3), (2.5), we have $\bar{h} \phi=\left(1_{Y} \wedge j\right) \alpha_{Y \wedge M} i$ with $\alpha_{Y \wedge M} \in\left[\Sigma^{2 q+1} M, Y \wedge M\right]$. Let ΣU be the cofibre of $\bar{h} \phi=\left(1_{Y} \wedge j\right) \alpha_{Y \wedge M} i: \Sigma^{2 q} S \rightarrow Y$ given by the cofibration

$$
\begin{equation*}
\Sigma^{2 q} S \xrightarrow{\bar{h} \phi} Y \xrightarrow{w_{2}} \Sigma U \xrightarrow{u_{2}} \Sigma^{2 q+1} S \tag{3.1}
\end{equation*}
$$

Moreover, $w_{2}\left(1_{Y} \wedge j\right) \alpha_{Y \wedge M}=\widetilde{w} \cdot j$ with $\widetilde{w}: \Sigma^{2 q} S \rightarrow U$ whose cofibre is X given by the cofibtation $\Sigma^{2 q} S \xrightarrow{\widetilde{w}} U \xrightarrow{\tilde{u}} X \xrightarrow{j \tilde{\psi}} \Sigma^{2 q+1} S$. Then, ΣX also is the cofibre of $\omega=\left(1_{Y} \wedge j\right) \alpha_{Y \wedge M}: \Sigma^{2 q} M \rightarrow Y$ given by the cofibration

$$
\begin{equation*}
\Sigma^{2 q} M \xrightarrow{\left(1_{Y} \wedge j\right) \alpha_{Y} \wedge M} Y \xrightarrow{\tilde{u} w_{2}} \Sigma X \xrightarrow{\tilde{\psi}} \Sigma^{2 q+1} M . \tag{3.2}
\end{equation*}
$$

This can be seen by the following commutative diagram of 3×3 Lemma

Since $j \bar{u}(\bar{h} \phi)=0$, then, by $(3.1), j \bar{u}=u_{3} w_{2}$ with $u_{3} \in\left[U, \Sigma^{q+1} S\right]$. So, the spectrum U in (3.1) also is the cofibre of $w \pi: \Sigma^{q} S \rightarrow W$ given by the cofibration

$$
\begin{equation*}
\Sigma^{q} S \xrightarrow{w \pi} W \xrightarrow{w_{3}} U \xrightarrow{u_{3}} \Sigma^{q+1} S . \tag{3.3}
\end{equation*}
$$

This can be seen by the following commutative diagram of 3×3 Lemma

Moreover, by $u_{3} \widetilde{w}=\alpha_{1}$, the cofibre of $\tilde{u} w_{3}: W \rightarrow X$ is $\Sigma^{q+1} L$ given by the cofibration

$$
\begin{equation*}
W \xrightarrow{\tilde{u} w_{3}} X \xrightarrow{u^{\prime \prime}} \Sigma^{q+1} L \xrightarrow{w^{\prime}\left(\pi \wedge 1_{L}\right)} \Sigma W, \tag{3.4}
\end{equation*}
$$

where $w^{\prime} \in[L \wedge L, W]$ such that $w^{\prime}\left(1_{L} \wedge i^{\prime \prime}\right)=w$. This can be seen by the following commutative diagram of 3×3 Lemma

Lemma 3.2 Let $\bar{\phi}_{W} \in\left[\Sigma^{3 q-1} L, W\right]$ be the map in (2.9) and Proposition 2.6(1) which satisfies $u \bar{\phi}_{W}=\bar{\phi} \in\left[\Sigma^{2 q-1} L, L\right]$. Then
(1) $\tilde{u} w_{3} \bar{\phi}_{W}\left(p \wedge 1_{L}\right) \neq 0 \in\left[\Sigma^{3 q-1} L, X\right]$.
(2) $\operatorname{Ext}_{A}^{2, t q+3 q-1}\left(H^{*} X, H^{*} L\right)=0, \quad \operatorname{Ext}_{A}^{3, t q+3 q}\left(H^{*} X, H^{*} L\right)=\left(\tilde{u} w_{3}\right)_{*} \operatorname{Ext}_{A}^{3, t q+3 q}\left(H^{*} W, H^{*} L\right)$.

Proof (1) Suppose in contrast that $\tilde{u} w_{3} \bar{\phi}_{W}\left(p \wedge 1_{L}\right)=0$. Then by (3.4) and the result on [$\left.\Sigma^{2 q-1} L, L\right]$ in Proposition 2.2(1) we have

$$
\begin{equation*}
\bar{\phi}_{W}\left(p \wedge 1_{L}\right)=\lambda w^{\prime}\left(\pi \wedge 1_{L}\right) \bar{\phi} \quad \bmod F_{3}\left[\Sigma^{3 q-1} L, W\right] \tag{3.5}
\end{equation*}
$$

for some $\lambda \in Z_{(p)}$, where $F_{3}\left[\Sigma^{3 q-1} L, W\right]$ denotes the subgroup of [$\Sigma^{3 q-1} L, W$] generated by elements of filtration ≥ 3. Moreover, note that $u w^{\prime}\left(\pi \wedge 1_{L}\right) \in[L, L]$ which has two generators $\left(p \wedge 1_{L}\right), \pi j^{\prime \prime}$ of filtration 1 (cf. (2.4)). Then $u w^{\prime}\left(\pi \wedge 1_{L}\right)=\lambda_{1}\left(p \wedge 1_{L}\right)+\lambda_{2} \pi j^{\prime \prime}$ for some $\lambda_{1}, \lambda_{2} \in Z_{(p)}$. It follows by (2.8) that $\lambda_{1} p \cdot\left(\alpha_{1}\right)_{L}+\lambda_{2}\left(\alpha_{1}\right)_{L} \pi j^{\prime \prime}=0$ and so we have $\lambda_{2}=\lambda_{0} \lambda_{1}$, where we use the equation $\left(\alpha_{1}\right)_{L} \pi j^{\prime \prime}=-\left(\lambda_{0}\right)^{-1} p \cdot\left(\alpha_{1}\right)_{L}$ with nonzero $\lambda_{0} \in Z_{(p)}$ (cf. Proposition $2.2(1))$. Hence, by composing u on (3.5) we have
$\bar{\phi}\left(p \wedge 1_{L}\right)=u \bar{\phi}_{W}\left(p \wedge 1_{L}\right)=\lambda u w^{\prime}\left(\pi \wedge 1_{L}\right) \bar{\phi}=\lambda \lambda_{1} \bar{\phi}\left(p \wedge 1_{L}\right)+\lambda \lambda_{0} \lambda_{1} \pi j^{\prime \prime} \bar{\phi} \quad\left(\bmod F_{3}\left[\Sigma^{2 q-1} L, L\right]\right)$
and so by (2.5) we have

$$
\bar{h} \bar{\phi}\left(p \wedge 1_{L}\right)=\lambda \lambda_{1} \bar{h} \bar{\phi}\left(p \wedge 1_{L}\right) \quad\left(\bmod \quad F_{3}\left[\Sigma^{2 q} L, Y\right]\right)
$$

