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Abstract

This paper studies the existence of positive solutions of the Dirichlet problem for
the nonlinear equation involving p-Laplacian operator: −∆pu = λf(u) on a bounded
smooth domain Ω in Rn. The authors extend part of the Crandall-Rabinowitz bifurca-
tion theory to this problem. Typical examples are checked in detail and multiplicity of
the solutions are illustrated. Then the stability for the associated parabolic equation
is considered and a Fujita-type result is presented.
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§ 1 . Introduction

In this work we are mainly concerned with the positive solutions of the following
boundary value problem of nonlinear p-Laplacian equations

{
−∆pu = λf(u) in Ω,

u = 0 on ∂Ω,
(Eλ)

where Ω is a bounded smooth domain in Rn, p > 1, λ > 0, and f(z) ∈ C(R) is nonnegative,
nondecreasing. In certain physical settings f(u) = eu, and in some others f(u) = uα or
f(u) = (1 + u)α with α ≥ 0. The more general case, e.g. (1.1) below, can be treated in the
same way. Here we want to point out that in our study of (Eλ), we often assume f(0) 6= 0,
except when it is expressed explicitly. So our non-negative solution of (Eλ) obtained is
non-trivial. We also investigate the stability of solutions of the parabolic counterparts of
(Eλ): 




vt −∆pv = λf(v) in Ω× (0, T ),
v = 0 on ∂Ω× (0, T ),
v = v0(x) on Ω× {0},

(Pλ)

and establish a new Fujita type result for (Pλ).
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The motivation of this paper is to extend the famous Crandall-Rabinowitz bifurcation
theory [7] for the Dirichlet problem of semi-linear elliptic partial differential equations to
nonlinear elliptic equations involving the p-Laplacian operator. To be precise, we mention
the following equation

−∆pu = λV (x)eu in Ω, (1.1)

where V is a given positive, bounded, smooth function on Ω. If p = 2 and n = 2, the
problem above was treated by T. Suzuki [22], H. Brezis and L. Merle [2]. In [1], the authors
studied (1.1) with p = n. There have been a lot of works on nonlinear equations with
p-Laplacian operator, even in the one-dimensional cases [19]. One may see [8] for more ref-
erences. When p = 2, the equation (1.1) is usually called Emden-Fowler equation [15], and
its study attracts attention of many mathematicians and scientists. See [3] and [16] for the
physical background. As mentioned in [4], such equations also appear as generalized models
in population dynamics. Our equation is a generalized Emden-Fowler equation. The main
difficulties in our case are due to the degeneracy and the nonlinearity of the p-Laplacian op-
erator. Although we have not completely succeeded in establishing the Crandall-Rabinowitz
theory for (1.1), we do obtain some good results, which should be very useful for future
study. On the other hand, many people studied the uniqueness and multiplicity of solutions
of nonlinear equations with the p-Laplacian operator. See the works of Pucci and Serrin
[20, 21], Dang, Schmitt and Shivaji [9], De Coster [5], and others [6, 11, 13, 14]. In this di-
recton we will check up typical examples, exhibit multiple solutions, and establish a stability
result of Fujita type. It is worthwhile to note that our result is different from Fujita’s result
[12], and of some new feature even in the case p = 2. Our main results are Theorem 3.1,
Theorem 4.1, and Theorem 5.1.

The rest of the paper is organized as follows. In Section 2, we introduce some basic
concepts and lemmas. Then, in Section 3, we derive a priori L∞-estimates for the approx-
imation solutions, and then extend part of the Crandall-Rabinowitz theory to the problem
(Eλ). In Section 4, we present some concrete examples to exhibit the multiple solutions.
An elementary and direct calculation shows not only the multiplicity, but also the exact
number of the solutions, which will be used in the next section. The final section is devoted
to establishing a stability result of Fujita type for the parabolic counterparts of problem
(Eλ).

§ 2 . Preliminaries

First of all, we recall the notion of solutions.

Definition 2.1. A function u ∈ W 1,p(Ω) is called a super-solution of the problem if
−∆pu ≥ λf(u) in D′(Ω), and u ≥ 0 on ∂Ω in the trace sense. For convenience, we also
write it as {

−∆pu ≥ λf(u) in Ω,

u ≥ 0 on ∂Ω.

