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Abstract This paper deals with the blow-up phenomenon, particularly, the geometric
blow-up mechanism, of classical solutions to the Cauchy problem for quasilinear hyperbolic
systems in the critical case. We prove that it is still the envelope of the same family of
characteristics which yields the blowup of classical solutions to the Cauchy problem in the
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1 Introduction and Main Results

Consider the following Cauchy problem for the first order quasilinear hyperbolic system

∂u

∂t
+A(u)

∂u

∂x
= 0 (1.1)

with the initial data

t = 0 : u = φ(x), (1.2)

where u = (u1, · · · , un)T is the unknown vector function of (t, x), A(u) is an n×n matrix with

suitably smooth elements aij(u) (i, j = 1, · · · , n) and φ(x) = (φ1(x), · · · , φn(x))T is a C1 vector

function of x.

We assume that in a neighbourhood of u = 0, system (1.1) is strictly hyperbolic: A(u) has

n distinct real eigenvalues

λ1(u) < λ2(u) < · · · < λn(u). (1.3)

For i = 1, · · · , n, let li(u) = (li1(u), · · · , lin(u)) (resp. ri(u) = (ri1(u), · · · , rin(u))T ) be a left

(resp. right) eigenvector corresponding to λi(u), namely,

li(u)A(u) = λi(u)li(u) (resp. A(u)ri(u) = λi(u)ri(u)). (1.4)

Without loss of generality, we assume that on the domain under consideration,

li(u)rj(u) ≡ δij (i, j = 1, · · · , n), (1.5)
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where δij stands for the Kronecker’s symbol.

By means of the concept of weak linear degeneracy, in [4, 8, 11, 12], Li et al. studied the

global existence and the blow-up phenomenon of C1 solution to the Cauchy problem (1.1)-(1.2)

under the assumption that the initial data (1.2) satisfy

θ , sup
x∈R
{(1 + |x|)1+µ(|φ(x)|+ |φ′(x)|)} � 1 (1.6)

for some constant µ > 0 (some related results can be also found in [13]–[15]).

For i ∈ {1, · · · , n}, the i-th characteristic λi(u) is called to be weakly linearly degenerate,

if, along the i-th characteristic trajectory u = u(i)(s) passing through u = 0, defined by
du

ds
= ri(u),

s = 0 : u = 0,
(1.7)

we have

∇λi(u)ri(u) ≡ 0, ∀ |u| small, (1.8)

namely

λi(u
(i)(s)) ≡ λi(0), ∀ |s| small. (1.9)

If all characteristics are weakly linearly degenerate, system (1.1) is said to be weakly linearly

degenerate (see [5, 11, 12]).

On the other hand, if system (1.1) is not weakly linearly degenerate, then there exists a

nonempty set J ⊆ {1, · · · , n} such that λi(u) is not weakly linearly degenerate if and only if

i ∈ J . For each i ∈ J , either there exists an integer αi ≥ 0 such that

dkλi(u
(i)(s))

dsk

∣∣∣∣
s=0

= 0 (k = 1, · · · , αi) but
dαi+1λi(u

(i)(s))

dsαi+1

∣∣∣∣
s=0

6= 0 (1.10)

or

dkλi(u
(i)(s))

dsk

∣∣∣∣
s=0

= 0 (k = 1, 2, · · · ) but λi(u
(i)(s)) 6≡ λi(0), denoted by αi = +∞, (1.11)

where u = u(i)(s) is defined by (1.7). Moreover, let

α = min{αi | i ∈ J}. (1.12)

By [6] and [7], if system (1.1) is not weakly linearly degenerate, for any given θ0 > 0 suitably

small, we can always find some initial data (1.2) with θ ∈ (0, θ0], where θ is defined by (1.6),

such that the C1 solution u = u(t, x) to the Cauchy problem (1.1)-(1.2) blows up in a finite

time. Thus, to find the blow-up mechanism is an interesting problem. The previous results

mainly focus on the noncritical case that α < +∞, however, for the critical case α = +∞,

only a few results are known (see [2, 12]). In this paper, we study the blow-up phenomenon,

particularly, the geometric blow-up mechanism in the critical case.