This implies that $\lambda \lambda_{1}=1(\bmod p)\left(\right.$ cf. Remark 3.3 below). Consequently we have $\lambda \lambda_{1} \lambda_{0} \pi j^{\prime \prime} \bar{\phi}$ $=0\left(\bmod F_{3}\left[\Sigma^{2 q-1} L, L\right]\right)$ and by a similar reason as shown in Remark 3.3 below, this implies $\lambda \lambda_{1} \lambda_{0}=0(\bmod p)$, which yields a contradiction.
(2) Consider the following exact sequence

$$
\operatorname{Ext}_{A}^{2, t q+3 q}\left(H^{*} Y, H^{*} L\right) \xrightarrow{\left(\tilde{u} w_{2}\right)_{*}} \operatorname{Ext}_{A}^{2, t q+3 q-1}\left(H^{*} X, H^{*} L\right) \xrightarrow{(\tilde{\psi})_{*}} \operatorname{Ext}_{A}^{2, t q+q-1}\left(H^{*} M, H^{*} L\right)
$$

induced by (3.2). Both sides of group are zero by Proposition 2.6(2) and so the middle group is zero as desired. Look at the following exact sequence

$$
\operatorname{Ext}_{A}^{3, t q+3 q}\left(H^{*} W, H^{*} L\right) \xrightarrow{\left(\tilde{u} w_{3}\right)_{*}} \operatorname{Ext}_{A}^{3, t q+3 q}\left(H^{*} X, H^{*} L\right) \xrightarrow{\left(u^{\prime \prime}\right)_{*}} \operatorname{Ext}_{A}^{3, t q+2 q-1}\left(H^{*} L, H^{*} L\right)
$$

induced by (3.4). The right group is zero since $\operatorname{Ext}_{A}^{3, t q+r q-1}\left(Z_{p}, Z_{p}\right)=0$ for $r=1,2,3$ by [1, Table 8.1]. Then the result follows.

Remark 3.3 We give an explanation for the reason why the scalar in the equation (1$\left.\lambda \lambda_{1}\right) \bar{h} \bar{\phi}\left(p \wedge 1_{L}\right)=0\left(\bmod F_{3}\left[\Sigma^{2 q} L, Y\right]\right)$ must be zero $(\bmod p)$. For otherwise, if $1-\lambda \lambda_{1} \neq 0(\bmod$ $p)$, then $\left(1-\lambda \lambda_{1}\right) \bar{h} \bar{\phi}\left(p \wedge 1_{L}\right)$ must be represented by some nonzero $x \in \operatorname{Ext}_{A}^{2,2 q+2}\left(H^{*} Y, H^{*} L\right)$ in the ASS. However, it equals an element of filtration ≥ 3. Then x must be hit by differential and so $x=d_{2}\left(x^{\prime}\right) \in d_{2} \operatorname{Ext}_{A}^{0,2 q+1}\left(H^{*} Y, H^{*} L\right)=0$ since $\operatorname{Ext}_{A}^{0,2 q+1}\left(H^{*} Y, H^{*} L\right)=$ $\operatorname{Hom}_{A}^{2 q+1}\left(H^{*} Y, H^{*} L\right)=0$ by $H^{r} L \neq 0$ only for $r=0, q$. This is a contradiction so that $1-\lambda \lambda_{1}=0(\bmod p)$.

Lemma 3.4 For the map $\kappa \in \pi_{t q+1} E_{4}$ in Lemma 3.1(2) which satisfies $\bar{a}_{4} \cdot \kappa=\bar{c}_{2} \cdot h_{n} h_{m}$ and $\bar{b}_{4} \cdot \kappa=a_{0} \sigma^{\prime} \in \pi_{t q+1} K G_{4} \cong \operatorname{Ext}_{A}^{4, t q+1}\left(Z_{p}, Z_{p}\right)$, there exist $f \in \pi_{t q+3} E_{6}$ and $g \in \pi_{t q+1}\left(K G_{3} \wedge M\right)$ such that
(A) $\left(1_{E_{4}} \wedge i\right) \kappa=\left(\bar{c}_{3} \wedge 1_{M}\right) g+\left(\bar{a}_{4} \bar{a}_{5} \wedge 1_{M}\right) f$,
(B) $\left(1_{E_{6}} \wedge\left(1_{Y} \wedge j\right) \alpha_{Y \wedge M}\right) f \cdot\left(\alpha_{1}\right)_{L}=0 \in\left[\Sigma^{t q+4 q+2} L, E_{6} \wedge Y\right]$,
where $\alpha_{Y \wedge M} \in\left[\Sigma^{2 q+1} M, Y \wedge M\right]$ such that $\left(1_{Y} \wedge j\right) \alpha_{Y \wedge M} i=\bar{h} \phi \in \pi_{2 q} Y$.
Proof Note that the d_{1}-cycle $\left(\bar{b}_{4} \wedge 1_{M}\right)\left(1_{K G_{4}} \wedge i\right) \kappa \in \pi_{t q+1} K G_{4} \wedge M$ represents an element $i_{*}\left(a_{0} \sigma^{\prime}\right)=i_{*} p_{*}\left(\sigma^{\prime}\right)=0 \in \operatorname{Ext}_{A}^{4, t q+1}\left(H^{*} M, Z_{p}\right)$ and so it is a d_{1}-boundary. That is $\left(\bar{b}_{4} \wedge\right.$ $\left.1_{M}\right)\left(1_{K G_{4}} \wedge i\right) \kappa=\left(\bar{b}_{4} \bar{c}_{3} \wedge 1_{M}\right) g$ for some $g \in \pi_{t q+1} K G_{3} \wedge M$ and so by $\operatorname{Ext}_{A}^{5, t q+2}\left(H^{*} M, Z_{p}\right)=0$ (cf. Proposition 2.7) we have $\left(1_{K G_{4}} \wedge i\right) \kappa=\left(\bar{c}_{3} \wedge 1_{M}\right) g+\left(\bar{a}_{4} \bar{a}_{5} \wedge 1_{M}\right) f$ with $f \in \pi_{t q+3} E_{6} \wedge M$. This shows (A).

