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Abstract

The authors give two cohomology vanishing theorems for domains, which are not
pseudoconvex, and characterize the holomorphy of domains with smooth boundaries in
separable Hilbert spaces through cohomology vanishing.
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§ 1 . Introduction

Oka [40] proved that any additive Cousin problem is solvable in a domain of holomorphy
in Cn. Oka [41]-Cartan [2, 3]-Serre [46] generalized this as the theorem B for analytic
coherent sheaves over Stein spaces. J. P. Serre [47] proved that a domain D in Cn is a
domain of holomorphy if Hp(D,O) = 0 holds for all positive integer p smaller than n,
O being the structure sheaf of D. G. Scheja [45] proved the bijectivity of the canonical
homomorphism Hp(X,F) → Hp(X − A,F) of the cohomology of a complex space X with
coefficients in an analytic coherent sheaf F in that of the complement of an analytic set A
with respect to X, when codhxF ≥ dimxA + p + 2 at each point x ∈ X. Andreotti-Grauert
[1] proved the bijectivity of the canonical homomorphism Hp(X,F) → Hp(X−Bc,F) of the
cohomology of a complex space X defined by a strongly q-pseudoconvex function ϕ with
coefficients in an analytic coherent sheaf F in that of the complement of a q-convex open
set Bc := {x ∈ X; ϕ(x) < c} for c < 0 with respect to the complex space X, when p ≤
dih(F)−q−1. J. Kajiwara [18] proved that a domain D with real 1 codimensional continuous
boundary in a Stein mainfold S is Stein, if and only if , for any analytic polycylinder P in
S, there holds H1(D ∩ P,O) = 0.

In the infinite dimensional case, S. Dineen [8] proved H1(Ω,O) = 0 for the structure
sheaf O over a pseudoconvex domain Ω in a C-linear space E equipped with the finite open
topology. So, the pseudoconvexity implies the cohomology vanishing similarly to the finite

Manuscript received December 13, 2002.
∗Graduate School of Mathematics, Kyushu University 33, Fukuoka 812-8581, Japan.
E-mail: kajiwara@math.kyushu-u.ac.jp

∗∗College of Applied Mathematics, University of Electronic Science and Technology of China, Chengdu
610054 China. E-mail: xli@uestc.edu.cn

∗∗∗Department of Mathematics, Pusan National University, Pusan 609-735, Korea.
E-mail:khshon@hyowon.pusan.ac.kr

∗∗∗∗Project supported by Korea Research Foundation Grant (KRF-2001-015-DP0015).



88 J. KAJIWARA, LI, X. D. & K. H. SHON

dimensional case. By L. Gruman [13], pseudoconvex domains are domains of holomorphy
in the locally convex space equipped with the finite open topology or in Hilbert spaces.

Kajiwara-Shon [26] proved, however, for a pseudoconvex domain Ω in the C-linear
locally convex space E equipped with the finite open topology, for an analytic subset A of Ω
and for any positive integer p ≤ codimA− 2, the cohomology vanishing Hp(Ω− A,O) = 0.
The complement A of the open set Ω−A with respect to the open set Ω has no interior point
and in case that codim = ∞ the cohomology vanishing of all positive degree p does not imply
the holomorphy of the domain. Moreover, S. Ohgai [39] proved, for any positive integers
p and q, for a pseudoconvex domain Ω in the C-linear locally space E equipped with the
finite open topology, for a strongly q-convex C∞ function ϕ on Ω and for a negative number
c, the cohomology vanishing Hp({x ∈ Ω; ϕ(x) > c},O) = 0. In this case, the complement
{x ∈ Ω; ϕ(x) ≤ c} of the open set {x ∈ Ω; ϕ(x) > c} with respect to the open set Ω may
have interior points ∈ {x ∈ Ω; ϕ(x) > c}.

So, in the infinite dimensional case, i.e. for n = ∞, the theorem of Serre [47] does not
hold and the vanishing of cohomology of all positive degree with coefficients in the structure
sheaf O of the domain Ω assures neither the pseudoconvexity nor the holomorphy of the
domain Ω.