Our main results are the following theorems which show that, although it is impossible to

get a sharp estimate on the life-span in the critical case, the blow-up mechanism in the critical

case is almost the same as in the noncritical case. However, we point out that the method used



Blow-up Mechanism of Classical Solutions in the Critical Case 55

in previous papers can not be directly applied to the critical case and then some significant

changes or improvements should be made in the proof.

Theorem 1.1 Suppose that in a neighbourhood of u = 0, A(u) ∈ C∞ and system (1.1) is

strictly hyperbolic. Suppose furthermore that system (1.1) is not weakly linearly degenerate and

α = +∞. (1.13)

Suppose finally that the initial data (1.2) satisfy (1.6). Then, for any given integer N ≥ 1, there

exists θ0 = θ0(N) > 0 so small that for any fixed θ ∈ (0, θ0], the life-span T̃ (θ) of C1 solution

u = u(t, x) to the Cauchy problem (1.1)-(1.2) satisfies

T̃ (θ) > θ−N . (1.14)

Moreover, when u = u(t, x) blows up in a finite time, u = u(t, x) itself is bounded on the

domain [0, T̃ (θ))× R, while the first order partial derivatives of u = u(t, x) tend to the infinity

as t↗ T̃ (θ).

Theorem 1.2 Under the assumptions of Theorem 1.1, for any given integer N ≥ 1, there

exists θ0 = θ0(N) > 0 so small that for any fixed θ ∈ (0, θ0], the C1 solution u = u(t, x) to

the Cauchy problem (1.1)-(1.2) blows up in a finite time if and only if at least one family of

characteristics forms an envelope in the finite time.

Theorem 1.3 For each i∈ J , the family of the i-th characteristics never forms any envelope

on the domain [0, T̃ (θ)]× R.

Theorem 1.4 Under the assumptions of Theorem 1.1, on the line t = T̃ (θ), the set of

blow-up points can not possess a positive measure.

This paper is organized as follows: In Section 2 and Section 3 we give some preliminaries

and some uniform a priori estimates respectively, then, the main results are proved in Section 4.

2 Preliminaries

By Lemma 2.5 in [11], when system (1.1) is strictly hyperbolic, there exists a suitably smooth

invertible transformation u = u(ũ) (u(0) = 0) such that in the ũ-space, for each i = 1, · · · , n,

the i-th characteristic trajectory passing through ũ = 0 coincides with the ũi-axis at least for

|ũi| small, namely

r̃i(ũiei)//ei, ∀ |ũi| small (i = 1, · · · , n), (2.1)

where r̃i(ũ) denotes the i-th right eigenvector corresponding to ri(u) and

ei = (0, · · · , 0,
(i)

1 , 0, · · · , 0)T . (2.2)

This transformation is called a normalized transformation, and the unknown variables ũ =

(ũ1, · · · , ũn)T are called normalized variables or normalized coordinates.

Let

wi = li(u)ux (i = 1, · · · , n). (2.3)
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By (1.5), it is easy to see that

ux =

n∑
k=1

wkrk(u). (2.4)

Let
d

dit
=

∂

∂t
+ λi(u)

∂

∂x
(2.5)

denote the directional derivative with respect to t along the i-th characteristic. We have

du

dit
=

n∑
k=1

(λi(u)− λk(u))wkrk(u) (i = 1, · · · , n). (2.6)

Then, in normalized coordinates, it is easy to see that (see [9])

dui
dit

=
n∑

j,k=1

ρijk(u)ujwk (i = 1, · · · , n), (2.7)

where

ρijj(u) ≡ 0, ∀ i, j (2.8)

and

ρijk(u) = (λi(u)− λk(u))

∫ 1

0

∂rki
∂uj

(τu1, · · · , τuk−1, uk, τuk+1, · · · , τun)dτ, ∀ j 6= k. (2.9)

Obviously

ρiji(u) ≡ 0, ∀ i, j. (2.10)

Moreover, noting (2.4) and (2.7), we have

d[ui(dx− λi(u)dt)] =
[dui
dit

+

n∑
k=1

∇λi(u)rk(u)uiwk

]
dt ∧ dx

=

n∑
j,k=1

Fijk(u)ujwkdt ∧ dx, (2.11)

where

Fijk(u) = ρijk(u) +∇λj(u)rk(u)δij . (2.12)

Noting (2.8) and (2.10), it is easy to see that

Fijj(u) ≡ 0, ∀ j 6= i, (2.13)