For the result (B), note from Proposition 2.2(1) that $\phi \cdot p=i^{\prime \prime} j \alpha^{2} i$ up to a nonzero scalar. Then $\bar{h} \phi \cdot p=\bar{h} i^{\prime \prime} j \alpha^{2} i=0$ and so $\bar{h} \phi=\left(1_{Y} \wedge j\right) \alpha_{Y \wedge M} i$ with $\alpha_{Y \wedge M} \in\left[\Sigma^{2 q+1} M, Y \wedge M\right]$. Hence, by composing $1_{E_{4}} \wedge\left(1_{Y} \wedge j\right) \alpha_{Y \wedge M}$ on the equation (A) we have

$$
\begin{equation*}
\left(1_{E_{4}} \wedge \bar{h} \phi\right) \kappa=\left(1_{E_{4}} \wedge\left(1_{Y} \wedge j\right) \alpha_{Y \wedge M} i\right) \kappa=\left(\bar{a}_{4} \bar{a}_{5} \wedge 1_{Y}\right)\left(1_{E_{6}} \wedge\left(1_{Y} \wedge j\right) \alpha_{Y \wedge M}\right) f \tag{3.6}
\end{equation*}
$$

where $\left(1_{Y} \wedge j\right) \alpha_{Y \wedge M}$ induces zero homomorphism in Z_{p}-cohomology so that $\left(\bar{c}_{3} \wedge 1_{Y}\right)\left(1_{K G_{3}} \wedge\right.$ $\left.\left(1_{Y} \wedge j\right) \alpha_{Y \wedge M}\right) g=0$.

It follows by composing $\left(\alpha_{1}\right)_{L}$ on (3.6) that $\left(\bar{a}_{4} \bar{a}_{5} \wedge 1_{Y}\right)\left(1_{E_{6}} \wedge\left(1_{Y} \wedge j\right) \alpha_{Y \wedge M}\right) f \cdot\left(\alpha_{1}\right)_{L}=$ $\left(1_{E_{4}} \wedge \bar{h}\right)\left(\kappa \wedge 1_{L}\right) \phi \cdot\left(\alpha_{1}\right)_{L}=0$ since $\phi \cdot\left(\alpha_{1}\right)_{L} \in\left[\Sigma^{3 q-2} L, L\right]=0$ by $\pi_{r q-2} S=0$ for $r=2,3,4$. Hence we have

$$
\left(\bar{a}_{5} \wedge 1_{Y}\right)\left(1_{E_{6}} \wedge\left(1_{Y} \wedge j\right) \alpha_{Y \wedge M}\right) f \cdot\left(\alpha_{1}\right)_{L}=\left(\bar{c}_{4} \wedge 1_{Y}\right) g_{1}=0
$$

where the d_{1}-cycle $g_{1} \in\left[\Sigma^{t q+3 q+1} L, K G_{4} \wedge Y\right]$ represents an element in $\operatorname{Ext}_{A}^{4, t q+3 q+1}\left(H^{*} Y, H^{*} L\right)$ $=0$ (cf. Proposition $2.5(1))$ so that it is a d_{1}-boundary and so $\left(\bar{c}_{4} \wedge 1_{Y}\right) g_{1}=0$. Briefly write $\left(1_{Y} \wedge j\right) \alpha_{Y \wedge M}=\omega$ and let V be the cofibre of $\left(1_{Y} \wedge\left(\alpha_{1}\right)_{L}\right)\left(\omega \wedge 1_{L}\right)=\omega \cdot\left(\alpha_{1}\right)_{L}: \Sigma^{3 q-1} M \wedge L \rightarrow Y$ given by the cofibration

$$
\begin{equation*}
\Sigma^{3 q-1} M \wedge L \xrightarrow{\left(1_{Y} \wedge\left(\alpha_{1}\right)_{L}\right)\left(\omega \wedge 1_{L}\right)} Y \xrightarrow{w_{4}} V \xrightarrow{u_{4}} \Sigma^{3 q} M \wedge L . \tag{3.7}
\end{equation*}
$$

It follows that $\left(\bar{a}_{5} \wedge 1_{Y}\right)\left(1_{E_{6}} \wedge\left(1_{Y} \wedge\left(\alpha_{1}\right)_{L}\right)\left(\omega \wedge 1_{L}\right)\left(f \wedge 1_{L}\right)=\left(\bar{a}_{5} \wedge 1_{Y}\right)\left(1_{E_{6}} \wedge\left(1_{Y} \wedge j\right) \alpha_{Y \wedge M}\right) f \cdot\left(\alpha_{1}\right)_{L}\right.$ $=0$. Then by (3.7) we have $\left(\bar{a}_{5} \wedge 1_{M \wedge L}\right)\left(f \wedge 1_{L}\right)=\left(1_{E_{5}} \wedge u_{4}\right) f_{2}$ for some $f_{2} \in\left[\Sigma^{t q+3 q+2} L, E_{5} \wedge V\right]$. It follows that $\left(\bar{b}_{5} \wedge 1_{V}\right)\left(1_{E_{5}} \wedge u_{4}\right) f_{2}=0$ and so

$$
\begin{equation*}
\left(\bar{b}_{5} \wedge 1_{V}\right) f_{2}=\left(1_{K G_{5}} \wedge w_{4}\right) g_{2} \tag{3.8}
\end{equation*}
$$

for some $g_{2} \in\left[\Sigma^{t q+3 q+2} L, K G_{5} \wedge Y\right]$. Consequently, $\left(\bar{b}_{6} \bar{c}_{5} \wedge 1_{V}\right)\left(1_{K G} \wedge w_{4}\right) g_{2}=0$ and so $\left(\bar{b}_{6} \bar{c}_{5} \wedge 1_{Y}\right) g_{2} \in\left(1_{K G_{6}} \wedge\left(1_{Y} \wedge\left(\alpha_{1}\right)_{L}\left(\omega \wedge 1_{L}\right)\right)_{*}\left[\Sigma^{*} L, K G_{6} \wedge M \wedge L\right]=0\right.$. That is, g_{2} is a d_{1}-cycle and it represents an element $\left[g_{2}\right] \in \operatorname{Ext}_{A}^{5, t q+3 q+2}\left(H^{*} Y, H^{*} L\right)$ which has two generators stated in Proposition $2.4(2)$ so that

$$
\begin{equation*}
\left[g_{2}\right]=\bar{h}_{*} \tilde{\phi}_{*}\left(\pi \wedge 1_{L}\right)_{*}\left(\lambda_{1}\left[h_{m} b_{n-1} \wedge 1_{L}\right]+\lambda_{2}\left[h_{n} b_{m-1} \wedge 1_{L}\right]\right) \tag{3.9}
\end{equation*}
$$

for some $\lambda_{1}, \lambda_{2} \in Z_{p}$. By (3.8) we know that $\left(w_{4}\right)_{*}\left[g_{2}\right] \in E_{2}^{5, t q+3 q+2}(V)=\operatorname{Ext}_{A}^{5, t q+3 q+2}\left(H^{*} V\right.$, $\left.H^{*} L\right)$ is a permanent cycle in the ASS. However, $\left(1_{Y} \wedge\left(\alpha_{1}\right)_{L}\right)\left(\omega \wedge 1_{L}\right)$ is a map of filtration 2 , then the cofibration (3.7) induces a short exact sequence in Z_{p}-cohomology which is split as A-modules, that is, it induces a split exact sequence in E_{1}-term of the ASS:

$$
E_{1}^{5, *}(Y) \xrightarrow{\left(w_{4}\right) *} E_{1}^{5, *}(V) \xrightarrow{\left(u_{4}\right)^{*}} E_{1}^{5, *-3 q}(M \wedge L) .
$$