The sub-solution is defined in the similar way except the inequalities are reversed. u is called
a solution if it is both a super- and sub-solution.

Throughout this work only positive solutions are concerned.
The following existence result is known even in much more general case, see e.g. [17].

For completeness, we sketch the argument, which will be used in the next section.
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Lemma 2.1. If the problem (Eλ) has a bounded, positive super-solution, say U ∈
W 1,p(Ω) ∩ L∞(Ω), then there exists at least a bounded, positive solution u ≤ U .

Proof. We construct a sequence of approximate solutions as follows: Set u0 = U ; and
by induction, for every positive integer k define u = uk+1 ∈ W 1,p

0 (Ω) as the unique solution
of the following problem {

−∆pu = λf(uk) in Ω,

u = 0 on ∂Ω.
(2.1)

Then from the maximum principle we see that {uk} is a sequence of nonnegative functions,
and non-increasing in k. Consequently, u(x) := lim

k→∞
uk(x) exists on Ω. It is not hard to

verify (see the argument in the next section) that u is a solution of (Eλ), and u ≤ U .

Remark 2.1. The above conclusion also applies to the case f = f(x, u), provided that
f(x, u) is continuous in (x, u), and nondecreasing in u.

Throughout this paper we denote

λ∗ = λ∗(Ω) := sup{λ > 0 : The problem (Eλ) admits solutions}.
Lemma 2.2. If the problem (Eλ) has a bounded super-solution, then λ∗ ≥ λ.

Lemma 2.3. The problem (Eλ) admits solutions for all λ ∈ [0, λ∗) if λ∗ ≥ 0.

Proof. In fact, if λ > λ′, then a solution of the problem (Eλ) must be a super-solution
of the problem (Eλ′).

Lemma 2.4. If both Ω1 and Ω2 are bounded smooth domains, and Ω1 ⊃ Ω2, then
λ∗(Ω1) ≤ λ∗(Ω2).

Proof. It suffices to note that a solution of the problem with Ω = Ω1 must be a
super-solution of the problem on Ω2.

§ 3 . Existence of Solutions

In order to establish the existence of solutions, we utilize a similar iteration scheme
as above, except now u0 ∈ L∞(Ω) not necessarily to be a super-solution: For any positive
integer k, suppose uk ∈ W 1,p

0 (Ω) ∩ L∞(Ω) is known and let u = uk+1 ∈ W 1,p
0 (Ω) be the

solution of the problem (2.1). To guarantee the iteration process available, an L∞-estimate
is necessary. Define

X(M) := {v ∈ W 1,p
0 (Ω) : 0 ≤ v ≤ M a.e. }

with M > 0. By induction we assume that uk ∈ X(M) with some M > 0, and we will prove
that u = uk+1 ∈ X(M) if λ > 0 is small enough.

Proposition 3.1. For any M > 0, there exists λ(M) > 0 such that if λ ∈ [0, λ(M)]
and uk ∈ X(M), then u = uk+1 ∈ X(M), i.e. 0 ≤ u ≤ M a.e.

It should be noted that the sequence {uk}, different from that in the proof of Lemma
2.1, is not necessarily monotone. In fact, this estimate does not rely on the monotonicity
property of f(z), and no growth restriction on it is imposed either.

Proof. For any s ≥ 0, we have
∫

Ω

|∇(u− s)+|pdx = λ

∫

Ω

f(v)(u− s)+dx ≤ λf(M)
∫

Ω

(u− s)+dx. (3.1)
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Now we consider three cases: p < n, p = n, or p > n, separately.
In the case p < n, by the Hölder inequality and the Sobolev imbedding theorem, we

get from (3.1) that
∫

Ω

(u− s)+dx ≤ A
1− 1

p∗
s

( ∫

Ω

|(u− s)+|p∗dx
) 1

p∗

≤ A
1− 1

p∗
s β

( ∫

Ω

|∇(u− s)+|pdx
) 1

p

≤ A
1− 1

p∗
s β

(
λf(M)