Fiji(u) ≡ 0, ∀ j 6= i, (2.14)

Fiii(u) = ∇λi(u)ri(u), ∀ i. (2.15)

On the other hand, we have (see [1, 3, 5])

dwi
dit

=

n∑
j,k=1

γijk(u)wjwk (i = 1, · · · , n), (2.16)

where

γijk(u) =
1

2
{(λj(u)− λk(u))li(u)∇rk(u)rj(u)−∇λk(u)rj(u)δik + (j|k)}, (2.17)
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in which (j|k) stands for all terms obtained by changing j and k in the previous terms. Hence

γijj(u) ≡ 0, ∀ j 6= i, (2.18)

γiii(u) = −∇λi(u)ri(u), ∀ i. (2.19)

Noting (2.4), by (2.16) we have (see [1])

d[wi(dx− λi(u)dt)] =

n∑
j,k=1

Γijk(u)wjwkdt ∧ dx, (2.20)

where

Γijk(u) =
1

2
(λj(u)− λk(u))li(u)[∇rk(u)rj(u)−∇rj(u)rk(u)]. (2.21)

Hence

Γijj(u) ≡ 0, ∀ i, j. (2.22)

3 Some Uniform a priori Estimates

Noting (1.3), we have

λ1(0) < λ2(0) < · · · < λn(0). (3.1)

Without loss of generality, we may assume that

λ1(0) > 0. (3.2)

Then, by continuity, there exist positive constant δ0(< λ1(0)) and δ so small that

λi+1(u)− λi(u′) ≥ 2δ0, ∀ |u|, |u′| ≤ δ (i = 1, · · · , n− 1), (3.3)

|λi(u)− λi(u′)| ≤
δ0
2
, ∀ |u|, |u′| ≤ δ (i = 1, · · · , n). (3.4)

For any given T ≥ 0, let

DT
i =


{(t, x) | 0 ≤ t ≤ T, x ≤ (λ1(0) + δ0)t} (i = 1),

{(t, x) | 0 ≤ t ≤ T, (λi(0)− δ0)t ≤ x ≤ (λi(0) + δ0)t} (i = 2, · · · , n− 1),

{(t, x) | 0 ≤ t ≤ T, x ≥ (λn(0)− δ0)t} (i = n).

(3.5)

Obviously
n⋃
i=1

DT
i ⊂ D(T ) = {(t, x) | 0 ≤ t ≤ T, −∞ < x <∞}. (3.6)

On any given existence domain D(T ) of C1 solution u = u(t, x) to the Cauchy problem (1.1)-

(1.2), let

W c
∞(T ) = max

i=1,··· ,n
sup

(t,x)∈D(T )\DT
i

{(1 + |x− λi(0)t|)1+µ|wi(t, x)|}, (3.7)

W̃1(T ) = max
i=1,··· ,n

max
j 6=i

sup
cj

∫
cj

|wi(t, x)|dt, (3.8)
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where cj denotes any given j-th characteristic on D(T ),

W1(T ) = max
i=1,··· ,n

sup
0≤t≤T

∫ ∞
−∞
|wi(t, x)|dx, (3.9)

U∞(T ) = ‖u(t, x)‖L∞(D(T )). (3.10)

For the time being, we assume that on any given existence domain D(T ),

|u(t, x)| ≤ δ. (3.11)

At the end of the proof of Lemma 3.2, we will explain that this hypothesis is reasonable.

Lemma 3.1 (See [9]) For each i = 1, · · · , n and any given point (t, x)∈DT
i , let ci : ξ =

ξi(τ) (0 ≤ τ ≤ t) be the i-th characteristic passing through (t, x) and intersecting the x-axis

at (0, xi0). Then ci never enters in DT
i and there exist positive constants dk (k = 1, 2, 3)

independent of (t, x) and i, such that

|x− λi(0)t| ≥ δ0t, (3.12)

d1|x| ≤|x− λi(0)t| ≤ d2|xi0|, (3.13)

and, if (τ, ξi(τ))∈DT
j for some j, then

|ξi(τ)− λj(0)τ | ≥ d3|xi0|, ∀ 0 ≤ τ ≤ t. (3.14)

Lemma 3.2 Suppose that in a neighbourhood of u = 0, A(u) ∈ C2 and system (1.1) is

strictly hyperbolic, i.e., (1.3) holds. Suppose furthermore that the initial data (1.2) satisfy (1.6).