Consequently, it induces a split exact sequence in E_{r}-term of the ASS:

$$
\begin{equation*}
E_{r}^{5, *}(Y) \xrightarrow{\left(w_{4}\right)_{*}} E_{r}^{5, *}(V) \xrightarrow{\left(u_{4}\right)_{*}} E_{r}^{5, *-3 q}(M \wedge L) \tag{3.10}
\end{equation*}
$$

for all $r \geq 2$. Hence, the fact that $d_{r}\left(\left(w_{4}\right)_{*}\left[g_{2}\right]\right)=0$ implies $d_{r}\left(\left[g_{2}\right]\right)=0$ for all $r \geq 2$. That is, (3.8) implies that $\left[g_{2}\right]$ is a permanent cycle in the ASS. By the vanishing of the d_{2}-differential we have $\left(\lambda_{1}+\lambda_{2}\right) \bar{h}_{*} \tilde{\phi}_{*}\left(\pi \wedge 1_{L}\right)_{*}\left[a_{0} b_{n-1} b_{m-1} \wedge 1_{L}\right]=d_{2}\left[g_{2}\right]=0$ and then we have $\lambda_{1}+\lambda_{2}=0$, where $\bar{h}_{*} \tilde{\phi}_{*}\left(\pi \wedge 1_{L}\right)_{*}\left[a_{0} b_{n-1} b_{m-1} \wedge 1_{L}\right] \neq 0 \in \operatorname{Ext}_{A}^{7, t q+3 q+3}\left(H^{*} Y, H^{*} L\right)$ since $\bar{h} \tilde{\phi}\left(\pi \wedge 1_{L}\right)\left(p \wedge 1_{L}\right)(\neq 0) \in\left[\Sigma^{3 q} L, Y\right]$ by Proposition 2.2(3). That is, (3.9) becomes $\left[g_{2}\right]=\lambda_{1} \bar{h}_{*} \tilde{\phi}_{*}\left(\pi \wedge 1_{L}\right)_{*}\left[\sigma^{\prime} \wedge 1_{L}\right]$. Now we consider the cases that λ_{1} is nonzero and zero separately.

If $\lambda_{1} \neq 0$, (3.8) implies that $\left[g_{2}\right]$ and so $\bar{h}_{*} \tilde{\phi}_{*}\left(\pi \wedge 1_{L}\right)_{*}\left[\sigma^{\prime} \wedge 1_{L}\right] \in E_{2}^{5, t q+3 q+2}(Y)=$ $\operatorname{Ext}_{A}^{5, t q+3 q+2}\left(H^{*} Y, H^{*} L\right)$ is a permanent cycle in the ASS. Moreover, by $\left(\bar{a}_{5} \wedge 1_{Y}\right)\left(1_{E_{6}} \wedge\left(1_{Y} \wedge\right.\right.$ j) $\alpha_{Y \wedge M} f \cdot\left(\alpha_{1}\right)_{L}=0$ we have

$$
\left(1_{E_{6}} \wedge\left(1_{Y} \wedge j\right) \alpha_{Y \wedge M}\right) f \cdot\left(\alpha_{1}\right)_{L}=\left(\bar{c}_{5} \wedge 1_{Y}\right) g_{3}
$$

with d_{1}-cycle $g_{3} \in\left[\Sigma^{t q+3 q+2} L, K G_{5} \wedge Y\right]$ which represents an element $\left[g_{3}\right] \in \operatorname{Ext}_{A}^{5, t q+3 q+2}\left(H^{*} Y\right.$, $\left.H^{*} L\right)$ so that $\left[g_{3}\right]=\bar{h}_{*} \tilde{\phi}_{*}\left(\pi \wedge 1_{L}\right)_{*}\left(\lambda_{3}\left[h_{m} b_{n-1} \wedge 1_{L}\right]+\lambda_{4}\left[h_{n} b_{m-1} \wedge 1_{L}\right]\right)$ for some $\lambda_{3}, \lambda_{4} \in Z_{p}$. By the above equation and the fact that $\left(1_{Y} \wedge\left(\alpha_{1}\right)_{L}\right)\left(\omega \wedge 1_{L}\right)$ has filtration 2 , we know that the differential $d_{2}\left(\left[g_{3}\right]\right)=0$ and so by a similar argument as shown above we have $\lambda_{3}+\lambda_{4}=0$. That is, $\left[g_{3}\right]=\lambda_{3} \bar{h}_{*} \tilde{\phi}_{*}\left(\pi \wedge 1_{L}\right)_{*}\left[\sigma^{\prime} \wedge 1_{L}\right]$ and so we have

$$
\left(1_{E_{6}} \wedge\left(1_{Y} \wedge\left(\alpha_{1}\right)_{L}\right)\left(\omega \wedge 1_{L}\right)\right)\left(f \wedge 1_{L}\right)=\left(\bar{c}_{5} \wedge 1_{Y}\right) g_{3}=0
$$