∫

Ω

(u− s)+dx
) 1

p

,

where p∗ = np/(n − p), As = |Ω ∩ {u > s}|, β is the Sobolev’s imbedding constant. This
leads to ∫

Ω

(u− s)+dx ≤ A1+δ
s (βpλf(M))

1
p−1

with δ = p/[(p − 1)n] > 0. On the other hand, for any r > s, denoting again Ar = |Ω∩
{u > r}|, we have

Ar(r − s) ≤
∫

Ω

(u− s)+dx,

and hence
Ar ≤ 1

r − s
(βpλf(M))

1
p−1 A1+δ

s . (3.2)

Now for arbitrary θ ∈ (0, 1), we set sk = M(1− θk), k = 0, 1, 2, · · · , and define

Yk := Ask
= |Ω ∩ {u > sk}|.

Then by the induction inequality (3.2) we have

Yk+1 ≤ [βpλf(M)]
1

p−1

M(1− θ)θk
Y 1+δ

k .

By the fast geometric convergence lemma (Lemma 4.1 in [10]), lim
k→∞

Yk = 0 follows from

Y0 ≤
[ M(1− θ)
(βpλf(M))1/(p−1)

]1/δ

θ1/δ2
.

Setting

λ(M) =
(1− θ)p−1θ(p−1)/δMp−1

βp|Ω|p/nf(M)
,

we see that if λ ∈ [0, λ(M)], then

Y0 ≤ |Ω| =
[ M(1− θ)

(βpλ(M)f(M))
1

p−1

]1/δ

θ1/δ2 ≤
[ M(1− θ)

(βpλf(M))
1

p−1

]1/δ

θ1/δ2
,

and therefore, Yk → 0 as k →∞, that is, u ≤ M a.e. in Ω.
If p = n, we replace p∗ by any q > n in the above argument, and obtain the same

conclusion with

λ(M) =
(1− θ)n−1θ(n−1)/δMn−1

βn|Ω|f(M)
, δ =

q − n

(n− 1)q
,
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where β = β(q) is the Sobolev’s constant of imbedding W 1,n
0 (Ω) → Lq(Ω), namely,

‖u‖Lq(Ω) ≤ β|Ω| 1q ‖∇u‖Ln(Ω).

In the case p > n, by the imbedding theorem, we get from (3.1) that

‖u‖L∞(Ω) ≤ β|Ω| 1n− 1
p ‖∇u‖Lp(Ω) ≤ β|Ω| 1n− 1

p (λf(M)|Ω|) 1
p ‖u‖

1
p

L∞(Ω),

and thus
‖u‖L∞(Ω) ≤ (βpλ|Ω| p

n f(M))
1

p−1 .

Hence, ‖u‖L∞(Ω) ≤ M follows from 0 ≤ λ ≤ λ(M) = β−p|Ω|−p/nf(M)−1Mp−1.

Using this proposition, we derive the following result.

Theorem 3.1. There exists λ∗ ∈ (0,∞] such that for any λ ∈ [0, λ∗), the problem
(Eλ) admits at least one solution u ∈ W 1,p

0 (Ω) ∩ C1,α(Ω).

Proof. We use notation and the iteration process as before. Fix any M > 0. We
let λ ∈ (0, λ(M)), and take u0 ∈ X(M) (arbitrarily). Then for every k and the solution
uk of the problem (2.1), we have 0 ≤ uk ≤ M , and further, ‖uk‖W 1,p(Ω) ≤ C(M) for all
k ≥ 0. Therefore there exist subsequence of {uk}, denoted by {uk} again, u ∈ X(M) and
w ∈ Lp′(Ω) such that

uk ⇀ u in W 1,p(Ω),
uk → u a.e. in Ω,

|∇uk|p−2∇uk ⇀ w in Lp′(Ω),

with p′ = p/(p− 1). Finally, a monotone argument (Minty technique) can readily show that
w = |∇u|p−2∇u, which evidently implies that u is a solution of (Eλ), namely,

∫

Ω

|∇u|p−2∇u · ∇ϕdx = λ

∫

Ω

f(u)ϕdx

holds for any ϕ ∈ W 1,p
0 (Ω). Furthermore, by the regularity theory of p-Laplace equations

(cf. [18]) u ∈ C1,α(Ω) with 0 < α < 1. This completes the proof.

