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Abstract This paper proves the existence of an order p element in the stable homotopy
group of sphere spectrum of degree pnq+pmq+q−4 and a nontrivial element in the stable
homotopy group of Moore spectum of degree pnq + pmq + q − 3 which are represented by
h0(hmbn−1 − hnbm−1) and i∗(h0hnhm) in the E2-terms of the Adams spectral sequence
respectively, where p ≥ 7 is a prime, n ≥ m + 2 ≥ 4, q = 2(p− 1).
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1 Introduction

Let A be the mod p Steenrod algebra and S the sphere spectrum localized at an odd prime
p. To determine the stable homotopy groups of spheres π∗S is one of the central problem in
homotopy theory. One of the main tools to reach it is the Adams spectral sequence (ASS)
Es,t

2 = Exts,t
A (Zp, Zp) =⇒ πt−sS, where the Es,t

2 -term is the cohomology of A. If a family
of generators xi in Es,t

2 converges nontrivially in the ASS, then we get a family of nontrivial
homotopy elements fi in π∗S and we call fi is represented by xi ∈ Es,t

2 and has filtration s in
the ASS. So far, not so many families of homotopy elements in π∗S have been detected. For
example, a family ζn−1 ∈ πpnq+q−3S for n ≥ 2 which has filtration 3 and is represented by
h0bn−1 ∈ Ext3,pnq+q

A (Zp, Zp) has been detected in [2], where q = 2(p− 1).

From [5], Ext1,∗
A (Zp, Zp) has Zp-base consisting of a0 ∈ Ext1,1

A (Zp, Zp), hi ∈ Ext1,piq
A (Zp, Zp)

for all i ≥ 0 and Ext2,∗
A (Zp, Zp) has Zp-base consisting of α̃2, a

2
0, a0hi (i > 0), gi (i ≥ 0), ki (i ≥

0), bi (i ≥ 0) and hihj (j ≥ i + 2, i ≥ 0) whose internal degrees are 2q + 1, 2, piq + 1, pi+1q +
2piq, 2pi+1q + piq, pi+1q and piq + pjq respectively.

Let M be the Moore spectrum given by the cofibration

S
p−→ S

i−→ M
j−→ ΣS (1.1)

and K be the cofibre of the Adams map α : ΣqM → M given by the cofibration

ΣqM
α−→ M

i′−→ K
j′−→ Σq+1M. (1.2)

The above spectrum K actually is the Toda-Smith spectrum V (1).
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From [8, Theorem 1.2.14, p.11], there is a nontrivial differential in the ASS

d2(hn) = a0bn−1 ∈ E3,tq+1
2 = Ext3,tq+1

A (Zp, Zp), n ≥ 1. (1.3)

The elements hn ∈ Ext1,pnq
A (Zp, Zp) and bn−1 ∈ Ext2,pnq

A (Zp, Zp) are called a pair of a0-related
elements. Theorem IV in [2] states the following result on the a0-related elements hn and bn−1 :
h0bn−1 ∈ Ext3,pnq+q

A (Zp, Zp) is a permanent cycle in the ASS and it converges to a homotopy
element ζn−1 ∈ πpnq+q−3S of order p; moreover, i∗(h0hn) ∈ Ext2,pnq+q

A (H∗M, Zp) also is a
permanent cycle in the ASS which converges to a nontrivial element in πpnq+q−2M .

As a consequence of (1.3) we have

d2(hnhm) = a0(hmbn−1 − hnbm−1) ∈ E4,tq+1
2 = Ext4,tq+1

A (Zp, Zp) (1.4)

with tq = pnq + pmq, n ≥ m + 2 ≥ 3. That is, hnhm and (hmbn−1 − hnbm−1) are another pair
of a0-related elements. The main purpose of this paper is to prove the following result on these
a0-related elements which is an analogue of Theorem IV in [2].

Theorem A Let p ≥ 7, n ≥ m + 2 ≥ 4. Then

h0(hmbn−1 − hnbm−1) ∈ Ext4,pnq+pmq+q
A (Zp, Zp)

is a permanent cycle in the ASS which converges to an element in πpnq+pmq+q−4S of order p.
Moreover

i∗(h0hnhm) ∈ Ext3,pnq+pmq+q
A (H∗M, Zp)

also is a permanent cycle which converges to a nontrivial element in πpnq+pmq+q−3M .

Remark The h0(hmbn−1 − hnbm−1)-map obtained in Theorem A is represented by

βpm−1/pm−1−1βpn−1/pn−1 −βpn−1/pn−1−1βpm−1/pm−1 +other terms ∈ Ext4,pnq+pmq+q
BP∗BP (BP∗, BP∗)

and i∗(h0hnhm)-map in πpnq+pmq+q−3M is represented by

h0hnhm + other terms ∈ Ext3,pnq+pmq+q
BP∗BP (BP∗, BP∗M)

in the Adams-Novikov spectral sequence, where

βpn−1/pn−1−1 ∈ Ext2,pnq+q
A (BP∗, BP∗), βpn−1/pn−1 ∈ Ext2,pnq

BP∗BP (BP∗, BP∗)

such that the images under the Thom map are

h0hn ∈ Ext2,pnq+q
A (Zp, Zp), bn−1 ∈ Ext2,pnq

A (Zp, Zp)

respectively and hn ∈ Ext1,pnq
BP∗BP (BP∗, BP∗M) is the generator represented by [tp

n

1 ] in the cobar
complex.

Theorem A will be proved by some arguments processing in the Adams resolution of certain
spectra related to S and K. The only geometric input used in the proof is the nontrivial
differential (1.4). After giving some preliminaries on low dimensional Ext groups in Section 2,
the proof of Theorem A will be given in Section 3.
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2 Some Preliminaries on Low Dimensional Ext Groups

In this section, we consider some result on low dimensional Ext groups and some spectra
closely related to S which will be used in the proof of Theorem A.

Proposition 2.1 Let p ≥ 7, n ≥ m + 2 ≥ 4, tq = pnq + pmq. Then

(1) Ext4,tq+rq+u
A (Zp, Zp) = 0 for r = 2, 3, 4, u = −1, 0 or r = 3, 4, u = 1,

Ext4,tq
A (Zp, Zp) ∼= Zp{bn−1bm−1}, Ext4,tq+1

A (Zp, Zp) ∼= Zp{a0hnbm−1, a0hmbn−1},
Ext4,tq+q

A (Zp, Zp) ∼= Zp{h0hnbm−1, h0hmbn−1}.
(2) Ext5,tq+rq+1

A (Zp, Zp) = 0 for r = 1, 3, 4, Ext5,tq+rq
A (Zp, Zp) = 0 for r = 2, 3,

Ext5,tq+2q+1
A (Zp, Zp) ∼= Zp{α̃2hnbm−1, α̃2hmbn−1},

Ext5,tq+2
A (Zp, Zp) ∼= Zp{a2

0hnbm−1, a
2
0hmbn−1}, Ext5,tq+1

A (Zp, Zp) ∼= Zp{a0bn−1bm−1},
a2
0bn−1bm−1 6= 0 ∈ Ext6,tq+2

A (Zp, Zp).

Proof From [8, Theorem 3.2.5, p.82] , there is a May spectral sequence (MSS) {Es,t,∗
r , dr}

which converges to Exts,t
A (Zp, Zp) with E1-term

E∗,∗,∗
1 = E(hi,j | i > 0, j ≥ 0)⊗ P (bi,j | i > 0, j ≥ 0)⊗ P (ai | i ≥ 0),

where E is the exterior algebra and P the polynomial algebra and

hi,j ∈ E
1,2(pi−1)pj ,2i−1
1 , bi,j ∈ E

2,2(pi−1)pj+1,p(2i−1)
1 , ai ∈ E1,2pi−1,2i+1

1 .

Observe the second degree of the following generators (mod pnq) for 0 ≤ i ≤ n, n ≥ m + 2 ≥ 4,

|hs,i| =
{

(ps+i−1 + · · ·+ pi)q (mod pnq), 0 ≤ i < s + i− 1 < n,

(pn−1 + · · ·+ pi)q (mod pnq), 0 ≤ i < s + i− 1 = n,

|bs,i−1| =
{

(ps+i−1 + · · ·+ pi)q (mod pnq), 1 ≤ i < s + i− 1 < n,

(pn−1 + · · ·+ pi)q (mod pnq), 1 ≤ i < s + i− 1 = n,

|ai+1| = (pi + · · ·+ 1)q + 1 (mod pnq), 1 ≤ i < n,

|ai+1| = (pn−1 + · · ·+ 1)q + 1 (mod pnq), i = n.