X. D. Li [34] proved the holomorphy of a domain Ω with a continuous boundary from
the validity of Oka’s principle for intersections Ω ∩ P of the domain Ω and polydiscs P in
the C-linear locally convex space E equipped with the finite open topology.

Recently, L. Lempert [33] solved ∂̄-equations in pseudoconvex domains of spaces be-
longing to the category of Banach spaces, which are equipped with Schauder basis and satisfy
his hypothesis (X), and gave cohomology vanishing theorems for pseudoconvex domains in
those Banach spaces. The Banach space `p belongs to the above category of Banach spaces
for p ≥ 1.

The aim of the present paper is to establish two cohomology vanishing theorems of
types Scheja and Andreotti-Grauert and to derive the holomorphy, i.e., the pseudoconvexity
of a domain Ω from the cohomology vanishing H1(Ω∩P ) = 0 for any pseudoconvex domain
P in the separable Hilbert space, which is isomorphic with `2 and is contained in the above
category of Lempert.

§ 2 . Theorem of Scheja’s Type

Let E be a C-linear Hausdorff space and Λ be the set of finite dimensional affine
subspaces of E. A complex valued function h on an open subset D of E is said to be Gâtaux
holomorphic if, for any Sf ∈ Λ, the restriction of h to D ∩ Sf is holomorphic on the open
subset D ∩ Sf of the finite dimensional space Sf . A complex valued Gâtaux holomorphic
function h on an open subset D of E is said to be holomorphic if h is continuous on D.
The sheaf O of germs of holomorphic functions over E is called the structure sheaf of E.
An open subset D of E is said to be pseudoconvex if, for any Sf ∈ Λ, the intersection
D

⋂
Sf is a pseudoconvex open set of the finite dimensional complex space Sf . By Ph.

Noverraz [37], the above definition of pseudoconvexity is equivalent to several definitions of
the pseudoconvexity.

We extend the theorem of G. Scheja [45] to a separable Hilbert space in the following
theorem for the structure sheaf.

Theorem 2.1. Let S a separable Hilbert space, Ω be a pseudoconvex domain in S,
O be the sheaf of germs of holomorphic functions over Ω and A be an analytic subset of
Ω. Assume that there exists a positive integer n0 such that in any finite dimensional affine
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subspace Sf , with dimension not smaller than n0, the codimension of A ∩ Sf is larger than
2 at each point of A ∩ Sf . Then, there holds H1(Ω−A,O) = 0.

Proof. Convex open coverings are cofinal between open coverings of the locally convex
open set Ω−A. So, let U := {Ui; i ∈ I} be an open covering of Ω−A such that each Ui is an
open convex set in Ω−A and {fij ; i, j ∈ I} be a 1-cocycle of the covering U with coefficients
in the structure sheaf O. Since each Ui is pseudoconconvex, for any positive integer µ and
non negative integer s with s ≤ µ− 1 and for each i0, i1, · · · , is ∈ I, we have

Hµ(Ui0 ∩ Ui1 ∩ · · · ∩ Uis ,O) = 0

by [33]. So, U is a Leray covering of Ω−A and, by Lemma Lp of [45], we have

H1(U ,O) = H1(Ω−A,O).

To begin with finite n pieces of orthonormal vectors of S, which span the affine subspace
Sf , we put them in the opening of a complete orthonormal basis of S, we regard S as the
space `2 of sequences z = (z1, z2, · · · , zk, · · · ) of complex numbers zk which satisfy

‖z‖ :=

√√√√
∞∑

k=1

|zk|2 < +∞,

regard Cn as its subspace

{z = (z1, z2, · · · , zn, · · · ) ∈ `2; zk = 0 (k > n)}

and regard Sf as an affine subspace of Cn. Without loss of generality, we may assume that
Sf = Cn.