This result can be considered as a generalized version of the Crandall-Rabinowitz theory
[7].

Remark 3.1. This theorem also applies to the general case where f = f(x, u), which
will be used in the following sections. From above L∞-estimation process we may present a
lower bound for λ∗ as below:

λ∗ ≥ sup
M>0,0<θ<1,p<q<p∗

(1− θ)p−1θ(p−1)/δMp−1

βp|Ω|p/n sup
Ω×[0,M ]

f(x, z)
,

where f(x, z) is nonnegative, continuous on Ω × [0,∞), δ = δ(q) = (q − p)/[(p − 1)q], and
β = β(q) is the imbedding constant of W 1,p(Ω) → Lq(Ω).

Corollary 3.1. If lim inf
z→∞

zp−1/f(z) = ∞, then λ∗ = ∞, that is, the problem (Eλ) has
solutions for all λ ≥ 0.
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Remark 3.2. In the case that function f(z) is nondecreasing, the iteration procedure
above can be used to produce the minimal solution. In fact, if we denote uλ := lim

k→∞
uk with

u0 ≡ 0, and let u be a solution, then

u0 ≤ u1 ≤ · · · ≤ uk−1 ≤ uk ≤ · · · ≤ u

follows from the induction argument and the comparison principle, and hence uλ ≤ u.
Moreover, if 0 ≤ λ1 < λ2 < λ∗, then uλ1

≤ uλ2
.

§ 4 . Multiplicity of Solutions: Typical Examples

This section contains some important examples. It should be pointed out that some of
these results are not new and may be found or deduced from the results in, e.g. [5, 9, 13].
However, by elementary calculation we can show not only the multiplicity of positive solu-
tions, but also the exact number of the solutions.

To begin with, let us check the one-dimensional case.

4.1. One-dimensional Case

Consider the solution of the following problem
{
−(|u′|p−2u′)′ = λf(u) in (a, b),
u(a) = u(b) = 0.

(4.1)

It is not hard to see that if u(x) is a nontrivial solution, then it reaches maximum at
x = (a + b)/2, say u((a + b)/2) = M > 0, and satisfies

(
1− 1

p

)
|u′(x)|p + λ

∫ u(x)

M

f(s)ds = 0,

and thus

u′(x) = −sgn
(
x− a + b

2

)[(
1− 1

p

)−1

λ

∫ M

u(x)

f(s)ds
]1/p

.

Consequently, we arrive at
∫ u

0

[ ∫ M

s

f(t)dt
]−1/p

ds =
[(

1− 1
p

)−1

λ
]1/p(b− a

2
−

∣∣∣x− a + b

2

∣∣∣
)
.

From this we derive a sufficient and necessary condition for the problem to have a
non-trivial solution: There exists M > 0 satisfying

λ =
(
1− 1

p

)( 2
b− a

)p[ ∫ M

0

[ ∫ M

s

f(t)dt
]−1/p

ds
]p

. (4.2)

Moreover, there exists a one-to-one mapping between the solutions and the roots of equation
I(y) = β, where

I(y) :=
∫ y

0

[ ∫ y

s

f(t)dt
]−1/p

ds, β =
(b− a

2

)[(
1− 1

p

)−1

λ
]1/p

. (4.3)

In summary, we have
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Theorem 4.1. The problem (4.1) has a solution u satisfying max u = M if and only
if the equation I(y) = β possesses a root y = M .