which shows the result.
If $\lambda_{1}=0$, then $g_{2}=\left(\bar{b}_{5} \bar{c}_{4} \wedge 1_{Y}\right) g_{4}$ for some $g_{4} \in\left[\Sigma^{t q+3 q+2} L, K G_{4} \wedge Y\right]$ and (3.8) becomes $\left(\bar{b}_{5} \wedge 1_{V}\right) f_{2}=\left(\bar{b}_{5} \bar{c}_{4} \wedge 1_{V}\right)\left(1_{K G_{4}} \wedge w_{4}\right) g_{4}$. Consequently we have $f_{2}=\left(\bar{c}_{4} \wedge 1_{V}\right)\left(1_{K G_{4}} \wedge w_{4}\right) g_{4}+$
$\left(\bar{a}_{5} \wedge 1_{V}\right) f_{3}$ for some $f_{3} \in\left[\Sigma^{t q+3 q+3} L, E_{6} \wedge V\right]$ and so $\left(\bar{a}_{5} \wedge 1_{M \wedge L}\right)\left(f \wedge 1_{L}\right)=\left(1_{E_{5}} \wedge u_{4}\right) f_{2}=$ $\left(\bar{a}_{5} \wedge 1_{M \wedge L}\right)\left(1_{E_{6}} \wedge u_{4}\right) f_{3}$. It follows that $\left(f \wedge 1_{L}\right)=\left(1_{E_{6}} \wedge u_{4}\right) f_{3}+\left(\bar{c}_{5} \wedge 1_{M \wedge L}\right) g_{5}$ for some $g_{5} \in\left[\Sigma^{t q+3 q+3} L, K G_{5} \wedge M \wedge L\right]$ and so by (3.7) we have $\left(1_{E_{6}} \wedge\left(1_{Y} \wedge\left(\alpha_{1}\right)_{L}\right)\left(\omega \wedge 1_{L}\right)\right)\left(f \wedge 1_{L}\right)=$ $\left(\bar{c}_{5} \wedge 1_{Y}\right)\left(1_{K G_{5}} \wedge\left(1_{Y} \wedge\left(\alpha_{1}\right)_{L}\right)\left(\omega \wedge 1_{L}\right)\right) g_{5}=0$ since $\left(\alpha_{1}\right)_{L}$ induces zero homomorphism in Z_{p}-cohomology.

Proof of Theorem A We will continue the argument in Lemma 3.4. Note that the spectrum V in (3.7) also is the cofibre of $\left(1_{M} \wedge w i^{\prime \prime}\right) \tilde{\psi}: X \rightarrow \Sigma^{2 q} M \wedge W$ given by the cofibration

$$
\begin{equation*}
X \xrightarrow{\left(1_{M} \wedge w i^{\prime \prime}\right) \tilde{\psi}} \Sigma^{2 q} M \wedge W \xrightarrow{w_{5}} V \xrightarrow{u_{5}} \Sigma X . \tag{3.11}
\end{equation*}
$$

This can be seen by the following commutative diagram of 3×3 Lemma

$$
\begin{array}{rlccc}
\Sigma^{3 q-1} M \wedge L & \longrightarrow & Y & \stackrel{\tilde{u} w_{2}}{\longrightarrow} & \Sigma X \\
\searrow_{M} \wedge\left(\alpha_{1}\right)_{L} & \nearrow \omega & \searrow w_{4} & \nearrow u_{5} & \searrow \tilde{\psi} \\
\Sigma^{2 q} M & & V & & \Sigma^{2 q+1} M \\
\nearrow \tilde{\psi} & \searrow^{1_{M} \wedge w i^{\prime \prime}} & \nearrow w_{5} & \searrow u_{4} & \nearrow 1_{M} \wedge\left(\alpha_{1}\right)_{L} \\
X & \longrightarrow & \Sigma^{2 q} M \wedge W & \xrightarrow{1_{M} \wedge u} & \Sigma^{3 q} M \wedge L
\end{array}
$$

It follows from Lemma 3.4(B) and (3.7) that $f \wedge 1_{L}=\left(1_{E_{6}} \wedge u_{4}\right) f_{5}$ for some $f_{5} \in\left[\Sigma^{t q+3 q+3} L\right.$, $\left.E_{6} \wedge V\right]$ and so by Lemma 3.4(A) we have

$$
\begin{align*}
\left(\bar{a}_{4} \bar{a}_{5} \wedge 1_{M \wedge L}\right)\left(1_{E_{6}} \wedge u_{4}\right) f_{5} & =\left(\bar{a}_{4} \bar{a}_{5} \wedge 1_{M \wedge L}\right)\left(f \wedge 1_{L}\right) \\
& =\left(1_{E_{4}} \wedge i \wedge 1_{L}\right)\left(\kappa \wedge 1_{L}\right)-\left(\bar{c}_{3} \wedge 1_{M \wedge L}\right)\left(g \wedge 1_{L}\right) \tag{3.12}
\end{align*}
$$

Consequently, $\left(\bar{a}_{2} \bar{a}_{3} \bar{a}_{4} \bar{a}_{5} \wedge 1_{M \wedge L}\right)\left(1_{E_{6}} \wedge u_{4}\right) f_{5}=0$ and so $\left(\bar{a}_{2} \bar{a}_{3} \bar{a}_{4} \bar{a}_{5} \wedge 1_{V}\right) f_{5}=\left(1_{E_{2}} \wedge w_{4}\right) f_{6}$ for some $f_{6} \in\left[\Sigma^{t q+3 q-1} L, E_{2} \wedge Y\right]$. It follows that $\left(\bar{b}_{2} \wedge 1_{V}\right)\left(1_{E_{2}} \wedge w_{4}\right) f_{6}=0$. Then $\left(\bar{b}_{2} \wedge 1_{Y}\right) f_{6}=0$ and by $\operatorname{Ext}_{A}^{3+r, t q+3 q+r}\left(H^{*} Y, H^{*} L\right)=0$ for $r=0,1\left(\right.$ cf. Proposition 2.5) we have $\left(\bar{a}_{2} \bar{a}_{3} \bar{a}_{4} \bar{a}_{5} \wedge 1_{V}\right) f_{5}=$ $\left(\bar{a}_{2} \bar{a}_{3} \bar{a}_{4} \wedge 1_{V}\right)\left(1_{E_{5}} \wedge w_{4}\right) f_{7}$ for some $f_{7} \in\left[\Sigma^{t q+3 q+2} L, E_{5} \wedge Y\right]$. It follows that

$$
\begin{equation*}
\left(\bar{a}_{3} \bar{a}_{4} \bar{a}_{5} \wedge 1_{V}\right) f_{5}=\left(\bar{a}_{3} \bar{a}_{4} \wedge 1_{V}\right)\left(1_{E_{5}} \wedge w_{4}\right) f_{7}+\left(\bar{c}_{2} \wedge 1_{V}\right) g_{6} \tag{3.13}
\end{equation*}
$$

with d_{1}-cycle $g_{6} \in\left[\Sigma^{t q+3 q} L, K G_{2} \wedge V\right]$ which represents an element

$$
\left[g_{6}\right] \in \operatorname{Ext}_{A}^{2, t q+3 q}\left(H^{*} V, H^{*} L\right)
$$