At degree k = tq + rq + u with 0 ≤ r ≤ 4, −1 ≤ u ≤ 2, k = pmq + rq + u (mod pnq). Then, for
3 ≤ w ≤ 5, Ew,tq+rq+u,∗

1 has no generator which has factors consisting of the above elements,
because such a generator will have second degree (cnpn−1 + · · ·+ c1p + c0)q + d (mod pnq) with
some ci 6= 0 (1 ≤ i ≤ m − 1 or m < i < n), where 0 ≤ cl < p, l = 0, · · · , n, 0 ≤ d ≤ 5.
Moreover, the second degree |b1,i−1| = piq (mod pnq) for 1 ≤ i ≤ n, |h1,i| = piq (mod pnq) for
0 ≤ i ≤ n. Then excluding the above factors and factors with second degree ≥ tq + pq, we
know that the only possibly factor of the generator in Ew,tq+rq+u,∗

1 are a1, a0, h1,0, h1,n, h1,m,

b1,n−1, b1,m−1.
So, by degree reasons we have

E4,tq+rq+1,∗
1 = 0 for r = 3, 4, E4,tq+rq+u,∗

1 = 0 for r = 2, 3, 4, u = −1, 0,

E4,tq,∗
1 = Zp{b1,n−1b1,m−1}, E4,tq+1,∗

1
∼= Zp{a0h1,nb1,m−1, a0h1,mb1,n−1},



314 J. K. Lin

E4,tq+2,∗
1 = Zp{a2

0h1,nh1,m},
E4,tq+2q+1,∗

1 = Zp{h1,0a1h1,nh1,m}, E4,tq+q,∗
1 = Zp{h1,0h1,nb1,m−1, h1,0h1,mb1,n−1},

E3,tq+1,∗
1 = Zp{a0h1,nh1,m}, E3,tq,∗

1 = Zp{h1,nb1,m−1, h1,mb1,n−1},
E3,tq+q,∗

1 = Zp{h1,0h1,nh1,m}, E3,tq+2q+1,∗
1 = 0.

Note that the differential in the MSS is derivative, that is,

dr(xy) = dr(x)y + (−1)sxdr(y) for x ∈ Es,t,∗
1 , y ∈ Es′,t′,∗

1 .

Moreover, a0, h1,n, b1,n−1, h1,0a1 are permanent cycles in the MSS which converge to

a0, hn, bn−1, α̃2 ∈ Ext∗,∗A (Zp, Zp)

respectively. Then the differential drE
3,tq+sq+u,∗
r = 0 for all r ≥ 1 and s = u = 0 or s = 1, u = 0

or s = 0, u = 1 or s = 2, u = 1. Hence,

b1,n−1b1,m−1, a0h1,nb1,m−1, a0h1,mb1,n−1, h1,0h1,nb1,m−1, h1,0h1,mb1,n−1 ∈ E4,∗,∗
r

do not bound in the MSS and so bn−1bm−1, a0hnbm−1, a0hmbn−1, h0hnbm−1, h0hmbn−1 are all
nonzero in Ext4,∗

A (Zp, Zp). This completes the proof of (1).
Similarly, by degree reasons we have

E5,tq+q+1,∗
1

∼= Zp{a0h1,0h1,nb1,m−1, a0h1,0h1,mb1,n−1, a1b1,n−1b1,m−1},
E5,tq+rq+1,∗

1 = 0 for r = 3, 4, E5,tq+rq,∗
1 = 0 for r = 2, 3,

E5,tq+2q+1,∗
1

∼= Zp{h1,0a1h1,nb1,m−1, h1,0a1h1,mb1,n−1},
E5,tq+1,∗

1 = Zp{a0b1,n−1b1,m−1}, E5,tq+2,∗
1 = Zp{a2

0h1,mb1,n−1, a
2
0h1,nb1,n−1},

E4,tq+2q+1,∗
1

∼= Zp{h1,0a1h1,nh1,m}.

The generators in E5,tq+q+1,∗
1 all die in the MSS since

a0h1,0h1,nb1,m−1 = −d1(a1h1,nb1,m−1), a0h1,0h1,mb1,n−1 = −d1(a1h1,mb1,n−1),

d1(a1b1,n−1b1,m−1) = −a0h1,0b1,n−1b1,m−1 6= 0 ∈ E5,tq+q+1,∗
1 ,

then Ext5,tq+q+1
A (Zp, Zp) = 0. Moreover, by the same reason as shown in the proof of (1),

drE
4,tq+u,∗
r = 0, drE

4,tq+2q+1,∗
r = 0 for all r ≥ 1, u = 1, 2.

So the generators in E5,∗,∗
1 converges nontrivially in the MSS to

α̃2hnbm−1, α̃2hmbn−1, a0bn−1bm−1, a2
0hmbn−1, a2

0hnbm−1

respectively. For the last result, note that drE
5,tq+2,∗
r = 0 for all r ≥ 1 and so

a2
0bn−1bm−1 6= 0 ∈ Ext6,tq+2

A (Zp, Zp).

This completes the proof of (2).
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Now we consider some spectra related to S,M or K. Let L be the cofibre of α1 = jαi :
Σq−1S → S given by the cofibration

Σq−1S
α1−→ S

i′′−→ L
j′′−→ ΣqS. (2.1)

Let Y be the cofibre of i′i : S → K given by the cofibration

S
i′i−→ K

r̄−→ Y
ε−→ ΣS. (2.2)

Y actually is the Toda spectrum V (1 1
2 ) and it also is the cofibre of jα : ΣqM → ΣS given by

the cofibration

ΣqM
jα−→ ΣS

w−→ Y
ū−→ Σq+1M. (2.3)

This can be seen by the following homotopy commutative (up to sign) diagram of 3×3 Lemma
in the stable homotopy category (cf. [9, pp.292–293])

S
i′i−→ K

j′−→ Σq+1M

↘ i ↗ i′ ↘ r̄ ↗ ū

M Y

↗ α ↘ j ↗ w ↘ ε

ΣqM
jα−→ ΣS

p−→ ΣS

Note that α1 ·p = p ·α1 = 0, and then p = j′′π and p = ξi′′ with π ∈ [ΣqS,L] and ξ ∈ [L, S].
Since πqS = 0, we have πqL ∼= Z(p){π}. Moreover, i′′ξi′′ = i′′ · p = (p ∧ 1L)i′′, and then
p ∧ 1L = i′′ξ + λπj′′ for some λ ∈ Z(p). It follows that p · j′′ = j′′(p ∧ 1L) = λj′′π · j′′ = λp · j′′.
Then λ = 1 and we have

p ∧ 1L = i′′ξ + πj′′. (2.4)

By the following commutative diagram of 3× 3 Lemma in the stable homotopy category

ΣqS
p−→ ΣqS

α1−→ ΣS

↘ π ↗ j′′ ↘ i ↗ jα ↘ i′′

L ΣqM Σq+1L

↗ i′′ ↘ h̄ ↗ ū ↘ j ↗ π

S
w−→ Σ−1Y

jū−→ Σq+1S

we have a cofibration

ΣqS
π−→ L

h̄−→ Σ−1Y
jū−→ Σq+1S (2.5)

with ūh̄ = i · j′′, h̄i′′ = w.

Since 2αijα = ijα2 +α2ij (cf. [7, p.430]), we have α1α1 = 0 and so there is φ ∈ [Σ2q−1S,L]
and (α1)L ∈ [Σq−1L, S] such that

j′′φ = α1 = (α1)L · i′′. (2.6)

Let W be the cofibre of φ : Σ2q−1S → L. Then W also is the cofibre of (α1)L : Σq−1L → S.

This can be seen by the commutative diagram of 3× 3 Lemma in stable homotopy category
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Σ2q−1S
α1−→ ΣqS

α1−→ ΣS

↘ φ ↗ j′′ ↘ i′′ ↗ (α1)L

L ΣqL

↗ i′′ ↘ w ↗ u ↘ j′′

S
wi′′−→ W

j′′u−→ Σ2qS

That is, we have two cofibrations

Σ2q−1S
φ−→ L

w−→ W
j′′u−→ Σ2qS, (2.7)

Σq−1L
(α1)L−→ S

wi′′−→ W
u−→ ΣqL. (2.8)

Since α1 · (α1)L ∈ [Σ2q−2L, S] = 0 by πrq−2S = 0 for r = 2, 3, we see that there is φ̄ ∈
[Σ2q−1L,L] such that j′′φ̄ = (α1)L ∈ [Σq−1L, S] and φ̄ · i′′ ∈ π2q−1L. Since πrq−1S has a
unique generator α1 = jαi, α2 = jα2i for r = 1, 2 respectively and j′′φ · p = α1 · p = 0, we
have φ · p = i′′α2 up to a scalar. That is, i′′∗π2q−1S also is generated by φ and so we know
that π2q−1L ∼= Zps{φ} for some s ≥ 1. Hence, φ̄i′′ = λφ for some λ ∈ Z(p) and λα1 = λj′′φ =
j′′φ̄i′′ = (α1)Li′′ = α1 so that λ = 1 (mod p). Moreover, (α1)Lφ̄ ∈ [Σ3q−2L, S] = 0 since πrq−2S

= 0 for r = 3, 4. Then by (2.8), there is φ̄W ∈ [Σ3q−1L,W ] such that uφ̄W = φ̄. Concludingly
we have elements φ̄ ∈ [Σ2q−1L,L], φ̄W ∈ [Σ3q−1L,W ] such that

j′′φ̄ = (α1)L, φ̄i′′ = λφ (λ = 1 (mod p)), uφ̄W = φ̄, π2q−1L ∼= Zps{φ}. (2.9)

Proposition 2.2 Let p ≥ 7. Then up to a mod p nonzero scalar we have
(1) φ ·p = i′′α2 = π ·α1 6= 0, (α1)L ·π = α2, p · (α1)L = α2 ·j′′ = (α1)Lπj′′ 6= 0, [Σ2q−1L,L]

has a unique generator φ̄ modulo some elements of filtration ≥ 2.
(2) h̄φ̄(p ∧ 1L) 6= 0 ∈ [Σ2qL, Y ].
(3) h̄φ̃(π ∧ 1L)(p ∧ 1L) 6= 0 ∈ [Σ3qL, Y ] , j′′φ̃(π ∧ 1L)π = jα3i ∈ π3q−1S up to a mod p

nonzero scalar and h̄φ̃(π∧1L)π 6= 0 ∈ π4qY , where φ̃ ∈ [Σ2q−1L∧L,L] such that φ̃(1L∧i′′) = φ̄.
(4) π4qY has a unique generator h̄φ̃(π ∧ 1L)π such that h̄φ̃(π ∧ 1L)π · p = 0.