Then there exists θ0 > 0 so small that for any fixed θ ∈ [0, θ0], on any given existence domain

D(T ) of C1 solution u = u(t, x) to the Cauchy problem (1.1)-(1.2), we have the following

uniform a priori estimates

W c
∞(T ) ≤ κ1θ, (3.15)

W̃1(T ), W1(T ) ≤ κ2θ (3.16)

and

U∞(T ) ≤ κ3θ, (3.17)

where κi (i = 1, 2, 3) are positive constants independent of θ and T .

Proof Noting (1.6), (2.3) and (3.11), we have

(1 + |x|)1+µ|wi(0, x)| ≤ Cθ, (3.18)

here and henceforth C denotes a positive constant independent of θ and T .

We first estimate W c
∞(T ).

For any given i ∈ {1, · · · , n}, passing through any fixed point (t, x) ∈ D(T )\DT
i , we draw

the i-th characteristic ci: ξ = ξi(τ) (τ ≤ t) which intersects the x-axis at a point (0, xi0).

Integrating (2.16) along ci from 0 to t yields

wi(t, x) = wi(0, xi0) +

∫ t

0

n∑
j,k=1

γijk(u)wjwk(τ, ξi(τ))dτ. (3.19)
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Noting (3.11) and (2.18) and using Lemma 3.1, it is easy to see that

(1 + |x− λi(0)t|)1+µ|wi(t, x)| ≤ C(1 + |xi0|)1+µ
{
|wi(0, xi0)|

+ (W c
∞(T ))2

n∑
j,k=1

∫
ξi(τ)*(DT

j ∪DT
k )

[(1 + |ξi(τ)− λj(0)τ |)(1 + |ξi(τ)− λk(0)τ |)]−(1+µ)dτ

+W c
∞(T )

n∑
j,k=1

∫
ξi(τ)⊆DT

j

ξi(τ)*DT
k

(1 + |ξi(τ)− λk(0)τ |)−(1+µ)|wj(τ, ξi(τ))|dτ
}

≤ C{(1 + |xi0|)1+µ|wi(0, xi0)|+ (W c
∞(T ))2 +W c

∞(T )W̃1(T )}. (3.20)

Then, noting (3.18), it turns out that

W c
∞(T ) ≤ C{θ + (W c

∞(T ))2 +W c
∞(T )W̃1(T )}. (3.21)

We next estimate W̃1(T ) and W1(T ).

For i ∈ {1, · · · , n}, passing through two end points A(tA, xA) and B(tB , xB) of any given

j-th characteristic cj : ξ = ξj(τ) (0 ≤ tA ≤ τ ≤ tB) on D(T ) (j 6= i), we respectively draw

the i-th characteristics which intersects the x-axis at point C(0, xC) and point D(0, xD) with

xC ≤ xD. By (2.20), using Stokes’ formula on the domain ACDB, we get∫ tB

tA

|wi(λj(u)− λi(u))(τ, ξj(τ))|dτ

≤
∫ xD

xC

|wi(0, x)|dx+

∫∫
ACDB

∣∣∣ n∑
j,k=1

Γijk(u)wjwk(t, x)
∣∣∣ dtdx. (3.22)

Then, noting (3.11), (3.18) and (2.22), we have∫ tB

tA

|wi(λj(u)− λi(u))(τ, ξj(τ))|dτ ≤ C
{
θ

∫ xD

xC

(1 + |x|)−(1+µ)dx

+ (W c
∞(T ))2

n∑
j,k=1

∫∫
(t,x)∈ (DT

j ∪DT
k )

[(1 + |x− λj(0)t|)(1 + |x− λk(0)t|)]−(1+µ)dtdx

+W c
∞(T )

n∑
j,k=1

∫∫
(t,x)∈DT

j

(t,x)∈DT
k

(1 + |x− λk(0)t|)−(1+µ)|wj(t, x)| dtdx
}
. (3.23)

Then, noting (3.3) and using Lemma 3.1, we get∫ tB

tA

|wi(τ, ξj(τ))|dτ ≤ C{θ + (W c
∞(T ))2 +W c

∞(T )W1(T )}, (3.24)

then

W̃1(T ) ≤ C{θ + (W c
∞(T ))2 +W c

∞(T )W1(T )}. (3.25)

Similarly to (3.24), for any given positive constant r, we have∫ r

−r
|wi(t, x)|dx ≤ C{θ + (W c

∞(T ))2 +W c
∞(T )W1(T )}, (3.26)
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where C is a positive constant independent of r. Taking r → +∞, we finally get

W1(T ) ≤ C{θ + (W c
∞(T ))2 +W c

∞(T )W1(T )}. (3.27)

By (3.21), (3.25) and (3.27), we can obtain (3.15) and (3.16) by means of the method in [12].