Note that the d_{1}-cycle $\left(\bar{b}_{5} \wedge 1_{Y}\right) f_{7} \in\left[\Sigma^{t q+3 q+2} L, K G_{5} \wedge Y\right]$ represents an element

$$
\left[\left(\bar{b}_{5} \wedge 1_{Y}\right) f_{7}\right] \in \operatorname{Ext}_{A}^{5, t q+3 q+2}\left(H^{*} Y, H^{*} L\right)
$$

which has two generators stated in Proposition 2.4(2). Then

$$
\left[\left(\bar{b}_{5} \wedge 1_{Y}\right) f_{7}\right]=\lambda^{\prime} \bar{h}_{*} \tilde{\phi}_{*}\left(\pi \wedge 1_{L}\right)_{*}\left[h_{m} b_{n-1} \wedge 1_{L}\right]+\lambda^{\prime \prime} \bar{h}_{*} \tilde{\phi}_{*}\left(\pi \wedge 1_{L}\right)_{*}\left[h_{n} b_{m-1} \wedge 1_{L}\right]
$$

for some $\lambda^{\prime}, \lambda^{\prime \prime} \in Z_{p}$. By the vanishing of the differential

$$
0=d_{2}\left[\left(\bar{b}_{5} \wedge 1_{Y}\right) f_{7}\right]=\left(\lambda^{\prime}+\lambda^{\prime \prime}\right) \bar{h}_{*} \tilde{\phi}_{*}\left(\pi \wedge 1_{L}\right)_{*}\left[a_{0} b_{n-1} b_{m-1} \wedge 1_{L}\right]
$$

we have $\lambda^{\prime}+\lambda^{\prime \prime}=0$ since $\bar{h} \tilde{\phi}\left(\pi \wedge 1_{L}\right)\left(p \wedge 1_{L}\right) \neq 0 \in\left[\Sigma^{3 q} L, Y\right]$ by Proposition 2.2(3). Hence we have

$$
\begin{equation*}
\left[\left(\bar{b}_{5} \wedge 1_{Y}\right) f_{7}\right]=\lambda^{\prime} \bar{h}_{*} \tilde{\phi}_{*}\left(\pi \wedge 1_{L}\right)_{*}\left[\sigma^{\prime} \wedge 1_{L}\right] \in \operatorname{Ext}_{A}^{5, t q+3 q+2}\left(H^{*} Y, H^{*} L\right) \tag{3.14}
\end{equation*}
$$

We claim that the scalar λ^{\prime} in (3.14) is zero. This can be proved as follows.
The equation (3.13) means that the second order differential of the ASS $d_{2}\left[g_{6}\right]=0 \in$ $E_{2}^{4, t q+3 q+1}(L, V)=\operatorname{Ext}_{A}^{4, t q+3 q+1}\left(H^{*} V, H^{*} L\right)$ so that $\left[g_{6}\right] \in E_{3}^{2, t q+3 q}(L, V)$ and the third order differential

$$
\begin{equation*}
d_{3}\left[g_{6}\right]=\left(w_{4}\right)_{*}\left[\left(\bar{b}_{5} \wedge 1_{Y}\right) f_{7}\right] \in E_{3}^{5, t q+3 q+2}(L, V) \tag{3.15}
\end{equation*}
$$

Note that

$$
\left(\omega \wedge 1_{L}\right)\left(1_{M} \wedge\left(\alpha_{1}\right)_{L}\right)\left(i \wedge 1_{L}\right) \pi=\left(1_{Y} \wedge j\right) \alpha_{Y \wedge M} i\left(\alpha_{1}\right)_{L} \pi=\bar{h} \phi\left(\alpha_{1}\right)_{L} \pi=0
$$

since $\phi\left(\alpha_{1}\right)_{L} \in\left[\Sigma^{3 q-2} L, L\right]=0$ by $\pi_{r q-2} S=0$ for $r=2,3,4$. Then, by $(3.7),\left(i \wedge 1_{L}\right) \pi=u_{4} \tau$ with $\tau \in\left[\Sigma^{4 q} S, V\right]$ which has filtration 1. Moreover, $u_{4} \tau \cdot p=\left(i \wedge 1_{L}\right) \pi \cdot p=0$. Then, by Proposition 2.2(4), $\tau \cdot p=\tilde{\lambda} w_{4} \bar{h} \tilde{\phi}\left(\pi \wedge 1_{L}\right) \pi$ for some $\tilde{\lambda} \in Z_{(p)}$. The scalar $\tilde{\lambda}$ must be zero $(\bmod p)$ since the left-hand side has filtration 2 and the right-hand side has filtration 3 (cf.
 Consequently, by Proposition 2.2(4), $\tau \cdot p=0$ and so $\tau=\bar{\tau} i$ with $\bar{\tau} \in\left[\Sigma^{4 q} M, V\right]$. Since

$$
\left(u_{4}\right)_{*}(\pi)^{*}\left[g_{6}\right] \in \operatorname{Ext}_{A}^{3, t q+q+1}\left(H^{*} M \wedge L, Z_{p}\right) \cong Z_{p}\left\{\left(i \wedge 1_{L}\right)_{*}(\pi)_{*}\left(h_{n} h_{m}\right)\right\}
$$

(cf. Proposition 2.7), we have

$$
\left(u_{4}\right)_{*} \pi^{*}\left[g_{6}\right]=\lambda_{0}\left(i \wedge 1_{L}\right)_{*} \pi_{*}\left(h_{n} h_{m}\right)=\lambda_{0}\left(u_{4}\right)_{*}(\bar{\tau} i)_{*}\left(h_{n} h_{m}\right)
$$

for some $\lambda_{0} \in Z_{p}$ and so by (3.7) we have

$$
\pi^{*}\left[g_{6}\right]=\lambda_{0} \bar{\tau}_{*} i_{*}\left(h_{n} h_{m}\right) \in \operatorname{Ext}_{A}^{3, t q+3 q+1}\left(H^{*} V, Z_{p}\right)
$$

since $\operatorname{Ext}_{A}^{3, t q+3 q+1}\left(H^{*} Y, H^{*} L\right)=0$ (cf. Proposition 2.5(1)). Recall from Lemma 3.1(1) that

$$
d_{2}\left(h_{n} h_{m}\right)=a_{0} \sigma^{\prime}=p_{*}\left(\sigma^{\prime}\right) \in \operatorname{Ext}_{A}^{4, t q+1}\left(Z_{p}, Z_{p}\right)
$$

Then $d_{2} i_{*}\left(h_{n} h_{m}\right)=0$ and so $i_{*}\left(h_{n} h_{m}\right) \in E_{3}^{4, t q+1}(S, M)$. Moreover,

$$
E_{2}^{5, t q+2}(S, M)=\operatorname{Ext}_{A}^{5, t q+2}\left(H^{*} M, Z_{p}\right)=0
$$

by Proposition 2.7. Then the E_{3}-term $E_{3}^{5, t q+2}(S, M)=0$ so that the third order differential

$$
d_{3} i_{*}\left(h_{n} h_{m}\right) \in E_{3}^{5, t q+2}(S, M)=0
$$

Since $\pi^{*}\left[g_{6}\right]=\lambda_{0}(\bar{\tau})_{*} i_{*}\left(h_{n} h_{m}\right) \in E_{2}^{3, t q+4 q+1}(S, V)$, we have

$$
\pi^{*}\left[g_{6}\right]=\lambda_{0} \bar{\tau}_{*}\left(i_{*}\left(h_{n} h_{m}\right)\right) \in E_{3}^{3, t q+4 q+1}(S, V)
$$

and so

$$
d_{3} \pi^{*}\left[g_{6}\right]=\lambda_{0} d_{3}(\bar{\tau})_{*}\left(i_{*}\left(h_{n} h_{m}\right)\right)=\lambda_{0}(\bar{\tau})_{*} d_{3}\left(i_{*}\left(h_{n} h_{m}\right)\right)=0 \in E_{3}^{6, t q+4 q+3}(S, V)
$$