Proof (1) Since j′′φ · p = α1 · p = 0 = j′′π · α1 and π2q−1S ∼= Zp{α2}, we have φ · p =
i′′α2 = π · α1 up to a scalar. We claim that φ · p 6= 0, which can be shown as follows. Look at
the following exact sequence

Zp{jα2} ∼= [Σ2q−1M, S]
i′′∗−→ [Σ2q−1M, L]

j′′∗−→ [Σq−1M, S]
(α1)∗−→

induced by (2.1). The right group has a unique generator jα satisfying (α1)∗jα = jαijα =
1
2jααij 6= 0. Then the above (α1)∗ is monic, imj ′′∗ = 0 and so [Σ2q−1M, L] ∼= Zp{i′′jα2}.
Suppose in contrast that φ · p = 0. Then φ ∈ i∗[Σ2q−1M, L] so that φ = i′′jα2i and so
α1 = j′′φ = j′′i′′α2 = 0, which is a contradiction. This shows that φ · p 6= 0 and so the above
scalar is nonzero (mod p).

The proof of the second result is similar. For the last result, let x be any element in
[Σ2q−1L,L]. Then j′′x ∈ [Σq−1L, S] ∼= Zps{(α1)L} for some s ≥ 2 (similar to the last of (2.9)).
Consequently, j′′x = λj′′φ̄ for some λ ∈ Zps and so x = λφ̄ + i′′x′ with x′ ∈ [Σ2q−1L, S]. Since
x′i′′ ∈ π2q−1S ∼= Zp{jα2i} and π3q−1S ∼= Zp{jα3i}, x′ is an element of filtration ≥ 2. This
shows the result.
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(2) Suppose in contrast that h̄φ̄(p∧ 1L) = 0. Then by (2.5) we have φ̄(p∧ 1L) = λ′π · (α1)L

with λ′ ∈ Z(p). Note that π ∧ 1M = (i′′ ∧ 1M )α since j′′π ∧ 1M = p ∧ 1M = 0. It follows that
λ′(π ∧ 1M )i · (α1)L = λ′(1L ∧ i)π(α1)L = 0. Then λ′(i′′ ∧ 1M )αi(α1)L = λ′(π ∧ 1M )i(α1)L =
0 and so λ′αi(α1)L ∈ (α1 ∧ 1M )[ΣqL,M ] and λ′αiα1 ∈ (α1 ∧ 1M )(i′′)∗[ΣqL,M ] = 0 by the
following exact sequence

[Σ2qS,M ]
(j′′)∗−→ [ΣqL,M ]

(i′′)∗−→ [ΣqS,M ]
(α1)

∗
−→ ,

where the right group has a unique generator αi satisfying (α1)∗αi = αijαi 6= 0 so that
(i′′)∗[ΣqL,M ] = 0. This implies that λ′ = 0 and so φ̄(p ∧ 1L) = 0, which contradicts the fact
j′′φ̄(p ∧ 1L) = p · (α1)L 6= 0 in (1). This shows the result on h̄φ̄(p ∧ 1L) 6= 0.

(3) Note that φ̄(1L ∧ α1) ∈ [Σ3q−2L,L] = 0 since πrq−2S = 0 for r = 2, 3, 4. Then there is
φ̃ ∈ [Σ2q−1L ∧ L,L] such that φ̃(1L ∧ i′′) = φ̄. We first prove that φ̃(π ∧ 1L)(p ∧ 1L) 6= 0. For
otherwise, if it is zero, then φ̄π·p = φ̃(π∧1L)(p∧1L)i′′ = 0 and so φ̄π ∈ i∗[Σ3q−1M, L]. However,
(j′′)∗[Σ3q−1M, L] ⊂ [Σ2q−1M, S] which has a unique generator jα2 satisfying (α1)∗(jα2) =
jαijα2 6= 0. Then (j′′)∗[Σ3q−1M, L] = 0 and so (α1)Lπ = j′′φ̄π ∈ i∗(j′′)∗[Σ3q−1M, L] = 0,
which contradicts the result in (1).

Now suppose in contrast that h̄φ̃(π ∧ 1L)(p ∧ 1L) = 0. Then, by (2.5), φ̃(π ∧ 1L)(p ∧ 1L)
= π · ω with ω ∈ [Σ2q−1L, S] which satisfies ωi′′ = λ1α2 for some λ1 ∈ Zp. It follows that
(i′′ ∧ 1M )αiω = (1L ∧ i)π · ω = 0. Then αiω ∈ (α1 ∧ 1M )∗[Σ2qL,M ] and so λ1αiα2 = αiωi′′ ∈
(α1 ∧ 1M )∗(i′′)∗[Σ2qL,M ] = (α1)∗(i′′)∗[Σ2qL.M ] = 0. This shows that λ1 = 0 since αiα2 =
αijα2i 6= 0. Consequently, ω = λ2jα

3i · j′′ and φ̃(π ∧ 1L)(p ∧ 1L) = λ2π · jα3i · j′′ for some
λ2 ∈ Z(p). It follows that φ̄π · p = φ̃(π ∧ 1L)(p ∧ 1L)i′′ = 0 and so φ̄π ∈ i∗[Σ3q−1M, L] so that
(α1)Lπ = j′′φ̄π ∈ i∗(j′′)∗[Σ3q−1M, L] = 0. This contradicts the result in (1) on (α1)Lπ 6= 0.

For the second result, since π·j = i′′jα by the diagram above (2.5), we have j′′φ̃(π∧1L)π·j =
j′′φ̃(π ∧ 1L)i′′jα = j′′φ̄πjα = (α1)Lπjα = α2jα = jα3ij (up to a mod p nonzero scalar).
Consequently we have j′′φ̃(π ∧ 1L)π = jα3i (up to nonzero scalar) since π3q−1S ∼= Zp{α3} so
that p∗π3q−1S = 0.

For the last result, we first prove that φ̃(π ∧ 1L)π 6= 0. For otherwise, if it is zero, then
0 = φ̃(π ∧ 1L)π · j = φ̃(π ∧ 1L)i′′jα = φ̄πjα and so α2jα = (α1)Lπjα == j′′φ̄πjα = 0
which is a contradiction since α2jα = jα2ijα 6= 0 ∈ [Σ3q−2M, S]. Now suppose in contrast that
h̄φ̃(π∧1L)π = 0. Then, by (2.5) and π3q−1S ∼= Zp{α3} we have φ̃(π∧1L)π = λπ·jα3i = λi′′jα4i

for some λ ∈ Zp and so j′′φ̃(π ∧ 1L)π = 0 which contradicts the second result.
(4) Since (ū)∗π4qY ⊂ π3q−1M which has a unique generator ijα3i = ij′′φ̃(π ∧ 1L)π =

ūh̄φ̃(π ∧ 1L)π (up to a nonzero scalar ) and π4q−1S ∼= Zp{jα4i} so that (w)∗π4q−1S = 0, we
see that π4qY has a unique generator h̄φ̃(π ∧ 1L)π. Moreover, by (2.4), h̄φ̃(π ∧ 1L)π · p =
h̄(p ∧ 1L)φ̃(π ∧ 1L)π = h̄i′′ξφ̃(π ∧ 1L)π = wjα4i = 0. This shows the result.

Proposition 2.3 Let p ≥ 7, n ≥ m + 2 ≥ 4, tq = pnq + pmq. Then

Ext3,tq+q
A (H∗L,Zp) = 0, Ext3,tq

A (H∗L,H∗L) ∼= Zp{(hnbm−1)′, (hmbn−1)′}

which satisfies (i′′)∗(hnbm−1)′ = (i′′)∗(hnbm−1), (i′′)∗(hmbn−1)′ = (i′′)∗(hmbn−1).