Finally, we estimate U∞(T ).

Passing through any given point (t, x) ∈ D(T ), we draw the i-th characteristic ci : ξ =

ξi(τ) (0 ≤ τ ≤ t) which intersects the x-axis at a point (0, xi0). Integrating (2.6) along ci from

0 to t gives

u(t, x) = u(0, xi0) +

∫ t

0

n∑
k=1

(λi(u)− λk(u))wkrk(u)(τ, ξi(τ))dτ. (3.28)

Then, noting (1.6) and using (3.16), we get

|u(t, x)| ≤ C{θ + W̃1(T )} ≤ Cθ, (3.29)

which leads to (3.17) immediately. In the meantime, taking θ0 > 0 suitably small, (3.29) also

implies that the hypothesis (3.11) is reasonable.

Let

U c∞(T ) = max
i=1,··· ,n

sup
(t,x)∈D(T )\DT

i

{(1 + |x− λi(0)t|)1+µ|ui(t, x)|}, (3.30)

Ũ1(T ) = max
i=1,··· ,n

max
j 6=i

sup
cj

∫
cj

|ui(t, x)|dt, (3.31)

U1(T ) = max
i=1,··· ,n

sup
0≤t≤T

∫ ∞
−∞
|ui(t, x)|dx (3.32)

and

W∞(T ) = ‖w(t, x)‖L∞(D(T )), (3.33)

where cj denotes any given j-th characteristic on D(T ), w(t, x) = (w1(t, x), · · · , wn(t, x))T .

Lemma 3.3 Suppose that in a neighbourhood of u = 0, A(u) ∈ C∞ and system (1.1) is

strictly hyperbolic. Suppose furthermore that (1.1) is not weakly linearly degenerate and (1.13)

holds. Suppose finally that the initial data (1.2) satisfy (1.6). Then, there exists θ0 > 0 so small

that for any fixed θ ∈ (0, θ0], for any given positive integer N , on any given existence domain

D(T ) of C1 solution u = u(t, x) to the Cauchy problem (1.1)-(1.2) with

TθN ≤ 1, (3.34)

we have the following uniform a priori estimates

U c∞(T ) ≤ κ4θ (3.35)

and

Ũ1(T ), U1(T ) ≤ κ5θ; (3.36)

moreover, there exists θ0 = θ0(N) > 0 so small that for any fixed θ ∈ (0, θ0], on any given

existence domain D(T ) of C1 solution u = u(t, x) to the Cauchy problem (1.1)-(1.2), where T

still satisfies (3.34), we have

W∞(T ) ≤ κ6θ, (3.37)
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where κi (i = 4, 5, 6) are positive constants independent of θ and T but possibly depending on

N .

Proof Without loss of generality, in order to prove Lemma 3.3, we assume that u =

(u1, · · · , un) are normalized coordinates.

We first estimate U c∞(T ).

Similarly to (3.19), integrating (2.7) along ci from 0 to t gives

ui(t, x) = ui(0, xi0) +

∫ t

0

n∑
j,k=1

ρijk(u)ujwk(τ, ξi(τ))dτ. (3.38)

Then, noting (1.6) and (2.8) and using Lemma 3.1, similarly to (3.20), we have

(1 + |x− λi(0)t|)1+µ|ui(t, x)|

≤ C{θ + U c∞(T )W c
∞(T ) + U c∞(T )W̃1(T ) + Ũ1(T )W c

∞(T )}. (3.39)

Hence, using Lemma 3.2 we get

U c∞(T ) ≤ Cθ{1 + U c∞(T ) + Ũ1(T )}. (3.40)

We next estimate Ũ1(T ) and U1(T ).