It follows from (3.15) that $\left(w_{4}\right)_{*} \pi^{*}\left[\left(\bar{b}_{5} \wedge 1_{Y}\right) f_{7}\right]=d_{3} \pi^{*}\left[g_{6}\right]=0 \in E_{3}^{6, t q+4 q+2}(S, V)$. Moreover, by the split exact sequence (3.10) we have $\pi^{*}\left[\left(\bar{b}_{5} \wedge 1_{Y}\right) f_{7}\right]=0 \in E_{3}^{6, t q+4 q+3}(S, Y)$. Consequently, in the E_{2}-term, $\pi^{*}\left[\left(\bar{b}_{5} \wedge 1_{Y}\right) f_{7}\right]$ must be a d_{2}-boundary, that is

$$
\pi^{*}\left[\left(\bar{b}_{5} \wedge 1_{Y}\right) f_{7}\right] \in d_{2} E_{2}^{4, t q+4 q+2}(S, Y)=d_{2} \operatorname{Ext}_{A}^{4, t q+4 q+2}\left(H^{*} Y, Z_{p}\right)=0
$$

by Proposition $2.5(1)$ and so, by $(3.14), \lambda^{\prime} \bar{h}_{*} \tilde{\phi}_{*}\left(\pi \wedge 1_{L}\right)_{*} \pi_{*}\left(\sigma^{\prime}\right)=0$. This implies that the scalar λ^{\prime} is zero (cf. Proposition 2.2(4)) which shows the above claim.

Hence, (3.13) becomes

$$
\left(\bar{a}_{3} \bar{a}_{4} \bar{a}_{5} \wedge 1_{V}\right) f_{5}=\left(\bar{a}_{3} \bar{a}_{4} \bar{a}_{5} \wedge 1_{V}\right)\left(1_{E_{6}} \wedge w_{4}\right) f_{8}+\left(\bar{c}_{2} \wedge 1_{V}\right) g_{6}
$$

with $f_{8} \in\left[\Sigma^{t q+3 q+3} L, E_{6} \wedge Y\right]$. It follows by composing $1_{E_{3}} \wedge u_{5}$ that

$$
\left(\bar{a}_{3} \bar{a}_{4} \bar{a}_{5} \wedge 1_{Y \wedge W}\right)\left(1_{E_{6}} \wedge u_{5}\right) f_{5}=\left(\bar{a}_{3} \bar{a}_{4} \bar{a}_{5} \wedge 1_{X}\right)\left(1_{E_{6}} \wedge \tilde{u} w_{2}\right) f_{8}
$$

(cf. the diagram above (3.12)), this is because $\left(\bar{c}_{2} \wedge 1_{X}\right)\left(1_{K G_{2}} \wedge u_{5}\right) g_{6}=0$ by the fact that $\left(1_{K G_{2}} \wedge u_{5}\right) g_{6} \in\left[\Sigma^{t q+3 q-1} L, K G_{2} \wedge X\right]$ represents an element in $\operatorname{Ext}_{A}^{2, t q+3 q-1}\left(H^{*} X, H^{*} L\right)=0$ (cf. Lemma 3.2(2)). Consequently we have

$$
\begin{equation*}
\left(\bar{a}_{4} \bar{a}_{5} \wedge 1_{X}\right)\left(1_{E_{6}} \wedge u_{5}\right) f_{5}=\left(\bar{a}_{4} \bar{a}_{5} \wedge 1_{X}\right)\left(1_{E_{6}} \wedge \tilde{u} w_{2}\right) f_{8}+\left(\bar{c}_{3} \wedge 1_{X}\right) g_{7} \tag{3.16}
\end{equation*}
$$

with d_{1}-cycle $g_{7} \in\left[\Sigma^{t q+3 q+1} L, K G_{3} \wedge X\right]$ which represents an element in $\operatorname{Ext}_{A}^{3, t q+3 q}\left(H^{*} X, H^{*} L\right)$.
Now we prove $\left(\bar{c}_{3} \wedge 1_{X}\right) g_{7}=0$ as follows. By Lemma 3.2(2) and Proposition 2.6(1),

$$
\left[g_{7}\right]=\lambda_{3}\left(\tilde{u} w_{3}\right)_{*}\left(\bar{\phi}_{W}\right)_{*}\left[h_{n} h_{m} \wedge 1_{L}\right]
$$

and the equation (3.16) means the second order differential $d_{2}\left[g_{7}\right]=0$. Since

$$
d_{2}\left(h_{n} h_{m}\right)=a_{0} \sigma^{\prime}=p_{*}\left(\sigma^{\prime}\right) \in \operatorname{Ext}_{A}^{4, t q+1}\left(Z_{p}, Z_{p}\right)
$$

by Lemma 3.1(1), we have

$$
\lambda_{3}\left(\tilde{u} w_{3}\right)_{*}\left(\bar{\phi}_{W}\right)_{*}\left(p \wedge 1_{L}\right)_{*}\left[\sigma^{\prime} \wedge 1_{L}\right]=d_{2}\left[g_{7}\right]=0 \in \operatorname{Ext}_{A}^{5, t q+3 q+1}\left(H^{*} X, H^{*} L\right)
$$

By Lemma 3.2(1), this implies $\lambda_{3}=0$ and so g_{7} is a d_{1}-boundary so that $\left(\bar{c}_{3} \wedge 1_{X}\right) g_{7}=0$.
Consequently, (3.16) becomes

$$
\left(\bar{a}_{4} \bar{a}_{5} \wedge 1_{Y \wedge W}\right)\left(1_{E_{6}} \wedge u_{5}\right) f_{5}=\left(\bar{a}_{4} \bar{a}_{5} \wedge 1_{X}\right)\left(1_{E_{6}} \wedge \tilde{u} w_{2}\right) f_{8}
$$

and so by (3.2) and the diagram above (3.12),

$$
\left(\bar{a}_{4} \bar{a}_{5} \wedge 1_{M}\right)\left(1_{E_{6}} \wedge\left(1_{M} \wedge\left(\alpha_{1}\right)_{L}\right) u_{4}\right) f_{5}=\left(\bar{a}_{4} \bar{a}_{5} \wedge 1_{M}\right)\left(1_{E_{6}} \wedge \tilde{\psi} u_{5}\right) f_{5}=0 .
$$