Proof Consider the following exact sequence

Ext3,tq+q
A (Zp, Zp)

i′′∗−→ Ext3,tq+q
A (H∗L,Zp)

j′′∗−→ Ext3,tq
A (Zp, Zp)

(α1)∗−→
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induced by (2.1). The right group has two generators hnbm−1, hmbn−1 by [1, Table 8.1] which
satisfies

(α1)∗(hnbm−1) = h0hnbm−1 6= 0, (α1)∗(hmbn−1) = h0hmbn−1 6= 0 ∈ Ext4,tq+q
A (Zp, Zp)

(cf. Proposition 2.1(1)). Then the above (α1)∗ is monic and so im j′′∗ = 0. Moreover, the left
group has a unique generator h0hnhm = (α1)∗(hnhm) by [1, Table 8.1], so we have that im i′′∗
= 0 and Ext3,tq+q

A (H∗L,Zp) = 0. Look at the following exact sequence

0 = Ext3,tq+q
A (H∗L,Zp)

(j′′)∗−→ Ext3,tq
A (H∗L,H∗L)

(i′′)∗−→ Ext3,tq
A (H∗L,Zp)

(α1)
∗

−→

induced by (2.1). Since Ext3,tq−rq
A (Zp, Zp) ∼= Zp{hnbm−1, hmbn−1} for r = 0 and is zero for

r = 1 in [1, Table 8.1], we see that the right group has two generators (i′′)∗(hnbm−1) and
(i′′)∗(hmbn−1) whose images under (α1)∗ are zero. So the middle group has two generators as
desired.

Proposition 2.4 Let p ≥ 7, n ≥ m + 2 ≥ 4, tq = pnq + pmq. Then
(1) Ext5,tq+3q+1

A (H∗L,Zp) ∼= Zp{φ̄∗π∗(hnbm−1), φ̄∗π∗(hmbn−1)}.
(2) Ext5,tq+3q+2

A (H∗Y, H∗L) ∼= Zp{h̄∗φ̃∗(π∧1L)∗(hnbm−1)′, h̄∗φ̃∗(π∧1L)∗(hmbn−1)′}, where
φ̃ ∈ [Σ2q−1L ∧ L,L] such that φ̃(1L ∧ i′′) = φ̄ ∈ [Σ2q−1L,L] as in Proposition 2.2(3).

Proof (1) Consider the following exact sequence

Ext5,tq+3q+1
A (Zp, Zp)

i′′∗−→ Ext5,tq+3q+1
A (H∗L,Zp)

j′′∗−→ Ext5,tq+2q+1
A (Zp, Zp)

(α1)∗−→

induced by (2.1). The left group is zero and the right group has two generators α̃2hnbm−1,

α̃2hmbn−1 by Proposition 2.1(2). Note that jααi = (α1)L · π = j′′φ̄ · π ∈ π2q−1S, (cf. Propo-
sition 2.2(1)). Then α̃2hnbm−1 = j∗α∗α∗i∗(hnbm−1) = j′′∗ φ̄∗π∗(hnbm−1) and α̃2(hmbn−1) =
j′′∗ φ̄∗π∗(hmbn−1) and so the middle group has the two generators as desired.

(2) Look at the exact sequence

0 = Ext5,tq+4q+1
A (H∗L,Zp)

(j′′)∗−→ Ext5,tq+3q+1
A (H∗L,H∗L)

(i′′)∗−→ Ext5,tq+3q+1
A (H∗L,Zp)

(α1)
∗

−→

induced by (2.1). The left group is zero since Ext5,tq+rq+1
A (Zp, Zp) = 0 for r = 3, 4 (cf. Propo-

sition 2.1(2)). By (1) and φ̄ = φ̃(1L ∧ i′′), the right group has two generators

φ̄∗π∗(hnbm−1) = (i′′)∗φ̃∗(π ∧ 1L)∗(hnbm−1)′, φ̄∗π∗(hmbn−1) = (i′′)∗φ̃∗(π ∧ 1L)∗(hmbn−1)′

whose image under (α1)∗ is zero. Then the middle group has two generators

φ̃∗(π ∧ 1L)∗(hnbm−1)′, φ̃∗(π ∧ 1L)∗(hmbn−1)′.

Moreover, by Ext5,tq+rq
A (Zp, Zp) = 0 for r = 2, 3 in Proposition 2.1(2), we know that

Ext5,tq+2q
A (Zp,H

∗L) = 0.

Then, by (2.5), Ext5,tq+3q+2
A (H∗Y, H∗L) = h̄∗Ext5,tq+3q+1

A (H∗L,H∗L) has the two generators
as desired.

Proposition 2.5 Let p ≥ 7, n ≥ m + 2 ≥ 4, tq = pnq + pmq. Then
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(1) Ext4,tq+3q+1
A (H∗Y, H∗L) = 0, Ext4,tq+4q+2

A (H∗Y, Zp) = 0.
(2) Ext3,tq+3q+r

A (H∗Y, H∗L) = 0 for r = 0, 1.

Proof (1) Consider the following exact sequence

Ext4,tq+3q
A (H∗L,H∗L)

(h̄)∗−→ Ext4,tq+3q+1
A (H∗Y, H∗L)

(jū)∗−→ Ext4,tq+2q−1
A (Zp,H

∗L)
(π)∗−→

induced by (2.5). The left group is zero since Ext4,tq+rq
A (Zp, Zp) = 0 for r = 2, 3, 4 by Proposition

2.1(1). The right group also is zero since Ext4,tq+rq−1
A (Zp, Zp) = 0 for r = 2, 3 by Proposition

2.1(1). Then the middle group is zero as desired.
For the second result, look at the following exact sequence

Ext4,tq+4q+1
A (H∗L,Zp)

(h̄)∗−→ Ext4,tq+4q+2
A (H∗Y, Zp)

(jū)∗−→ Ext4,tq+3q
A (Zp, Zp)

induced by (2.5). The left is zero since Ext4,tq+rq+1
A (Zp, Zp) = 0 for r = 3, 4 by Proposition

2.1(1). The right group also is zero by Proposition 2.1(1). Then the middle group is zero as
desired.

(2) Consider the following exact sequence (r = 0, 1)

Ext3,tq+3q+r−1
A (H∗L,H∗L)

(h̄)∗−→ Ext3,tq+3q+r
A (H∗Y, H∗L)

(jū)∗−→ Ext3,tq+2q+r−2
A (Zp,H

∗L)

induced by (2.5). The left group is zero since Ext3,tq+kq+r−1
A (Zp, Zp) = 0 for k = 2, 3, 4, r = 0, 1

by [1, Table 8.1] . The right group also is zero since Ext3,tq+kq+r−2
A (Zp, Zp) = 0 for k = 2, 3, r =

0, 1 by [1, Table 8.1] and so the middle group is zero as desired.

Proposition 2.6 Let p ≥ 7, n ≥ m + 2 ≥ 4, tq = pnq + pmq. Then
(1) Ext3,tq+3q

A (H∗W,H∗L) ∼= Zp{(φ̄W )∗(hnhm)′}, where φ̄W ∈ [Σ3q−1L,W ] satisfying
uφ̄W = φ̄ ∈ [Σ2q−1L,L] as in (2.9), (hnhm)′ ∈ Ext2,tq

A (H∗L,H∗L) such that (i′′)∗(hnhm)′ =
(i′′)∗(hnhm) ∈ Ext2,tq

A (H∗L,Zp).
(2) Ext2,tq+3q

A (H∗Y, H∗L) = 0, Ext2,tq+q−1
A (H∗M, H∗L) = 0.

Proof (1) Consider the following exact sequence

Ext3,tq+3q
A (H∗L,H∗L) w∗−→ Ext3,tq+3q

A (H∗W,H∗L)
(j′′u)∗−→ Ext3,tq+q

A (Zp,H
∗L)

φ∗−→

induced by (2.7). The left group is zero since Ext3,tq+rq
A (Zp, Zp) = 0 for r = 2, 3, 4 by [1,

Table 8.1]. Since (i′′)∗Ext3,tq+q
A (Zp,H

∗L) ⊂ Ext3,tq+q
A (Zp, Zp) which has a unique generator

h0hnhm = (α1)∗(hnhm) = (i′′)∗((α1)L)∗(hnhm) and Ext3,tq+2q
A (Zp, Zp) = 0 by [1, Table 8.1],

we see that the right group has a unique generator

((αL))∗(hnhm) = ((α1)L)∗(hnhm)′ = (j′′u)∗(φ̄W )∗(hnhm)′

with (hnhm)′ ∈ Ext2,tq
A (H∗L,H∗L) satisfying (i′′)∗(hnhm)′ = (i′′)∗(hnhm) ∈ Ext2,tq

A (H∗L,Zp).
Moreover, φ∗((α1)L)∗(hnhm)′ = 0 ∈ Ext4,tq+3q

A (H∗L,H∗L), so the middle group has a unique
generator (φ̄W )∗(hnhm)′ as desired.

(2) Look at the following exact sequences

Ext2,tq+3q−1
A (H∗L,H∗L) h̄∗−→ Ext2,tq+3q

A (H∗Y, H∗L)
(jū)∗−→ Ext2,tq+2q−2

A (Zp,H
∗L),

Ext2,tq+q−1
A (Zp,H

∗L) i∗−→ Ext2,tq+q−1
A (H∗M, H∗L)

j∗−→ Ext2,tq+q−2
A (Zp,H

∗L)
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induced by (2.5) and (1.1) respectively. The upper left group is zero since Ext2,tq+rq−1
A (Zp, Zp)

= 0 for r = 2, 3, 4 and the upper right group also is zero since Ext2,tq+rq−2
A (Zp, Zp) = 0 for

r = 2, 3 (cf. [5]). Then the upper middle group is zero as desired. Similarly, the lower middle
group also is zero as desired.