Now, we put Ωn := Ω ∩Cn and Un := {Ui ∩Cn; i ∈ I}. Let On be the sheaf of germs
of holomorphic functions over Ωn and dn(z) be the distance between a point z ∈ Ωn and
the boundary ∂Ωn. Since we have

H1(Un,On) = H1(Ωn −A,On) = 0 for n ≥ n0

by [45], for any i ∈ I, there exist holomorphic functions fi,n0 on Ui,n0 and gi,n0+1 on Ui,n0+1

such that we have

fij = fj,n0 − fi,n0 on each Ui,n0 ∩ Uj,n0 ,

fij = gj,n0+1 − gi,n0+1 on each Ui,n0+1 ∩ Uj,n0+1.

Put fn0 := fi,n0 − gi,n0+1 on Ui,n0 . Then fn0 is a well-defined holomorphic function on Ωn0 .
For any positive integer n with n ≥ n0, we put

Ωn := {z = (zν) ∈ Ω; zν = 0(ν > n)},

Kn :=
{

z ∈ Ωn;− log dn(z) + log |zn| ≤ −1,

n∑
µ=1

|zµ|2 ≤ n2,− log dn(z) ≤ log n
}

. (2.1)

Following the method of L. Gruman [13], which proved that a pseudoconvex domain in
S is a domain of holomorphy in S, we use a solution vn0+1 with L2 estimate of a ∂̄-equation
∂̄vn0+1 = z−2

n0+1∂̄φn0+1 ∧ fn0 ◦ πn0+1 for the canonical projection πn0+1(z1, z2, · · · , zn0+1) =
(z1, z2, · · · , zn0) and for a real valued function φn0+1 of class C∞ on Ωn0+1, which takes the
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value 1 in a neighborhood in Ωn0+1 of the union of the compact set Kn0+1 and the subset
Ωn0 of Ωn0+1 and the value 0 in a neighborhood of the subset Ωn0+1−π−1

n0+1(Ωn0) of Ωn0+1,
and we construct a holomorphic function

fn0+1 := φn0+1fn0 ◦ πn0+1 − z2
n0+1vn0+1 on Ωn0+1,

which is a revision of C∞ extension φn0+1fn0 ◦πn0+1 to Ωn0+1 of the preceding holomorphic
function fn0 on Ωn0 by ∂̄-analysis of Hörmander [16] and satisfies

|fn0 ◦ πn0+1(z1, z2, · · · , zn0+1)− fn0+1(z1, z2, · · · , zn0+1)| ≤ |zn0+1|2 (2.2)

for (z1, z2, · · · , zn0+1) ∈ Kn0+1 ∩ π−1
n0+1(Ωn0). We revise the cochain {gi,n0+1; i ∈ I} ∈

Z0(Un0+1,On0+1), as {fi,n0+1; i ∈ I} ∈ Z0(Un0+1,On0+1) by putting fi,n0+1 := gi,n0+1 +
fn0+1 on Ui,n0+1 for each i ∈ I. Then, the revised cochain {fi,n0+1; i ∈ I} satisfies

|fi,n0 ◦ πn0+1(z1, z2, · · · , zn0+1)− fi,n0+1(z1, z2, · · · , zn0+1)| ≤ |zn0+1|2 (2.3)

at each point (z1, z2, · · · , zn0+1) ∈ Ui,n0+1∩Kn0+1∩π−1
n0+1(Ωn0) for any i ∈ I, the majoration

|zn0+1|2 being independent of i ∈ I.
Now, as an assumption of induction with respect to n ≥ n0, we assume that there exists

a sequence {{fi,m; i ∈ I}; m = n0+1, n0+2, · · · , n} of 0-cochains {fi,m; i ∈ I} ∈ C0(Um,Om)
such that we have fij = fj,m − fi,m on each Ui,m ∩ Uj,m and the preceding 0-cochain
{fi,m; i ∈ I} and the rear 0-cochain {fi,m+1; i ∈ I} satisfy the inequality

|fi,m ◦ πm+1(z1, z2, · · · , zm+1)− fi,m+1(z1, z2, · · · , zm+1)| ≤ |zm+1|2 (2.4)

at each point (z1, z2, · · · , zm+1) ∈ Ui,m+1 ∩Km+1 ∩ π−1
m+1(Ωm) for any i ∈ I.