Moreover, by composing $\left(1_{E_{4}} \wedge 1_{M} \wedge\left(\alpha_{1}\right)_{L}\right)$ on (3.12) we have

$$
\begin{aligned}
\left(1_{E_{4}} \wedge i\right) \kappa \cdot\left(\alpha_{1}\right)_{L} & =\left(1_{E_{4}} \wedge 1_{M} \wedge\left(\alpha_{1}\right)_{L}\right)\left(1_{E_{4}} \wedge i \wedge 1_{L}\right)\left(\kappa \wedge 1_{L}\right) \\
& =\left(\bar{a}_{4} \bar{a}_{5} \wedge 1_{M}\right)\left(1_{E_{6}} \wedge\left(1_{M} \wedge\left(\alpha_{1}\right)_{L}\right) u_{4}\right) f_{5}=0
\end{aligned}
$$

It follows that

$$
\begin{equation*}
\kappa \cdot\left(\alpha_{1}\right)_{L}=\left(1_{E_{4}} \wedge p\right) f_{9} \tag{3.17}
\end{equation*}
$$

with $f_{9} \in\left[\Sigma^{t q+q} L, E_{4}\right]$. Recall that $\bar{b}_{6} \cdot \kappa=a_{0} \sigma^{\prime}=p_{*}\left(\sigma^{\prime}\right) \in \operatorname{Ext}_{A}^{4, t q+q}\left(Z_{p}, Z_{p}\right)$. Then $\kappa \cdot\left(\alpha_{1}\right)_{L}$ lifts to a map $\tilde{f} \in\left[\Sigma^{t q+q+1} L, E_{5}\right]$ such that $\bar{b}_{5} \cdot \tilde{f}$ represents

$$
p_{*}\left(\left(\alpha_{1}\right)_{L}\right)_{*}\left[\sigma^{\prime} \wedge 1_{L}\right] \neq 0 \in \operatorname{Ext}_{A}^{5, t q+q+1}\left(Z_{p}, H^{*} L\right)
$$

(cf. Proposition 2.2(1)). Then, by (3.17),

$$
p_{*}\left[\bar{b}_{4} \cdot f_{9}\right]=p_{*}\left(\left(\alpha_{1}\right)_{L}\right)_{*}\left[\sigma^{\prime} \wedge 1_{L}\right]
$$

and so $\left[\bar{b}_{4} \cdot f_{9}\right] \in \operatorname{Ext}_{A}^{4, t q+q}\left(Z_{p}, H^{*} L\right)$ must be equal to $\left(\left(\alpha_{1}\right)_{L}\right)_{*}\left[\sigma^{\prime} \wedge 1_{L}\right]$ since the location group has two generator $\left(\left(\alpha_{1}\right)_{L}\right)_{*}\left[h_{m} b_{n-1} \wedge 1_{L}\right]$ and $\left(\left(\alpha_{1}\right)_{L}\right)_{*}\left[h_{n} b_{m-1} \wedge 1_{L}\right]$ by $\operatorname{Ext}_{A}^{4, t q+q}\left(Z_{p}, Z_{p}\right) \cong$ $Z_{p}\left\{h_{0} h_{n} b_{m-1}, h_{0} h_{m} b_{n-1}\right\}$ and $\operatorname{Ext}_{A}^{4, t q+2 q}\left(Z_{p}, Z_{p}\right)=0$ in Proposition 2.1(1). Write $\xi_{n, 4}=f_{9} i^{\prime \prime}$. Then

$$
\begin{equation*}
\kappa \cdot \alpha_{1}=\left(1_{E_{4}} \wedge p\right) \xi_{n, 4} \tag{3.18}
\end{equation*}
$$

with $\bar{b}_{4} \cdot \xi_{n, 4}=h_{0} \sigma^{\prime} \in \operatorname{Ext}_{A}^{4, t q+q}\left(Z_{p}, Z_{p}\right)$ and so by Lemma 3.1(2) we have

$$
\left(\bar{c}_{2} \wedge 1_{M}\right)\left(1_{K G_{3}} \wedge i\right) h_{0} h_{n} h_{m}=\left(1_{E_{4}} \wedge i\right) \kappa \cdot \alpha_{1}=0 .
$$

This shows the second result of the theorem. Moreover, by (3.18) and Lemma 3.1(2),

$$
\bar{a}_{0} \bar{a}_{1} \bar{a}_{2} \bar{a}_{3}\left(1_{E_{4}} \wedge p\right) \xi_{n, 4}=0
$$

this shows that $\xi_{n}=\bar{a}_{0} \bar{a}_{1} \bar{a}_{2} \bar{a}_{3} \cdot \xi_{n, 4} \in \pi_{t q+q-4} S$ is a map of order p which is represented by $h_{0} \sigma^{\prime} \in \operatorname{Ext}_{A}^{4, t q+q}\left(Z_{p}, Z_{p}\right)$ in the ASS.

References

[1] Aikawa, T., 3-Dimensional cohomology of the mod p Steenrod algebra, Math. Scand., 47, 1980, 91-115.
[2] Cohen, R., Odd primary families in stable homotopy theory, Memoirs of Amer. Math. Soc., 242, 1981.
[3] Cohen, R. and Goerss, P., Secondary cohomology operations that detect homotopy classes, Topology, 23, 1984, 177-194.
[4] Lin, J. and Zheng, Q., A new family of filtration seven in the stable homotopy of spheres, Hiroshima Math. J., 28, 1998, 183-205
[5] Liulevicius, A., The factorizations of cyclic reduced powers by secondary cohomology operations, Memoirs of Amer. Math. Soc., 42, 1962.
[6] Miller, H. R., Ravenel, D. C. and Wilson, W. S., Periodic phenomena in the Adams-Novikov spectral sequence, Ann. of Math., 106, 1977, 469-516
[7] Oka, S., Multiplicative Structure of Finite Ring Spectra and Stable Homotopy of Spheres, Algebraic Topology (Aarhus), Lect. Notes in Math., 1051, 1984.
[8] Ravenel, D. C., Complex Cobordism and Stable Homotopy Groups of Spheres, Academic Press, Inc., 1986.
[9] Thomas, E. and Zahler, R., Generalized higher order cohomology operations and stable homotopy groups of spheres, Advances in Math., 20, 1976, 287-328.

[^0]: Manuscript received July 8, 2004.
 *College of Mathematical Science and LPMC, Nankai University, Tianjin 300071, China.
 E-mail: jklin@nankai.edu.cn
 **Project supported by the National Natural Science Foundation of China (No.10171049).