Proposition 2.7 Let p ≥ 7, n ≥ m + 2 ≥ 4, tq = pnq + pmq. Then

Ext5,tq+2
A (H∗M, Zp) = 0, Ext3,tq+q+1

A (H∗M ∧ L,Zp) ∼= Zp{(i ∧ 1L)∗π∗(hnhm)}.

Proof Consider the following exact sequence

Ext5,tq+2
A (Zp, Zp)

i∗−→ Ext5,tq+2
A (H∗M, Zp)

j∗−→ Ext5,tq+1
A (Zp, Zp)

p∗−→

induced by (1.1). The right group has a unique generator a0bn−1bm−1 which satisfies

p∗(a0bn−1bm−1) = a2
0bn−1bm−1(6= 0) ∈ Ext6,tq+2

A (Zp, Zp)

by Proposition 2.1(2). Then im j∗ = 0. The left group has two generators

a2
0hmbn−1 = p∗(a0hmbn−1), a2

0hnbm−1 = p∗(a0hnbm−1)

so that im i∗ = 0. So the middle group is zero as desired.
For the second result, look at the following exact sequence

Ext3,tq+q+1
A (H∗L,Zp)

(i∧1L)∗−→ Ext3,tq+q+1
A (H∗M ∧ L,Zp)

(j∧1L)∗−→ Ext3,tq+q
A (H∗L,Zp)

induced by (1.1). The right group is zero by Proposition 2.3(1). Since

(j′′)∗Ext3,tq+q+1
A (H∗L,Zp) ⊂ Ext3,tq+1

A (Zp, Zp) ∼= Zp{a0hnhm = (j′′)∗π∗(hnhm)}

and Ext3,tq+q+1
A (Zp, Zp) = 0 by [1, Table 8.1], we see that the left group has a unique generator

π∗(hnhm) and so the result follows.

3 Proof of the Main Theorem A

The proof of Theorem A will be done by an argument processing in the Adams resolution of
certain spectra related to S which is equivalent to computing the differentials of the ASS. Let

· · · ā2−→ Σ−2E2
ā1−→ Σ−1E1

ā0−→ E0 = Syb̄2

yb̄1

yb̄0

Σ−2KG2 Σ−1KG1 KG0

be the minimal Adams resolution of S satisfying

(1) Es
b̄s−→ KGs

c̄s−→ Es+1
ās−→ ΣEs are cofibrations for all s ≥ 0 which induce short exact

sequences 0 −→ H∗Es+1
c̄∗s−→ H∗KGs

b̄∗s−→ H∗Es −→ 0 in Zp-cohomology.
(2) KGs is a wedge sum of Eilenberg-Maclane spectra of type KZp.
(3) πtKGs are the Es,t

1 -terms , (b̄sc̄s−1)∗ : πtKGs−1 −→ πtKGs are the ds−1,t
1 -differentials

of the ASS and πtKGs
∼= Exts,t

A (Zp, Zp) (cf. [3, p.180]).
Then, an Adams resolution of arbitrary spectrum V can be obtained by smashing V on the
above minimal Adams resolution. We first prove the following lemma.
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Lemma 3.1 Let p ≥ 7, m ≥ n + 2 ≥ 4, tq = pnq + pmq, σ′ = hmbn−1 − hnbm−1. Then
(1) d2(hnhm) = a0σ

′ ∈ Ext4,tq+1
A (Zp, Zp), where d2 : Ext2,tq

A (Zp, Zp) → Ext4,tq+1
A (Zp, Zp)

is the differential of the ASS.
(2) c̄3 ·h0hnhm = (1E4 ∧α1)κ up to a scalar, where κ ∈ πtq+1E4 such that c̄2 ·hnhm = ā3 ·κ

and b̄4 · κ = a0σ
′ ∈ πtq+1KG4

∼= Ext4,tq+1
A (Zp, Zp) by (1).

Proof (1) From [8, Theorem 1.2.14, p.11], d2(hn) = a0bn−1 ∈ Ext3,pnq+1
A (Zp, Zp). Then,

d2(hnhm) = d2(hn)hm + (−1)1+pnqhnd2(hm) = a0bn−1hm − hna0bm−1 = a0σ
′ as desired.

(2) The d1-cycle (1KG3 ∧ i′′)h0hnhm ∈ πtq+q(KG3 ∧ L) represents an element in Ext3,tq+q
A

(H∗L,Zp) = 0 by Proposition 2.3(1), so it is a d1-boundary and (c̄3 ∧ 1L)(1KG3 ∧ i′′)h0hnhm =
0 and c̄3 · h0hnhm = (1E4 ∧α1)f ′′ with f ′′ ∈ πtq+1E4. It follows that ā3 · (1E4 ∧α1)f ′′ = 0 and
ā3 · f ′′ = (1E3 ∧ j′′)f ′′2 for some f ′′2 ∈ πtq+q(E3 ∧ L). The d1-cycle (b̄3 ∧ 1L)f ′′2 ∈ πtq+qKG3 ∧ L

represents an element in Ext3,tq+q
A (H∗L,Zp) = 0. Then (b̄3 ∧ 1L)f ′′2 = (b̄3c̄2 ∧ 1L)g′′ with g′′ ∈

πtq+q(KG2∧L) and so f ′′2 = (c̄2∧1L)g′′+(ā3∧1L)f ′′3 for some f ′′3 ∈ πtq+q+1E4∧L. It follows that
ā3 ·f ′′ = ā3(1E4∧j′′)f ′′3 +c̄2(1KG2∧j′′)g′′ = ā3(1E4∧j′′)f ′′3 +λc̄2 ·hnhm = ā3(1E4∧j′′)f ′′3 +λā3 ·κ
for some λ ∈ Zp since (1KG2 ∧ j′′)g′′ ∈ πtqKG2

∼= Ext2,tq
A (Zp, Zp) ∼= Zp{hnhm} (cf. [5]). Hence,

f ′′ = (1E4 ∧ j′′)f ′′3 + λκ + c̄3 · g′′2 for some g′′2 ∈ πtq+1KG3 and so

c̄3 · h0hnhm = (1E4 ∧ α1)f ′′ = λ(1E4 ∧ α1)κ.

Since h̄φ·p = h̄i′′jα2i = 0 by Proposition 2.2(1) and (2.3), (2.5), we have h̄φ = (1Y ∧j)αY ∧M i

with αY ∧M ∈ [Σ2q+1M, Y ∧M ]. Let ΣU be the cofibre of h̄φ = (1Y ∧ j)αY ∧M i : Σ2qS → Y

given by the cofibration

Σ2qS
h̄φ−→ Y

w2−→ ΣU
u2−→ Σ2q+1S. (3.1)

Moreover, w2(1Y ∧j)αY ∧M = w̃·j with w̃ : Σ2qS → U whose cofibre is X given by the cofibtation

Σ2qS
ew−→ U

ũ−→ X
jψ̃−→ Σ2q+1S. Then, ΣX also is the cofibre of ω = (1Y ∧j)αY ∧M : Σ2qM → Y

given by the cofibration

Σ2qM
(1Y ∧j)αY∧M−→ Y

ũw2−→ ΣX
ψ̃−→ Σ2q+1M. (3.2)

This can be seen by the following commutative diagram of 3× 3 Lemma

Σ2qS
h̄φ−→ Y

ũw2−→ ΣX

↘ i ↗ ω ↘ w2 ↗ ũ

Σ2qM ΣU

↗ ψ̃ ↘ j ↗ w̃ ↘ u2

X
jψ̃−→ Σ2q+1S

p−→ Σ2q+1S

Since jū(h̄φ) = 0, then, by (3.1), jū = u3w2 with u3 ∈ [U,Σq+1S]. So, the spectrum U in
(3.1) also is the cofibre of wπ : ΣqS → W given by the cofibration

ΣqS
wπ−→ W

w3−→ U
u3−→ Σq+1S. (3.3)

This can be seen by the following commutative diagram of 3× 3 Lemma
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Σ−1Y
jū−→ Σq+1S

wπ−→ ΣW

↘ w2 ↗ u3 ↘ π ↗ w

U ΣL

↗ w3 ↘ u2 ↗ φ ↘ h̄

W
j′′u−→ Σ2qS

h̄φ−→ Y

Moreover, by u3w̃ = α1, the cofibre of ũw3 : W → X is Σq+1L given by the cofibration

W
ũw3−→ X

u′′−→ Σq+1L
w′(π∧1L)−→ ΣW, (3.4)

where w′ ∈ [L∧L,W ] such that w′(1L∧i′′) = w. This can be seen by the following commutative
diagram of 3× 3 Lemma

W
ũw3−→ X

jψ̃−→ Σ2q+1S

↘ w3 ↗ ũ ↘ u′′ ↗ j′′

U Σq+1L

↗ w̃ ↘ u3 ↗ i′′ ↘w′(π∧1L)

Σ2qS
α1−→ Σq+1S

wπ−→ ΣW

Lemma 3.2 Let φ̄W ∈ [Σ3q−1L,W ] be the map in (2.9) and Proposition 2.6(1) which
satisfies uφ̄W = φ̄ ∈ [Σ2q−1L,L]. Then

(1) ũw3φ̄W (p ∧ 1L) 6= 0 ∈ [Σ3q−1L,X].
(2) Ext2,tq+3q−1

A (H∗X, H∗L)=0, Ext3,tq+3q
A (H∗X, H∗L)= (ũw3)∗Ext3,tq+3q

A (H∗W,H∗L).