Since we have
H1(Un+1,On+1) = H1(Ωn+1 −A,On+1) = 0

by [45], for any i ∈ I, there exist holomorphic functions gi,n+1 on Ui,n+1 such that we have

fij = gj,n+1 − gi,n+1 on Ui,n0+1 ∩ Uj,n0+1.

Put fn := fi,n − gi,n+1 on Ui,n. Then fn is a well-defined holomorphic function on Ωn.
Again, following the method of L. Gruman [13], we use a solution vn+1 with L2

estimate of a ∂̄-equation ∂̄vn+1 = z−2
n+1∂̄φn+1 ∧ fn ◦ πn+1 for the canonical projection

πn+1(z1, z2, · · · , zn+1) = (z1, z2, · · · , zn) and for a real valued function φn of class C∞ on
Ωn+1, which takes the value 1 in a neighborhood in Ωn+1 of the union of the compact
set Kn+1 and the subset Ωn of Ωn+1 and the value 0 in a neighborhood of the subset
Ωn+1 − π−1

n+1(Ωn) of Ωn+1, and we construct a holomorphic function

fn+1 := φn+1fn ◦ πn+1 − z2
n+1vn+1 on Ωn+1,

which is a revision of C∞ extension φn+1fn ◦ πn+1 to Ωn+1 of the preceding holomorphic
function fn on Ωn by ∂̄-analysis of Hörmander [16], and satisfies

|fn ◦ πn+1(z1, z2, · · · , zn+1)− fn+1(z1, z2, · · · , zn+1)| ≤ |zn+1|2 (2.5)

at each point (z1, z2, · · · , zn+1) ∈ Kn+1 ∩ π−1
n (Ωn). We revise the cochain {gi,n+1; i ∈ I} ∈

Z0(Un+1,On+1), as {fi,n+1; i ∈ I} ∈ Z0(Un+1,On+1) by putting fi,n+1 := gi,n+1 + fn+1 on
Ui,n+1 for each i ∈ I. Then, the revised cochain {fi,n+1; i ∈ I} ∈ C0(Un+1,On+1) satisfies

|fi,n ◦ π(z1, z2, · · · , zn+1)− fi,n+1(z1, z2, · · · , zn+1)| ≤ |zn+1|2 (2.6)
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at each point (z1, z2, · · · , zn+1) ∈ Ui,n+1 ∩Kn+1 ∩ π−1
n+1(Ωn) for any i ∈ I, the majoration

|zn+1|2 being independent of i ∈ I.
Thus, by induction, we have constructed a sequence {{fi,m; i ∈ I};m = n0 + 1, n0 +

2, · · · , n, · · · } of 0-cochains {fi,m; i ∈ I} ∈ C0(Um,Om) such that fij = fj,m − fi,m on each
Ui,m ∩Uj,m and the preceding 0-cochain {fi,m; i ∈ I} and the rear 0-cochain {fi,m+1; i ∈ I}
satisfies the inequality (2.4). Then, for each i ∈ I, the sequence {{fi,n; i ∈ I}; n ≥ n0} of
holomorphic functions fi,n on Ui,n converges to a holomorphic function fi(z) on Ui and the
0-cochain {fi,n; i ∈ I} satisfies fij = fj − fi on each Ui.

§ 3 . Theorem of Type of Andreotti-Grauert

Let E be a C-linear Hausdorff space and O be its structure sheaf. Let D be a domain
of E. A real valued C∞ function ϕ on D is said to be strongly q-convex if there exists
a positive integer n0 such that, for any integer n with n ≥ n0 and for any n-dimensional
C-linear subspace Sf of E, the Levi form of the restriction ϕ|D ∩ Sf of the function ϕ to
the n-dimensional open set D ∩ Sf has at least n − q + 1 pieces of positive eigenvalues at
every point of D ∩ Sf .