Example 4.1. Let f(u) = uα with α ≥ 0. Of course, the problem has minimal solution
u ≡ 0 for any λ. Condition (4.2) reduces to

λ = (α + 1)
( 2

b− a

)p(
1− 1

p

)[ ∫ M

0

(Mα+1 − sα+1)−1/pds
]p

= (α + 1)1−p
( 2

b− a

)p(
1− 1

p

)
Mp−(α+1)Bp

( 1
α + 1

, 1− 1
p

)
,

where B(t, τ) =
∫ 1

0

st−1(1 − s)τ−1ds denotes the Beta function with t, τ > 0. From this

equality we conclude:
(1) If α 6= p − 1, then for every λ > 0, there exists a unique M > 0 so that (4.2) is

fulfilled, and consequently the problem admits a unique nontrivial solution— the maximal
solution;

(2) If α = p − 1, then condition (4.2) is satisfied only for a particular λ, namely, the
problem has nontrivial solutions if and only if

λ = λ := p1−p
( 2

b− a

)p(
1− 1

p

)
Bp

(1
p
, 1− 1

p

)
. (4.4)

In particular, if p = 2, then λ = [π/(b − a)]2, the first eigenvalue of Laplacian operator in
Ω = (a, b).

Remark 4.1. The above calculation also shows:
(1) If α > p − 1, then M = M(λ), the maximum value of the nontrivial solution, is

decreasing in λ, and M → 0 as λ →∞;
(2) If α < p− 1, then M = M(λ) is increasing in λ, and M →∞ as λ →∞.
(3) In the case α = p − 1, λ = λ, the problem admits a family of solutions. In fact,

let u1(x) be a nontrivial solution, then uh(x) = hu1(x) are also solutions for all h ≥ 0.
Moreover, it is not hard to verify that any solution must be of this form.

Example 4.2. Let f(u) = (1 + u)α with α ≥ 0. Then

I(M) = (α + 1)1/p

∫ M

0

[(M + 1)α+1 − (s + 1)α+1]−1/pds

= (α + 1)−1+1/pG((M + 1)−(α+1)),

where we denote

G(z) = z1/p−1/(α+1)

∫ 1

z

(1− t)−1/pt−1+1/(α+1)dt

with z ∈ (0, 1). Analyzing the behaviors of G(z) as z → 0+ and as z → 1−0 we find that
(1) If α > p−1, then the problem has exactly two solutions for λ ∈ (0, λ∗), one solution

for λ = 0 or λ∗, and no solution for λ > λ∗, where

λ∗ = (α + 1)1−p
( 2

b− a

)p(
1− 1

p

)
max

0<z<1
Gp(z) < ∞;

(2) In the case α = p− 1, the problem admits a unique solution for λ ∈ [0, λ), and no
solution for λ ≥ λ, where λ is given by (4.4);

(3) If α < p− 1, then the problem admits a unique solution for every λ ≥ 0.
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Example 4.3. Let f(u) = eu. Then we have

I(M) =
∫ M

0

(eM − es)−1/pds = e−M/p

∫ 1

e−M

(1− s)−1/ps−1ds.

Let

E(z) := z

∫ 1

zp

(1− s)−1/ps−1ds, 0 < z < 1.

Noting that E′′(z) = −pz−1(1 − zp)−1−1/p < 0, E(z) > 0, and E(z) → 0 as z → 0+ or
z → 1−0, we see that the problem admits solutions if and only if

0 ≤ λ ≤ λ∗ :=
( 2

b− a

)p(
1− 1

p

)
max

0<z<1
Ep(z).

Furthermore, for each λ ∈ (0, λ∗), there are exactly two different solutions uλ and uλ with
uλ ≤ uλ; and for λ = 0 and λ = λ∗, the problem admits the solutions u = u0(≡ 0) and
u = uλ∗ , respectively.

Remark 4.2. In above examples, if lim
z→∞

zp−1/f(z) = 0, then the problem has exactly

two solutions uλ and uλ with uλ ≤ uλ for λ ∈ (0, λ∗), and it is easy to see that uλ1
≤ uλ2

,
but max uλ1 > maxuλ2 if 0 ≤ λ1 < λ2 ≤ λ∗.

It should be noted that the above anti-ordered property for the maximal solutions is
important in the study on the stability of solutions of the corresponding parabolic problem
in Section 5.

Example 4.4. More generally, we consider the case lim sup
z→∞

zp−1/f(z) = 0. This

indicates that for any K > 0 there exists M0 > 0 such that

f(z) ≥ Kzp−1 for all z ≥ M0.