Proof (1) Suppose in contrast that ũw3φ̄W (p ∧ 1L) = 0. Then by (3.4) and the result on
[Σ2q−1L,L] in Proposition 2.2(1) we have

φ̄W (p ∧ 1L) = λw′(π ∧ 1L)φ̄ mod F3[Σ3q−1L,W ] (3.5)

for some λ ∈ Z(p), where F3[Σ3q−1L,W ] denotes the subgroup of [Σ3q−1L,W ] generated by
elements of filtration ≥ 3. Moreover, note that uw′(π ∧ 1L) ∈ [L,L] which has two generators
(p ∧ 1L), πj′′ of filtration 1 (cf. (2.4)). Then uw′(π ∧ 1L) = λ1(p ∧ 1L) + λ2πj′′ for some
λ1, λ2 ∈ Z(p). It follows by (2.8) that λ1p · (α1)L + λ2(α1)Lπj′′ = 0 and so we have λ2 = λ0λ1,
where we use the equation (α1)Lπj′′ = −(λ0)−1p·(α1)L with nonzero λ0 ∈ Z(p) (cf. Proposition
2.2(1)). Hence, by composing u on (3.5) we have

φ̄(p∧1L) = uφ̄W (p∧1L) = λuw′(π∧1L)φ̄ = λλ1φ̄(p∧1L)+λλ0λ1πj′′φ̄ (mod F3[Σ2q−1L,L])

and so by (2.5) we have

h̄φ̄(p ∧ 1L) = λλ1h̄φ̄(p ∧ 1L) (mod F3[Σ2qL, Y ]).

This implies that λλ1 = 1 (mod p) (cf. Remark 3.3 below). Consequently we have λλ1λ0πj′′φ̄
= 0 (mod F3[Σ2q−1L,L]) and by a similar reason as shown in Remark 3.3 below, this implies
λλ1λ0 = 0 (mod p), which yields a contradiction.

(2) Consider the following exact sequence

Ext2,tq+3q
A (H∗Y, H∗L)

(ũw2)∗−→ Ext2,tq+3q−1
A (H∗X, H∗L)

(ψ̃)∗−→ Ext2,tq+q−1
A (H∗M, H∗L)
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induced by (3.2). Both sides of group are zero by Proposition 2.6(2) and so the middle group
is zero as desired. Look at the following exact sequence

Ext3,tq+3q
A (H∗W,H∗L)

(ũw3)∗−→ Ext3,tq+3q
A (H∗X, H∗L)

(u′′)∗−→ Ext3,tq+2q−1
A (H∗L,H∗L)

induced by (3.4). The right group is zero since Ext3,tq+rq−1
A (Zp, Zp) = 0 for r = 1, 2, 3 by [1,

Table 8.1]. Then the result follows.

Remark 3.3 We give an explanation for the reason why the scalar in the equation (1 −
λλ1)h̄φ̄(p∧1L) = 0 (mod F3[Σ2qL, Y ]) must be zero (mod p). For otherwise , if 1−λλ1 6= 0 (mod
p), then (1 − λλ1)h̄φ̄(p ∧ 1L) must be represented by some nonzero x ∈ Ext2,2q+2

A (H∗Y, H∗L)
in the ASS. However, it equals an element of filtration ≥ 3. Then x must be hit by dif-
ferential and so x = d2(x′) ∈ d2Ext0,2q+1

A (H∗Y, H∗L) = 0 since Ext0,2q+1
A (H∗Y, H∗L) =

Hom2q+1
A (H∗Y, H∗L) = 0 by HrL 6= 0 only for r = 0, q. This is a contradiction so that

1− λλ1 = 0 (mod p).

Lemma 3.4 For the map κ ∈ πtq+1E4 in Lemma 3.1(2) which satisfies ā4 ·κ = c̄2 ·hnhm and
b̄4 ·κ = a0σ

′ ∈ πtq+1KG4
∼= Ext4,tq+1

A (Zp, Zp), there exist f ∈ πtq+3E6 and g ∈ πtq+1(KG3∧M)
such that

(A) (1E4 ∧ i)κ = (c̄3 ∧ 1M )g + (ā4ā5 ∧ 1M )f,

(B) (1E6 ∧ (1Y ∧ j)αY ∧M )f · (α1)L = 0 ∈ [Σtq+4q+2L,E6 ∧ Y ],
where αY ∧M ∈ [Σ2q+1M, Y ∧M ] such that (1Y ∧ j)αY ∧M i = h̄φ ∈ π2qY.

Proof Note that the d1-cycle (b̄4 ∧ 1M )(1KG4 ∧ i)κ ∈ πtq+1KG4 ∧M represents an element
i∗(a0σ

′) = i∗p∗(σ′) = 0 ∈ Ext4,tq+1
A (H∗M, Zp) and so it is a d1-boundary. That is (b̄4 ∧

1M )(1KG4 ∧ i)κ = (b̄4c̄3∧1M )g for some g ∈ πtq+1KG3∧M and so by Ext5,tq+2
A (H∗M, Zp) = 0

(cf. Proposition 2.7) we have (1KG4 ∧ i)κ = (c̄3 ∧ 1M )g + (ā4ā5 ∧ 1M )f with f ∈ πtq+3E6 ∧M .
This shows (A).

For the result (B), note from Proposition 2.2(1) that φ · p = i′′jα2i up to a nonzero scalar.
Then h̄φ · p = h̄i′′jα2i = 0 and so h̄φ = (1Y ∧ j)αY ∧M i with αY ∧M ∈ [Σ2q+1M, Y ∧M ]. Hence,
by composing 1E4 ∧ (1Y ∧ j)αY ∧M on the equation (A) we have

(1E4 ∧ h̄φ)κ = (1E4 ∧ (1Y ∧ j)αY ∧M i)κ = (ā4ā5 ∧ 1Y )(1E6 ∧ (1Y ∧ j)αY ∧M )f, (3.6)

where (1Y ∧ j)αY ∧M induces zero homomorphism in Zp-cohomology so that (c̄3 ∧ 1Y )(1KG3 ∧
(1Y ∧ j)αY ∧M )g = 0.

It follows by composing (α1)L on (3.6) that (ā4ā5 ∧ 1Y )(1E6 ∧ (1Y ∧ j)αY ∧M )f · (α1)L =
(1E4 ∧ h̄)(κ ∧ 1L)φ · (α1)L = 0 since φ · (α1)L ∈ [Σ3q−2L,L] = 0 by πrq−2S = 0 for r = 2, 3, 4.
Hence we have

(ā5 ∧ 1Y )(1E6 ∧ (1Y ∧ j)αY ∧M )f · (α1)L = (c̄4 ∧ 1Y )g1 = 0,

where the d1-cycle g1 ∈ [Σtq+3q+1L,KG4∧Y ] represents an element in Ext4,tq+3q+1
A (H∗Y, H∗L)

= 0 (cf. Proposition 2.5(1)) so that it is a d1-boundary and so (c̄4 ∧ 1Y )g1 = 0. Briefly write
(1Y ∧j)αY ∧M = ω and let V be the cofibre of (1Y ∧(α1)L)(ω∧1L) = ω ·(α1)L : Σ3q−1M∧L → Y

given by the cofibration

Σ3q−1M ∧ L
(1Y ∧(α1)L)(ω∧1L)−→ Y

w4−→ V
u4−→ Σ3qM ∧ L. (3.7)
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It follows that (ā5∧1Y )(1E6∧(1Y ∧(α1)L)(ω∧1L)(f∧1L) = (ā5∧1Y )(1E6∧(1Y ∧j)αY ∧M )f ·(α1)L

= 0. Then by (3.7) we have (ā5∧1M∧L)(f∧1L) = (1E5∧u4)f2 for some f2 ∈ [Σtq+3q+2L,E5∧V ].
It follows that (b̄5 ∧ 1V )(1E5 ∧ u4)f2 = 0 and so

(b̄5 ∧ 1V )f2 = (1KG5 ∧ w4)g2 (3.8)

for some g2 ∈ [Σtq+3q+2L,KG5 ∧ Y ]. Consequently, (b̄6c̄5 ∧ 1V )(1KG5 ∧ w4)g2 = 0 and so
(b̄6c̄5∧1Y )g2 ∈ (1KG6 ∧ (1Y ∧ (α1)L(ω∧1L))∗[Σ∗L,KG6∧M ∧L] = 0. That is, g2 is a d1-cycle
and it represents an element [g2] ∈ Ext5,tq+3q+2

A (H∗Y, H∗L) which has two generators stated in
Proposition 2.4(2) so that

[g2] = h̄∗φ̃∗(π ∧ 1L)∗(λ1[hmbn−1 ∧ 1L] + λ2[hnbm−1 ∧ 1L]) (3.9)

for some λ1, λ2 ∈ Zp. By (3.8) we know that (w4)∗[g2] ∈ E5,tq+3q+2
2 (V ) = Ext5,tq+3q+2

A (H∗V,

H∗L) is a permanent cycle in the ASS. However, (1Y ∧ (α1)L)(ω ∧ 1L) is a map of filtration
2, then the cofibration (3.7) induces a short exact sequence in Zp-cohomology which is split as
A-modules, that is, it induces a split exact sequence in E1-term of the ASS:

E5,∗
1 (Y )

(w4)∗−→ E5,∗
1 (V )

(u4)∗−→ E5,∗−3q
1 (M ∧ L).