Theorem 3.1. Let Ω be a pseudoconvex domain in a separable Hilbert space S, O
be its structure sheaf, q be a positive integer and ϕ be a strongly q-convex function on Ω
such that, for positive numbers c1 and c2 with c1 < c2, and for any finite dimensional affine
subspace Sf of S, the set {z ∈ Ω ∩ Sf ; c1 < ϕ(z) < c2} is relatively compact in Ω ∩ Sf . Let
c be a negative number. We put Y := {z ∈ Ω; ϕ(z) > c}. Then we have

H1(Y,O) = 0. (3.1)

Proof. Taking a complete orthonormal basis of S, we may assume that the separable
Hilbert space S is the space of square summable sequences z := (z1, z2, · · · , zn, · · · ) of
complex numbers zn with the norm

‖z‖ :=

√√√√
∞∑

n=1

|zn|2

as in the preceding section. For any positive integer n, we regard the complex space Cn as
the n-dimensional subspace

{z = (z1, z2, · · · , zn, · · · ) ∈ S; zk = 0 (k > n)}
and we put Ωn := Ω ∩ Cn. Under these notations, by the assumption of the existence of
the strongly q-convex function ϕ on Ω, there exists a positive integer n0 such that, for any
integer n ≥ n0, the Levi form of ϕ has at least n − q + 1 pieces of positive eigenvalues at
each point of Ωn.

Let U = {Ui; i ∈ I} be an open covering of Ω such that each open set Ui is convex.
Then, for any positive integer p and any integer r with 0 ≤ r ≤ p − 1 by L. Lempert [33],
we have

Hp−r(Ui0 ∩ Ui1 ∩ · · · ∩ Uir ,O) = 0

for the pseudoconvex domain Ui0 ∩ Ui1 ∩ · · · ∩ Uir of the separable Hilbert space S ∼= `2.
Then, the cannonical homomorphism Hp(U ,O) → Hp(Ω,O) is bijective by Lemma Lp of G.
Scheja [45], in other words, U is a Leray covering of Ω. So, it suffices to prove the vanishing
Hp(U ,O) = 0 of cohomology of the covering U with coefficients in the structure sheaf O.
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Let {fij ; i, j ∈ I} be an element of Z1(U ,O), i.e., a 1-cocycle of the covering U with
coefficients in the structure sheaf O. For any positive integer n, we put Ui,n := Ui ∩ Cn

for each i ∈ I and Un = {Ui,n; i ∈ I}. We prove by induction with respect to an integer
n ≥ n0 a proposition Pn which asserts that there exists a sequence {{fi,m; i ∈ I}; m =
n0 + 1, n0 + 2, · · · , n} of {fi,m; i ∈ I} ∈ C0(Um,Om) such that, for any integer m with
n0 ≤ m ≤ n, the restriction {fij,m; i, j ∈ I} of the 1-cocycle {fij ; i, j ∈ I} to the covering
Um := {Ui ∩Cm; i ∈ I} is the coboundary of a 0-cochain {fi,m; i ∈ I} of the covering Um

and that, for any m < n, each rear {fi,m+1; i ∈ I} ∈ C0(Um+1,Om+1) is an extension of
the preceding {fi,m; i ∈ I} ∈ C0(Um,Om) satisfying (2.4) at each point (z1, z2, · · · , zm+1) ∈
Ui,m+1 ∩Km+1 ∩ π−1

m+1(Ωm) for any i ∈ I.
We assume the validity of the proposition Pn and prove the validity of the rear propo-

sition Pn+1. Since the Levi form of the restriction of the function ϕ to Ωn+1 has at least
n+1− q +1 pieces of positive eigenvalues at every point of Ωn+1, we have n+1− q +1 ≥ 1,
i.e., 1 ≤ dih(On+1)− q + 1. By [1], we have the isomorphism

Hp(Ωn+1,On+1) ∼= Hp(Ωn+1 ∩ Y,On+1). (3.2)

Since the pseudoconvex covering Un+1 is a Leray covering from Lemma Lp of G. Scheja [45]
by the theorem B of Oka [41]-Cartan [2, 3]-Serre [46], we have the cohomology vanishing

H1(Ωn+1,On+1) = 0.