Similarly to (3.22), from (2.11) we have∫ tB

tA

|ui(λj(u)− λi(u))(τ, ξj(τ))|dτ

≤
∫ xD

xC

|ui(0, x)|dx+

∫∫
ACDB

∣∣∣ n∑
j,k=1

Fijk(u)ujwk(t, x)
∣∣∣ dtdx. (3.41)

Noting (1.13) and (2.15), for any given integer N ≥ 1, we have

|Fiii(uiei)| ≤ CN |ui|N , (3.42)

here and in what follows, CN denotes a positive constant possibly depending on N . Then,

noting (1.6) and (2.13) and using Hadamard’s formula and Lemmas 3.1 and 3.2, it follows from

(3.41) that ∫ tB

tA

|ui(λj(u)− λi(u))(τ, ξj(τ))|dτ

≤
∫ xD

xC

|ui(0, x)|dx+

∫∫
ACDB

[ n∑
j,k=1
j 6=k

|Fijk(u)ujwk(t, x)|

+ (|Fiii(u)− Fiii(uiei)|+ |Fiii(uiei)|)|uiwi(t, x)|
]
dtdx

≤ C{θ + U c∞(T )W c
∞(T ) + U c∞(T )W1(T ) + U1(T )W c

∞(T )

+ U c∞(T )U∞(T )W1(T )}+ CN (U∞(T ))N+1W1(T )T

≤ Cθ{1 + U c∞(T ) + U1(T )}+ CNθ
N+2T. (3.43)
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Thus, noting (3.34), we get

Ũ1(T ) ≤ Cθ{1 + U c∞(T ) + U1(T )}+ CNθ
2. (3.44)

Similarly, we have

U1(T ) ≤ Cθ{1 + U c∞(T ) + U1(T )}+ CNθ
2. (3.45)

The combination of (3.40), (3.44) and (3.45) gives (3.35) and (3.36).

We finally estimate W∞(T ).

Similarly to (3.28), according to (2.16) we have

wi(t, x) = wi(0, xi0) +

∫ t

0

n∑
j,k=1

γijk(u)wjwk(τ, ξi(τ))dτ. (3.46)

Noting (1.13) and (2.19), for any given integer N ≥ 1, we have

|γiii(uiei)| ≤ CN |ui|N . (3.47)

Then, noting (2.18) and (3.35) and using Lemmas 3.1 and 3.2, from (3.46) we have

|wi(t, x)| ≤ |wi(0, xi0)|+
∫ t

0

[ n∑
j,k=1
j 6=k

|γijk(u)wjwk(τ, ξi(τ))|

+ (|γiii(u)− γiii(uiei)|+ |γiii(uiei)|)w2
i (τ, ξi(τ))

]
dτ

≤ CN{θ + (W c
∞(T ))2 +W c

∞(T )W∞(T )

+ U c∞(T )(W∞(T ))2 + (U∞(T ))N (W∞(T ))2T}

≤ CN{θ(1 +W∞(T ) + (W∞(T ))2) + θNT (W∞(T ))2}. (3.48)

Hence, noting (3.34), we have

W∞(T ) ≤ CN{θ + (W∞(T ))2}. (3.49)

Thus, we can obtain (3.36) by means of the method in [12].

Remark 3.1 For any given i∈ J , λi(u) is weakly linearly degenerate. By (2.15) and (2.19),

we have

Fiii(uiei) ≡ 0 and γiii(uiei) ≡ 0, ∀ |ui| small. (3.50)

From the proof of Lemma 3.3, we know that there exists θ0 > 0 so small that for any fixed

θ ∈ (0, θ0], on any given existence domain D(T ) (without the restriction (3.34)) of C1 solution

u = u(t, x) to the Cauchy problem (1.1)-(1.2) satisfying (1.6), we have the following uniform a

priori estimate

|wi(t, x)| ≤ κ7θ, (3.51)

where κ7 is a positive constant independent of θ and T .
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4 Proof of the Theorems

Proof of Theorem 1.1 According to the existence and uniqueness of the local C1 solution

to the Cauchy problem (1.1)-(1.2) (see [10]), there exists τ0 > 0 such that on [0, τ0] × R, the

Cauchy problem (1.1)-(1.2) has a unique C1 solution u = u(t, x). By Lemmas 3.2 and 3.3, we

have that for any given integer N ≥ 1, there exists θ0 = θ0(N) > 0 so small that for any given