Consequently, it induces a split exact sequence in Er-term of the ASS:

E5,∗
r (Y )

(w4)∗−→ E5,∗
r (V )

(u4)∗−→ E5,∗−3q
r (M ∧ L) (3.10)

for all r ≥ 2. Hence, the fact that dr((w4)∗[g2]) = 0 implies dr([g2]) = 0 for all r ≥ 2.
That is, (3.8) implies that [g2] is a permanent cycle in the ASS. By the vanishing of the
d2-differential we have (λ1 + λ2)h̄∗φ̃∗(π ∧ 1L)∗[a0bn−1bm−1 ∧ 1L] = d2[g2] = 0 and then we
have λ1 + λ2 = 0, where h̄∗φ̃∗(π ∧ 1L)∗[a0bn−1bm−1 ∧ 1L] 6= 0 ∈ Ext7,tq+3q+3

A (H∗Y, H∗L)
since h̄φ̃(π ∧ 1L)(p ∧ 1L)(6= 0) ∈ [Σ3qL, Y ] by Proposition 2.2(3). That is, (3.9) becomes
[g2] = λ1h̄∗φ̃∗(π ∧ 1L)∗[σ′ ∧ 1L]. Now we consider the cases that λ1 is nonzero and zero
separately.

If λ1 6= 0, (3.8) implies that [g2] and so h̄∗ φ̃∗ (π ∧ 1L)∗ [σ′ ∧ 1L] ∈ E5,tq+3q+2
2 (Y ) =

Ext5,tq+3q+2
A (H∗Y, H∗L) is a permanent cycle in the ASS. Moreover, by (ā5 ∧ 1Y )(1E6 ∧ (1Y ∧

j)αY ∧M )f · (α1)L = 0 we have

(1E6 ∧ (1Y ∧ j)αY ∧M )f · (α1)L = (c̄5 ∧ 1Y )g3

with d1-cycle g3 ∈ [Σtq+3q+2L,KG5 ∧Y ] which represents an element [g3] ∈ Ext5,tq+3q+2
A (H∗Y,

H∗L) so that [g3] = h̄∗φ̃∗(π ∧ 1L)∗(λ3[hmbn−1 ∧ 1L] + λ4[hnbm−1 ∧ 1L]) for some λ3, λ4 ∈ Zp.
By the above equation and the fact that (1Y ∧ (α1)L)(ω ∧ 1L) has filtration 2, we know that
the differential d2([g3]) = 0 and so by a similar argument as shown above we have λ3 + λ4 = 0.
That is, [g3] = λ3h̄∗φ̃∗(π ∧ 1L)∗[σ′ ∧ 1L] and so we have

(1E6 ∧ (1Y ∧ (α1)L)(ω ∧ 1L))(f ∧ 1L) = (c̄5 ∧ 1Y )g3 = 0

which shows the result.
If λ1 = 0, then g2 = (b̄5c̄4 ∧ 1Y )g4 for some g4 ∈ [Σtq+3q+2L,KG4 ∧ Y ] and (3.8) becomes

(b̄5 ∧ 1V )f2 = (b̄5c̄4 ∧ 1V )(1KG4 ∧w4)g4. Consequently we have f2 = (c̄4 ∧ 1V )(1KG4 ∧w4)g4 +
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(ā5 ∧ 1V )f3 for some f3 ∈ [Σtq+3q+3L,E6 ∧ V ] and so (ā5 ∧ 1M∧L)(f ∧ 1L) = (1E5 ∧ u4)f2 =
(ā5 ∧ 1M∧L)(1E6 ∧ u4)f3. It follows that (f ∧ 1L) = (1E6 ∧ u4)f3 + (c̄5 ∧ 1M∧L)g5 for some
g5 ∈ [Σtq+3q+3L,KG5 ∧M ∧L] and so by (3.7) we have (1E6 ∧ (1Y ∧ (α1)L)(ω ∧ 1L))(f ∧ 1L) =
(c̄5 ∧ 1Y )(1KG5 ∧ (1Y ∧ (α1)L)(ω ∧ 1L))g5 = 0 since (α1)L induces zero homomorphism in
Zp-cohomology.

Proof of Theorem A We will continue the argument in Lemma 3.4. Note that the
spectrum V in (3.7) also is the cofibre of (1M ∧wi′′)ψ̃ : X → Σ2qM ∧W given by the cofibration

X
(1M∧wi′′)ψ̃−→ Σ2qM ∧W

w5−→ V
u5−→ ΣX. (3.11)

This can be seen by the following commutative diagram of 3× 3 Lemma

Σ3q−1M ∧ L −→ Y
ũw2−→ ΣX

↘1M∧(α1)L ↗ ω ↘ w4 ↗ u5 ↘ ψ̃

Σ2qM V Σ2q+1M

↗ ψ̃ ↘1M∧wi′′ ↗ w5 ↘ u4 ↗1M∧(α1)L

X −→ Σ2qM ∧W
1M∧u−→ Σ3qM ∧ L

It follows from Lemma 3.4(B) and (3.7) that f∧1L = (1E6∧u4)f5 for some f5 ∈ [Σtq+3q+3L,

E6 ∧ V ] and so by Lemma 3.4(A) we have

(ā4ā5 ∧ 1M∧L)(1E6 ∧ u4)f5 = (ā4ā5 ∧ 1M∧L)(f ∧ 1L)

= (1E4 ∧ i ∧ 1L)(κ ∧ 1L)− (c̄3 ∧ 1M∧L)(g ∧ 1L). (3.12)

Consequently, (ā2ā3ā4ā5∧1M∧L)(1E6∧u4)f5 = 0 and so (ā2ā3ā4ā5∧1V )f5 = (1E2∧w4)f6 for
some f6 ∈ [Σtq+3q−1L,E2∧Y ]. It follows that (b̄2∧1V )(1E2∧w4)f6 = 0. Then (b̄2∧1Y )f6 = 0 and
by Ext3+r,tq+3q+r

A (H∗Y, H∗L) = 0 for r = 0, 1 (cf. Proposition 2.5) we have (ā2ā3ā4ā5∧1V )f5 =
(ā2ā3ā4 ∧ 1V )(1E5 ∧ w4)f7 for some f7 ∈ [Σtq+3q+2L,E5 ∧ Y ]. It follows that

(ā3ā4ā5 ∧ 1V )f5 = (ā3ā4 ∧ 1V )(1E5 ∧ w4)f7 + (c̄2 ∧ 1V )g6 (3.13)

with d1-cycle g6 ∈ [Σtq+3qL,KG2 ∧ V ] which represents an element

[g6] ∈ Ext2,tq+3q
A (H∗V, H∗L).

Note that the d1-cycle (b̄5 ∧ 1Y )f7 ∈ [Σtq+3q+2L,KG5 ∧ Y ] represents an element

[(b̄5 ∧ 1Y )f7] ∈ Ext5,tq+3q+2
A (H∗Y, H∗L)

which has two generators stated in Proposition 2.4(2). Then

[(b̄5 ∧ 1Y )f7] = λ′h̄∗φ̃∗(π ∧ 1L)∗[hmbn−1 ∧ 1L] + λ′′h̄∗φ̃∗(π ∧ 1L)∗[hnbm−1 ∧ 1L]

for some λ′, λ′′ ∈ Zp. By the vanishing of the differential

0 = d2[(b̄5 ∧ 1Y )f7] = (λ′ + λ′′)h̄∗φ̃∗(π ∧ 1L)∗[a0bn−1bm−1 ∧ 1L]

we have λ′ + λ′′ = 0 since h̄φ̃(π ∧ 1L)(p∧ 1L) 6= 0 ∈ [Σ3qL, Y ] by Proposition 2.2(3). Hence we
have

[(b̄5 ∧ 1Y )f7] = λ′h̄∗φ̃∗(π ∧ 1L)∗[σ′ ∧ 1L] ∈ Ext5,tq+3q+2
A (H∗Y, H∗L). (3.14)
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We claim that the scalar λ′ in (3.14) is zero. This can be proved as follows.
The equation (3.13) means that the second order differential of the ASS d2[g6] = 0 ∈