Hence the 1-cocycle {fij,n+1} ∈ Z1(Un+1,On+1) ∼= Bp(Un+1,On+1) is the coboundary of a
0-cochain {gi,n+1; i ∈ I} of the covering Un+1, i.e., there holds

fij,n+1 = gj,n+1 − gi,n+1 on each Uij,n+1 := Ui ∩ Uj ∩Cn+1.

The preceding function fi,n is holomorphic in Ui,n := Ui ∩Cn. We put fn := fi,n − gi,n+1

on Ui,n. Then fn is a well-defined holomorphic function on Y ∩ Ωn. Since we have the
isomorphism

H0(Ωn,On) ∼= H0(Y ∩ Ωn,On)

by [1], fn is holomorphically continued to a holomorphic function on Y ∩ Cn, which is
denoted by the same symbol fn. Now, under the same notations in the proof of the preceding
theorem, we extend the holomorphic function fn to a holomorphic function fn+1 following
the method of L. Gruman [13] and using ∂̄-analysis of Hörmander [16], so we have

|fn ◦ π(z1, z2, · · · , zn+1)− fn+1(z1, z2, · · · , zn+1)| ≤ |zn+1|2 (3.3)

at each point (z1, z2, · · · , zn+1) ∈ Kn+1 ∩ π−1
n+1(Ωn). We revise the cochain {gi,n+1; i ∈ I} ∈

C0(Un+1,On+1) as {fi,n+1; i ∈ I} ∈ Z0(Un+1,On+1) by putting fi,n+1 := gi,n+1 + fn+1 on
Ui,n+1 for each i ∈ I. Then, the revised cochain {fi,n+1; i ∈ I} satisfies

|fi,n ◦ π(z1, z2, · · · , zn+1)− fi,n+1(z1, z2, · · · , zn+1)| ≤ |zn+1|2 (3.4)

at each point (z1, z2, · · · , zn+1) ∈ Un+1 ∩ Kn+1 ∩ π−1
n+1(Ωn) for any i ∈ I, the majoration

|zn+1|2 being independent of i ∈ I.
Thus, we have proved the proposition Pn for any integer n ≥ n0 and we have con-

structed a sequence {{fi,m; i ∈ I};m = n0 + 1, n0 + 2, · · · , n, · · · } of 0-cochains {fi,m; i ∈
I} ∈ C0(Um,Om) such that fij = fj,m − fi,m on each Uij,m and the preceding 0-cochain
{fi,m; i ∈ I} and the rear 0-cochain {fi,m+1; i ∈ I} satisfy the inequality (2.4). Since our

space is equipped with the norm

√
∞∑

k=1

|zk|2, the sequence {fi,n; n ≥ n0} converges to a

holomorphic function fi(z) on each Ui. And the coboundary of the 0-cochain {fi; i ∈ I} ∈
C0(U ,O) is the 1-cocycle {fij ; i, j ∈ I} ∈ Z1(U ,O).
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§ 4 . Characterization of Holomorphy of Domain

Let E be a C-linear Hausdorff space and D be a domain of E. The boundary of D
is said to be smooth, if, for any boudary point x of D, there exist an open neighborhood
U of x in E and a real valued function β of class C1 on U such that dβ 6= 0 at x and that
D ∩ U = {x ∈ U ;β(x) < 0}.

Theorem 4.1. Let S be a separable Hilbert space and Ω be a domain with smooth
boundary in the space S. Then Ω is a domain of holomorphy if and only if, for any pseudo-
convex domain P in S, we have H1(Ω ∩ P,O) = 0.