θ ∈ (0, θ0], on any given existence domain [0, T ] × R of C1 solution u = u(t, x) to the Cauchy

problem (1.1)-(1.2), where 0 < T ≤ θN , we have the following uniform a priori estimate on the

C1 norm of u = u(t, x):

‖u(t, ·)‖C1 , ‖u(t, ·)‖C0 + ‖ux(t, ·)‖C0 ≤ Cθ, ∀t ∈ [0, T ], (4.1)

where C is a positive constant independent of θ and T but possibly depending on N . By

C1 extension, we immediately get the existence and uniqueness of C1 solution u = u(t, x)

on [0, θN ] × R. Hence, the life-span T̃ (θ) of C1 solution u = u(t, x) to the Cauchy problem

(1.1)-(1.2) satisfies

T̃ (θ) > θ−N . (4.2)

Moreover, by Lemma 3.2, when C1 solution u = u(t, x) to the Cauchy problem (1.1)-(1.2)

satisfying (1.6) blows up in a finite time, u = u(t, x) itself must be bounded on [0, T̃ (θ)), hence,

the first order partial derivatives should tend to the infinity as t↗ T̃ (θ).

Proof of Theorem 1.2 Assume that (t∗, x∗) is a starting point of the blowup of C1

solution u = u(t, x) to the Cauchy problem (1.1)-(1.2). By Theorem 1.1, we have

t∗ > θ−N . (4.3)

On the other hand, we can find an integer p > N such that

t∗ < θ−p. (4.4)

For each i = 1, · · · , n, passing through any given point (t, x) with 0 ≤ t < t∗ and x ∈ R,

we draw the i-th characteristic ci : ξ = xi(τ ; yi) in which 0 ≤ τ ≤ t and yi stands for the

x-coordinate of the intersection point of this characteristic with x-axis, i.e., we have

dxi(τ ; yi)

dτ
= λi(u(τ, xi(τ ; yi))) (4.5)

and

xi(0; yi) = yi, xi(t; yi) = x. (4.6)

In what follows, we prove∣∣∣wi(t, x)
∂xi(t; yi)

∂yi

∣∣∣ ≤ Cpθ, ∀(t, x) ∈ [0, t∗)× R, (4.7)

henceforth Cp denotes a positive constant possibly depending on p.

Noting (2.4), it follows from (4.5) and (4.6) that

d

dτ

(∂xi(τ ; yi)

∂yi

)
=

n∑
k=1

∇λi(u)wkrk(τ, xi(τ ; yi))
∂xi(τ ; yi)

∂yi
(4.8)
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and
∂xi(0; yi)

∂yi
= 1. (4.9)

Hence
∂xi(t; yi)

∂yi
= exp

(∫ t

0

n∑
k=1

∇λi(u)wkrk(τ, xi(τ ; yi))dτ
)
, ∀ t ∈ [0, t∗). (4.10)

Noting (4.8), it is easy to get that

d

dτ

[
wi(τ, xi(τ ; yi))

∂xi(τ ; yi)

∂yi

]
=

n∑
j,k=1

Γijk(u)wjwk(τ, xi(τ ; yi))
∂xi(τ ; yi)

∂yi
,

where Γijk(u) is defined by (2.21). Then, noting (4.6), for any given (t, x) ∈ [0, t∗)×R, we have

wi(t, x)
∂xi(t; yi)

∂yi
= wi(0, yi) +

∫ t

0

n∑
j,k=1

Γijk(u)wjwk(τ, xi(τ ; yi))
∂xi(τ ; yi)

∂yi
dτ. (4.11)

Let

I0 = [0, θ−N ], (4.12)

I1 = [θ−N , t] ∩ {τ | 0 ≤ τ ≤ t, |wi(τ, xi(τ ; yi))| ≤ κ1θ}, (4.13)

I2 = [θ−N , t] ∩ {τ | 0 ≤ τ ≤ t, |wi(τ, xi(τ ; yi))| > κ1θ}, (4.14)

where κ1 is given in Lemma 3.2. Then, noting (2.22), (4.11) can be rewritten as

wi(t, x)
∂xi(t; yi)

∂yi
= wi(0, yi) +

∫ t

0

n∑
j=1
j 6=i

Γiji(u)wjwi(τ, xi(τ ; yi))
∂xi(τ ; yi)

∂yi
dτ

+
(∫

I0

+

∫
I1

+

∫
I2

) n∑
j,k=1
j,k 6=i

Γijk(u)wjwk(τ, xi(τ ; yi))
∂xi(τ ; yi)

∂yi
dτ

= wi(0, yi) + E + E0 + E1 + E2. (4.15)

Now we estimate every term on the right-hand side of (4.15).