Then we have, for any y ≥ M0,

I(y) ≤
∫ M0

0

[ ∫ y

s

f(t)dt
]−1/p

ds + K−1/pp1/p

∫ y

M0

(yp − sp)−1/pds

≤
∫ M0

0

[ ∫ y

M0

f(t)dt
]−1/p

+ K−1/pp1/p−1B
(1

p
, 1− 1

p

)
.

Plainly, this inequality implies that I(y) → 0 as y → ∞, which means that there exists
β∗ > 0 such that the equation I(y) = β has at least two roots for β ∈ (0, β∗), at least one
for β = β∗, and none for β > β∗. Correspondingly, there must exist λ∗ > 0 such that the
problem (4.1) possesses at least two solutions for every λ ∈ (0, λ∗), at least one for λ = λ∗,
and none for λ > λ∗.

Now we turn to multi-dimensional case.

4.2. Multi-dimensional Case

Let Ω ⊂ Rn be a symmetric domain, e.g. the annulus R1 < |x| < R2, where 0 < R1 <
R2 < ∞, and let consider radial solution u = u(|x|). Then the problem (Eλ) reduces to

{
−r−(n−1)(rn−1|u′|p−2u′)′ = λf(u), r ∈ (R1, R2),
u(R1) = u(R2) = 0.

(4.5)
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We first introduce a change of variables as follows: If p 6= n, we set

r = |m|−1ρm, v(ρ) = u(r),

where m = (p− 1)/(p− n), and the problem becomes
{
−(|v′|p−2v′)′ = λϕ(ρ)f(v), ρ ∈ (a, b),
v(a) = v(b) = 0,

(4.6)

where

a = min {(|m|R1)1/m, (|m|R2)1/m},
b = max{(|m|R1)1/m, (|m|R2)1/m}, ϕ(ρ) = ρp(m−1).

If p = n, we use the change of variables

r = eρ, v(ρ) = u(r),

and arrive at the same problem but with a = log R1, b = log R2, ϕ(ρ) = enρ.
Then applying Theorem 1 in [9] to the problem (4.6), the following result which is

similar to Example 4.4 can be obtained:

Example 4.5. If lim sup
z→∞

zp−1/f(z) = 0, then there exists λ∗ ∈ (0,∞) such that the

problem (4.5) has at least two solutions for λ ∈ (0, λ∗), at least one for λ = λ∗, and none
for λ > λ∗.

Remark 4.3. Similarly to the reasoning of (4.2) we can get that

1
ϕ

(
1− 1

p

)( 2
b− a

)p

[I(M)]p ≤ λ(M) ≤ 1
ϕ

(
1− 1

p

)( 2
b− a

)p

[I(M)]p,

where ϕ = max
a≤ρ≤b

ϕ(ρ), ϕ = min
a≤ρ≤b

ϕ(ρ), M = max
a≤ρ≤b

v(ρ) and function I(y) is given by (4.3).

This clearly provides a priori estimates of upper bounds of the solutions, as well as the
estimate of λ∗.

§ 5 . Stability for the Parabolic Problem—A Fujita Type Result

In this section, we are concerned with the corresponding parabolic problem, and study
the large time behavior of the solutions. Let v be a solution of the following problem





vt −∆pv = λf(v) in Ω× (0, T ),
v = 0 on ∂Ω× (0, T ),
v = v0(x) on Ω× {0},

(Pλ)

where function v0(x) is nonnegative, and sufficient smooth. Since C1,α-estimates are estab-
lished on the bases of L∞-estimates for the solutions (cf. e.g. [10]), we have the following
well-known conclusions:

Lemma 5.1. Assume that there exists constant C > 0, independent of T > 0, such that
v(·, t) ≤ C for all t ∈ (0, T ). Then there must exist a subsequence {tk} in (0,∞), such that
lim

k→∞
v(x, tk) exists and is a solution of the problem (Eλ). In particular, if lim

t→∞
v(x, t) = u(x)

exists, then u(x) must be a solutions of (Eλ).
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Our aim is to answer the following questions:
How is the behavior of v(x, t) as t →∞ ? When does it converge to a steady solution,

and when to infinity? Since the problem (Eλ) may have multiple solutions, which one is
stable, and which is not?