Proof. Firstly, we prove that the domain Ω is a domain of holomorphy in the Hilbert
space S. Let Sf be any finite dimensional affine subspace of S. Taking a suitable complete
orthonormal basis of the separable Hilbert space S as in the proof of Theorem 2.1, we can
identify S with the space `2 of sequences z = (z1, z2, · · · , zk, · · · ) of complex numbers zk

such that

‖z‖ :=

√√√√
∞∑

k=1

|zk|2 < ∞

and regard Cn as its subspace

{z = (z1, z2, · · · , zk, · · · ) ∈ `2; zk = 0 (k > n)}
and regard Sf as an affine subspace of Cn. Without loss of generality, we may assume that
Sf = Cn.

Let ρn : S ∼= `2 → Cn be the projection defined by

ρn(z1, z2, · · · , zn, zn+1, · · · ) = (z1, z2, · · · , zn) ∈ Cn. (4.1)

We put Ωn := Ω∩Cn. Let Qn be a pseudoconvex domain in Cn. Let z(0,n) := (z(0)
1 , z

(0)
2 , · · · ,

z
(0)
n ) ∈ Cn be a boundary point of Ωn in Qn. We put z(0) := (z(0)

1 , z
(0)
2 , · · · , z

(0)
n , 0, 0, · · · ).

Then, z(0) is also a boundary point of the domain Ω in S ∼= `2. There exist an open
neighborhood U of z(0) in S and a real valued function β of class C1 on U such that U is
contained in ρ−1

n (Qn), that dβ 6= 0 at z(0) and that Ω ∩ U = {x ∈ U ; β(x) < 0}. There
exists a positive integer j such that either ∂β/∂xj 6= 0 at z(0) for the real part xj of zj or
∂β/∂yj 6= 0 at z(0) for the imaginary part yj of zj . In the latter case, we replace zj by izj .
Moreover, we exchange zj and z1 and replace U by a closer neighborhood of z(0). We may
assume j < n. Thus, without loss of generality, we may assume that Sf = Cn and that
there exists a real valued function g(y1, z2, z3, · · · ) of class C1 on a neighborhood V , which
is a subset of U and is the ball of radius 3r0 centered by z(0), of the boundary point z(0) of
S so as there holds

Ω ∩ V = {z = (z1, z2, z3, · · · ) ∈ V ; x1 < g(y1, z2, z3, · · · )}. (4.2)

Let B be the ball of radius 2r0 centered by z(0). We put Bn := ρn(B) and will show that
Ωn ∩Bn is regular in the sense of [18], i.e., intersections of Ωn and polycylinders in Cn are
Cousin-I. In order to do so, for the given arbitrary pseudoconvex domain Qn in Cn, we will
prove H1(Ωn ∩Bn ∩Qn,On) = 0.

For any non negative number t smaller than 1/2, we denote by Tt and Tt,n the trans-
lations

Tt(z1, z2, · · · , zn, zn+1, · · · ) = (z1 + r0t, z2, · · · , zn, zn+1, · · · ), (4.3)
Tt,n(z1, z2, · · · , zn) = (z1 + r0t, z2, · · · , zn) (4.4)
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and put

Pt :=
{

(z1, z2, · · · ) ∈ S;
∞∑

k=1

|zk − z
(0)
k |2 < 4(1− t)2r2

0

}
, (4.5)

Pt,n :=
{

(z1, z2, · · · , zn) ∈ Cn;
n∑

k=1

|zk − z
(0)
k |2 < 4(1− t)2r2

0

}
, (4.6)

Et := T−1
t (Ω ∩B ∩ ρ−1

n (Qn) ∩ Pt), (4.7)

Et,n := T−1
t,n (Ωn ∩Bn ∩Qn ∩ Pt,n). (4.8)

Then, for any positive number t smaller than 1/2, Et,n is a relatively compact open
subset of E0,n = Ωn ∩Bn ∩Qn = Ωn ∩Bn.