E4,tq+3q+1
2 (L, V ) = Ext4,tq+3q+1

A (H∗V, H∗L) so that [g6] ∈ E2,tq+3q
3 (L, V ) and the third order

differential

d3[g6] = (w4)∗[(b̄5 ∧ 1Y )f7] ∈ E5,tq+3q+2
3 (L, V ). (3.15)

Note that

(ω ∧ 1L)(1M ∧ (α1)L)(i ∧ 1L)π = (1Y ∧ j)αY ∧M i(α1)Lπ = h̄φ(α1)Lπ = 0

since φ(α1)L ∈ [Σ3q−2L,L] = 0 by πrq−2S = 0 for r = 2, 3, 4. Then, by (3.7), (i ∧ 1L)π = u4τ

with τ ∈ [Σ4qS, V ] which has filtration 1. Moreover, u4τ · p = (i ∧ 1L)π · p = 0. Then,
by Proposition 2.2(4), τ · p = λ̃w4h̄φ̃(π ∧ 1L)π for some λ̃ ∈ Z(p). The scalar λ̃ must be
zero (mod p) since the left-hand side has filtration 2 and the right-hand side has filtration 3 (cf.
Remark 3.3 and Ext0,4q+1

A (H∗V, Zp) = 0 by Ext0,4q+1
A (H∗Y, Zp) = 0 = Ext0,q+1

A (H∗M∧L,Zp)).
Consequently, by Proposition 2.2(4), τ · p = 0 and so τ = τ̄ i with τ̄ ∈ [Σ4qM, V ]. Since

(u4)∗(π)∗[g6] ∈ Ext3,tq+q+1
A (H∗M ∧ L,Zp) ∼= Zp{(i ∧ 1L)∗(π)∗(hnhm)}

(cf. Proposition 2.7), we have

(u4)∗π∗[g6] = λ0(i ∧ 1L)∗π∗(hnhm) = λ0(u4)∗(τ̄ i)∗(hnhm)

for some λ0 ∈ Zp and so by (3.7) we have

π∗[g6] = λ0τ̄∗i∗(hnhm) ∈ Ext3,tq+3q+1
A (H∗V, Zp)

since Ext3,tq+3q+1
A (H∗Y, H∗L) = 0 (cf. Proposition 2.5(1)). Recall from Lemma 3.1(1) that

d2(hnhm) = a0σ
′ = p∗(σ′) ∈ Ext4,tq+1

A (Zp, Zp).

Then d2i∗(hnhm) = 0 and so i∗(hnhm) ∈ E4,tq+1
3 (S,M). Moreover,

E5,tq+2
2 (S,M) = Ext5,tq+2

A (H∗M, Zp) = 0

by Proposition 2.7. Then the E3-term E5,tq+2
3 (S,M) = 0 so that the third order differential

d3i∗(hnhm) ∈ E5,tq+2
3 (S,M) = 0.

Since π∗[g6] = λ0(τ̄)∗i∗(hnhm) ∈ E3,tq+4q+1
2 (S, V ), we have

π∗[g6] = λ0τ̄∗(i∗(hnhm)) ∈ E3,tq+4q+1
3 (S, V )

and so

d3π
∗[g6] = λ0d3(τ̄)∗(i∗(hnhm)) = λ0(τ̄)∗d3(i∗(hnhm)) = 0 ∈ E6,tq+4q+3

3 (S, V ).

It follows from (3.15) that (w4)∗π∗[(b̄5 ∧ 1Y )f7] = d3π
∗[g6] = 0 ∈ E6,tq+4q+2

3 (S, V ). Moreover,
by the split exact sequence (3.10) we have π∗[(b̄5∧1Y )f7] = 0 ∈ E6,tq+4q+3

3 (S, Y ). Consequently,
in the E2-term, π∗[(b̄5 ∧ 1Y )f7] must be a d2-boundary, that is

π∗[(b̄5 ∧ 1Y )f7] ∈ d2E
4,tq+4q+2
2 (S, Y ) = d2Ext4,tq+4q+2

A (H∗Y, Zp) = 0
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by Proposition 2.5(1) and so, by (3.14), λ′h̄∗φ̃∗(π∧1L)∗π∗(σ′) = 0. This implies that the scalar
λ′ is zero (cf. Proposition 2.2(4)) which shows the above claim.

Hence, (3.13) becomes

(ā3ā4ā5 ∧ 1V )f5 = (ā3ā4ā5 ∧ 1V )(1E6 ∧ w4)f8 + (c̄2 ∧ 1V )g6

with f8 ∈ [Σtq+3q+3L,E6 ∧ Y ]. It follows by composing 1E3 ∧ u5 that

(ā3ā4ā5 ∧ 1Y ∧W )(1E6 ∧ u5)f5 = (ā3ā4ā5 ∧ 1X)(1E6 ∧ ũw2)f8

(cf. the diagram above (3.12)), this is because (c̄2 ∧ 1X)(1KG2 ∧ u5)g6 = 0 by the fact that
(1KG2 ∧ u5)g6 ∈ [Σtq+3q−1L,KG2 ∧X] represents an element in Ext2,tq+3q−1

A (H∗X, H∗L) = 0
(cf. Lemma 3.2(2)). Consequently we have

(ā4ā5 ∧ 1X)(1E6 ∧ u5)f5 = (ā4ā5 ∧ 1X)(1E6 ∧ ũw2)f8 + (c̄3 ∧ 1X)g7 (3.16)

with d1-cycle g7 ∈ [Σtq+3q+1L,KG3∧X] which represents an element in Ext3,tq+3q
A (H∗X, H∗L).

Now we prove (c̄3 ∧ 1X)g7 = 0 as follows. By Lemma 3.2(2) and Proposition 2.6(1),

[g7] = λ3(ũw3)∗(φ̄W )∗[hnhm ∧ 1L]

and the equation (3.16) means the second order differential d2[g7] = 0. Since

d2(hnhm) = a0σ
′ = p∗(σ′) ∈ Ext4,tq+1

A (Zp, Zp)

by Lemma 3.1(1), we have

λ3(ũw3)∗(φ̄W )∗(p ∧ 1L)∗[σ′ ∧ 1L] = d2[g7] = 0 ∈ Ext5,tq+3q+1
A (H∗X, H∗L).

By Lemma 3.2(1), this implies λ3 = 0 and so g7 is a d1-boundary so that (c̄3 ∧ 1X)g7 = 0.
Consequently, (3.16) becomes

(ā4ā5 ∧ 1Y ∧W )(1E6 ∧ u5)f5 = (ā4ā5 ∧ 1X)(1E6 ∧ ũw2)f8

and so by (3.2) and the diagram above (3.12),

(ā4ā5 ∧ 1M )(1E6 ∧ (1M ∧ (α1)L)u4)f5 = (ā4ā5 ∧ 1M )(1E6 ∧ ψ̃u5)f5 = 0.

Moreover, by composing (1E4 ∧ 1M ∧ (α1)L) on (3.12) we have

(1E4 ∧ i)κ · (α1)L = (1E4 ∧ 1M ∧ (α1)L)(1E4 ∧ i ∧ 1L)(κ ∧ 1L)

= (ā4ā5 ∧ 1M )(1E6 ∧ (1M ∧ (α1)L)u4)f5 = 0.

It follows that

κ · (α1)L = (1E4 ∧ p)f9 (3.17)

with f9 ∈ [Σtq+qL,E4]. Recall that b̄6 · κ = a0σ
′ = p∗(σ′) ∈ Ext4,tq+q

A (Zp, Zp). Then κ · (α1)L

lifts to a map f̃ ∈ [Σtq+q+1L,E5] such that b̄5 · f̃ represents

p∗((α1)L)∗[σ′ ∧ 1L] 6= 0 ∈ Ext5,tq+q+1
A (Zp,H

∗L)
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(cf. Proposition 2.2(1)). Then, by (3.17),

p∗[b̄4 · f9] = p∗((α1)L)∗[σ′ ∧ 1L]

and so [b̄4 ·f9] ∈ Ext4,tq+q
A (Zp,H

∗L) must be equal to ((α1)L)∗[σ′∧1L] since the location group
has two generator ((α1)L)∗[hmbn−1 ∧ 1L] and ((α1)L)∗[hnbm−1 ∧ 1L] by Ext4,tq+q

A (Zp, Zp) ∼=
Zp{h0hnbm−1, h0hmbn−1} and Ext4,tq+2q

A (Zp, Zp) = 0 in Proposition 2.1(1). Write ξn,4 = f9i
′′.

Then

κ · α1 = (1E4 ∧ p)ξn,4 (3.18)

with b̄4 · ξn,4 = h0σ
′ ∈ Ext4,tq+q

A (Zp, Zp) and so by Lemma 3.1(2) we have

(c̄2 ∧ 1M )(1KG3 ∧ i)h0hnhm = (1E4 ∧ i)κ · α1 = 0.

This shows the second result of the theorem. Moreover, by (3.18) and Lemma 3.1(2),

ā0ā1ā2ā3(1E4 ∧ p)ξn,4 = 0,

this shows that ξn = ā0ā1ā2ā3 · ξn,4 ∈ πtq+q−4S is a map of order p which is represented by
h0σ

′ ∈ Ext4,tq+q
A (Zp, Zp) in the ASS.
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