Based on the knowledge on the solutions to the problem (Eλ), a partial answer to these
questions is given as follows:

Theorem 5.1. Let v be as above, a solution of (Pλ). Assume that for every λ ∈ (0, λ∗),
the problem (Eλ) possesses exactly two solutions, maximal and minimal ones, denoted by uλ

and uλ, respectively.
(1) If there exists λ′ > λ, so that v0 ≤ uλ′ , and uλ′(x) < uλ(x) at some point x ∈ Ω,

then
lim

t→∞
v(x, t) = uλ(x);

(2) If there exists λ′ < λ, so that v0 ≥ uλ′ , and uλ′(x) > uλ(x) at some point x ∈ Ω,
then either there exists T ∗ > 0 such that

lim
t→T∗

sup
x∈Ω

v(x, t) = ∞, or lim
t→∞

v(x, t) = ∞.

This conclusion is also true for λ = λ∗ if we denote uλ∗ = uλ∗ .

Note that in this case uλ is a stable solution of (Pλ) while uλ is unstable.

Proof. First let λ′ > λ, and consider a solution W to the following problem




Wt −∆pW = λf(W ) in Ω× (0, T ),
W = 0 on ∂Ω× (0, T ),
W = uλ′(x) on Ω× {0}.

(5.1)

In order to avoid the non-uniqueness we choose the maximal solution as W . Let w be the
(minimal) solution to the problem





wt −∆pw = λf(w) in Ω× (0, T ),
w = 0 on ∂Ω× (0, T ),
w = 0 on Ω× {0}.

Then w ≤ v ≤ W follows from the comparison principle. Next by setting h = Wt and
differentiating (5.1), we find that





ht − (p− 1)div(|∇u|p−2∇h) = λf ′(W )h in Ω× (0, T ),
h = 0 on ∂Ω× (0, T ),
h ≤ 0 on Ω× {0}.

Here we used in the last inequality the fact

Wt(x, 0) = ∆puλ′ + λf(uλ′) ≤ ∆puλ′ + λ′f(uλ′) = 0.

Thus by the maximum principle, we get h ≤ 0 in Ω×(0, T ). This means that W is decreasing
in t, and hence we may set T = ∞. In view of Lemma 5.1, W (x, t) must approach one of
the solutions of (Eλ) as t →∞. Since

W (x, t) ≤ W (x, 0) = uλ′(x) < uλ(x)
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at some point x ∈ Ω, we arrive at lim
t→∞

W (x, t) = uλ(x). In a similar way we derive that

w(x, t) is increasing in t, and converges to uλ(x) as t →∞. Therefore lim
t→∞

v(x, t) = uλ(x).

In the case v0(x) ≥ uλ′(x) with λ′ < λ, we suppose that the conclusion is not true. In
virtue of a priori C1,α-estimates (cf. e.g. [10]), we see that lim inf

t→∞
v(x, t) must exist for all

x ∈ Ω. On the other hand, by considering the minimal solution W of the problem (5.1) we
find that

(a) W ≤ v in Ω× (0,∞);
(b) W is nondecreasing in t, since Wt(x, 0) = ∆puλ′ + λf(uλ′) ≥ ∆puλ′ + λ′f(uλ′) = 0

in this case.
Therefore, lim

t→∞
W (x, t) must exist and be a solution of (Eλ), and hence lim

t→∞
W (x, t) ≤

uλ(x), which contradicts the fact that W (x, t) ≥ W (x, 0) = uλ′(x) > uλ(x) at some points
x ∈ Ω.

Example 5.1. f(u) = uα with α > p− 1, and n = 1.

Example 5.2. f(u) = (1 + u)α with α > p− 1, and n = 1.

Example 5.3. f(u) = eu, and n = 1.

It is clear from the statement of the theorem that our result is different from that of
Fujita [12]. Nevertheless, we consider Theorem 5.1 as an extension of the Fujita theory to
the problem (Pλ), and we believe that the Fujita theory keeps true in the present case.

Acknowledgement. The first author would like to thank Prof. M. Kiessling for
helpful discussions on related topics when he was at Rutgers University, New Brunswick in
1996.