Obviously

|wi(0, yi)| ≤ Cθ, ∀ yi ∈ R. (4.16)

Let

Q(t) = sup
(τ,yi)∈[0,t]×R

∣∣∣wi(τ, xi(τ ; yi))
∂xi(τ ; yi)

∂yi

∣∣∣, ∀ t ∈ [0, t∗). (4.17)

By Lemma 3.2, we get

|E| ≤ CQ(t)W̃1(t) ≤ CθQ(t). (4.18)

By Lemma 3.3, we have

|wi(τ, xi(τ ; yi))| ≤ Cθ, ∀τ ∈ I0 ∪ I1. (4.19)
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Then, noting (2.19) and (1.13) and using Lemmas 3.2 and 3.3, it follows from (4.10) that

∣∣∣∂xi(t; yi)
∂yi

∣∣∣ ≤ exp

{
C

[ ∫ t

0

( n∑
k=1
k 6=i

|wk|+ |(γiii(u)− γiii(uiei))wi|

+ |γiii(uiei)wi|
)

(τ, xi(τ ; yi))dτ

]}
≤ exp{Cp[W̃1(t) + θ(Ũ1(t) + (U∞(t))pt)]} ≤ Cp, ∀ t ∈ [0, t∗). (4.20)

Hence, using Lemmas 3.1 and 3.2 and noting (2.22), we get

|E0|+ |E1| ≤ Cp
(∫

I0

+

∫
I1

) n∑
j,k=1
j,k 6=i

|Γijk(u)wjwk(τ, xi(τ ; yi))|dτ

≤ CpW̃1(t)W c
∞(t) ≤ Cpθ2. (4.21)

We next estimate the last term.

According to Lemma 3.2, when τ ∈ I2, we have

(τ, xi(τ ; yi)) ∈ Dt
i . (4.22)

Then, using Lemmas 3.1 and 3.2 and noting the definition of I2, for any given k 6= i, we have

|wk(τ, xi(τ ; yi))| ≤ CW c
∞(τ)(1 + τ)−(1+µ) ≤ Cθ2 ≤ |wi(τ, xi(τ ; yi))|, ∀ τ ∈ I2. (4.23)

Hence, noting Lemma 3.2, we have

|E2| ≤ C
∫
I2

n∑
j=1
j 6=i

|wj(τ, xi(τ ; yi))|
∣∣∣wi(τ, xi(τ ; yi))

∂xi(τ ; yi)

∂yi

∣∣∣dτ
≤ CW̃1(t)Q(t) ≤ CθQ(t). (4.24)

Noting (4.16), (4.18), (4.21) and (4.24), it follows from (4.15) that∣∣∣wi(t, x)
∂xi(t; yi)

∂yi

∣∣∣ ≤ Cpθ + CθQ(t). (4.25)

Similarly, we have ∣∣∣wi(τ, xi(τ ; yi))
∂xi(τ ; yi)

∂yi

∣∣∣ ≤ Cpθ + CθQ(t), ∀ τ ∈ [0, t]. (4.26)

Hence, we have

Q(t) ≤ Cpθ + CθQ(t), (4.27)

which implies (4.7).

By (4.7), if

wi(t, xi(t; yi))→∞, as t→ t∗ − 0, (4.28)
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then

∂xi(t, yi)

∂yi
→ 0, as t→ t∗ − 0. (4.29)

On the other hand, by (4.10) and noting Lemma 3.2, it is easy to see that (4.29) implies (4.28).

This proves Theorem 1.2.

Proof of Theorem 1.3 For each i∈ J , by Remark 3.1, we have (3.51). Hence, by the

equivalence of (4.28) and (4.29), the family of the i-th characteristics never forms any envelope

on the domain [0, T̃ (θ)]× R.

Theorem 1.4 can be easily obtained from the second inequality of (3.16) in Lemma 3.2.
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