Now, let Un := {Ui,n; i ∈ I} be any pseudoconvex covering of E0,n and {fij,n; i, j ∈ I}
be any 1-cocycle of the covering Un with coefficients in the structure sheaf On of Sf , which
is regarded as Cn. Since the n-dimensional subset Et,n is relatively compact in the infinite
dimensional open set Ω ∩B in S for any positive number t smaller than 1/2, there exists a
positive number τ such that, for the open convex set

Wt =
{

z = (z1, z2, z3, · · · ) ∈ S;
∞∑

k=n+1

|zk|2 < τ2
}

(4.9)

in S, for any positive number t smaller than 1/2, ρ−1
n (Et,n)∩Wt is contained in Ω∩B. We

put Ut,i := ρ−1
n (Ui,n) ∩ Et ∩ Wt. Then, Ut := {Ut,i; i ∈ I} is a pseudoconvex covering of

Et ∩Wt. For any i, j ∈ I, each function fij,n ◦ ρn is holomorphic in Ut,i ∩ Ut,j ∩ Et ∩Wt.
Since Tt maps Et ∩Wt biholomorphically onto Ω ∩ B ∩ ρ−1(Qn) ∩ Pt ∩Wt and there

holds
H1(Ω ∩B ∩ ρ−1(Qn) ∩ Pt ∩Wt,O) = 0

for the intersection of Ω and the pseudoconvex open set B ∩ ρ−1(Qn) ∩ Pt ∩ Wt by the
assumption of our theorem, we have

H1(Et ∩Wt,O) ∼= H1(Ω ∩B ∩ ρ−1(Qn) ∩ Pt ∩Wt,O) = 0.

Since the canonical homomorphism H1(Ut,O) → H1(Et ∩Wt,O) is injective by Lemma L0

of [45], the 1-cocycle {fij,n ◦ ρn|Ut,i∩Ut,j∩Et∩Wt ; i, j ∈ I} of the covering Ut is a coboundary.
Hence, there exists a 0-cochain {ft,i; i ∈ I} ∈ C0(Ut,O) such that fij,n ◦ ρn = ft,j − ft,i on
Ut,i ∩ Ut,j ∩ Et ∩Wt for any i, j ∈ I. For any i ∈ I and any positive number t smaller than
1/2, we put Ut,i,n := Ui,n ∩Et,n. Then, Ut,n := {Ut,i,n; i ∈ I} is a pseudoconvex covering of
Et∩Wt. For any i ∈ I and any positive number t smaller than 1/2, let ft,i,n be the restriction
of ft,i to Ut,i,n. Then, the coboundary of the 0-cochain {ft,i,n; i ∈ I} ∈ C0(Ut,n,On)
is the 1-cocycle {ft,ij |Ut,i,n∩Et} ∈ Z1(Ut,n,On), which is the restriction of the 1-cocycle
{fij,n; i, j ∈ I} ∈ Z1(Un,On).

Now, we take a sequence {t(ν); ν = 1, 2, 3, · · · } of positive numbers t(ν) smaller than
1/2 such that t(ν) > t(ν + 1) for ν = 1, 2, 3, · · · , t(ν) → 0 as ν →∞ and that the preceding
open set Et(ν),n is relatively compact in the rear open set Et(ν+1),n. Since the canonical
homomorphism

H1(E0,n,On) → lim
ν→∞

H1(Et(ν),n,On) (4.10)

is injective by Lemma 6 of [19], the 1-cocycle {fij,n; i, j ∈ I} is a coboundary. Thus, we
have proved H1(Ωn ∩ Bn ∩ Qn,On) = 0. As stated above, by [18], Ωn ∩ Bn is a domain
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of holomorphy in Cn. Hence, the open set Ωn is Cartan-pseudoconvex in the finite n-
dimensional complex space Cn. And, by [37], Ω is pseudoconvex in the infinite dimensional
Hilbert space S. Lastly, by [13], Ω is a domain of holomorphy in the Hilbert space S.

Finally, we prove that the cohomology vanishes. For any pseudoconvex domain P in
S, the intersection Ω ∩ P of the pseudoconvex domain Ω and the pseudoconve domain B is
also pseudoconvex. So, we have H1(Ω ∩ P,O) = 0 by [30].
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