References

[ 1 ] Crespo, J. A. Aguilar & Alonso, I. Peral, Blow-up behavior for solutions of ∆Nu = V (x)eu in bounded
domains in RN , Nonl. Anal. TMA, 29(1997), 365–384.

[ 2 ] Brezis, H. & Merle, F., Uniform estimate and blow-up behavior for solutions of −∆u = V (x)eu in two
dimensions, Comm. PDE, 16(1991), 1223–1253.

[ 3 ] Caglioti, E., Lions, P. L., Marchioro, C. & Pulvirenti, M., A special class of stationary flows for
two-dimensional Euler equations: A statistical mechanics description, Part 2, Comm. Math. Phys.,
174(1995), 229–260.

[ 4 ] Canada, A., Drabek, P. & Gamez, J. L., Existence of positive solutions for some problems with
nonlinear diffusion, Trans. Amer. Math. Soc., 349(1997), 4231–4249.

[ 5 ] Coster, C. D., Pairs of positive solutions for the one-dimensional p-Laplacian, Nonl. Anal. TMA,
23(1994), 669–681.

[ 6 ] Citti, G., Positive solutions of quasilinear degenerate elliptic equations in Rn, Rend. Circ. Mat.
Palermo, 35(1986), 364–375.

[ 7 ] Crandall, M. & Rabinowitz, P., Some continuation and variational methods for positive solutions of
nonlinear elliptic eigenvalue problems, Arch. Rat. Mech. Anal., 58(1975), 207–218.

[ 8 ] Damascelli, L., Comparison theorems for some quasilinear degenerate elliptic operators and applica-
tions to symmetry and monotonicity results, Analyse Nonlineaire, 15(1998), 493–516.

[ 9 ] Dang, H., Schmitt, K. & Shivaji, R., On the number of solutions of boundary value problems involving
the p-Laplacian, Electron. J. Differential Equations, 1996:01(1996), 1–9.

[10] DiBenedetto, E., Degenerate Parabolic Equations, Springer-Verlag, New York, 1993.

[11] Erbe, L. & Tang, M., Uniqueness theorems for positive solutions of quasilinear elliptic equations in a
ball, J. Diff. Eqns., 138(1997), 351–379.



286 MA, L. & SU, N.

[12] Fujita, H., On the nonlinear equations ∆u + eu = 0 and vt = ∆v + ev , Bull. Amer. Math. Soc.,
75(1969), 132–135.

[13] Hai, D. D., Schmitt, K. & Shivaji, R., Positive solutions of quasilinear boundary value problems, J.
Math. Anal. Appl., 217(1998), 672–686.

[14] Huang, Y. X. & Metzen, G., The existence of solutions to a class of semilinear equations, Diff. Int.
Eqns., 8(1995), 429–452.

[15] Kaper, H. G. & Kwong, M. K., Free boundary problems for Emdan-Fowler equations, Diff. Int. Eqns.,
3(1990), 353–362.

[16] Kiessling, M., Statistical mechanics of classical particles with logarithmic interaction, CPAM, 46(1983),
27–56.

[17] Le, V. K. & Schmitt, K., On boundary value problems for degenerate quasilinear elliptic equations and
inequalities, J. Diff. Eqns., 144(1998), 170–218.

[18] Ladyzanskaya, O. A. & Ural’ceva, N. N., Linear and Quasi-linear Equations of Elliptic Type (in
Russian), Nauk, Moscow, 1964.

[19] Manasevich, P. & Mawhin, J., Period solutions for nonlinear systems with p-Laplacian-like operators,
J. Diff. Eqns., 145(1998), 367–393.

[20] Pucci, P. & Serrin, J., Uniqueness of ground states for quasilinear elliptic operators, Indiana Univ.
Math. J., 47(1998), 501–528.

[21] Pucci, P. & Serrin, J., Uniqueness of ground states for quasilinear elliptic equations in the exponential
case, Indiana Univ. Math. J., 47(1998), 529–539.

[22] Suzuki, T., Global analysis for two dimensional elliptic eigenvalue problems with exponential nonlin-
earities, Ann. I. H. P. Analyse Nonlinearie, 9(1992), 367–398.


