INITIAL VALUE PROBLEMS FOR SECOND ORDER IMPULSIVE INTEGRO-DIFFERENTIAL EQUATIONS IN BANACH SPACES**

Guo Dajun*

Abstract

This paper investigates the maximal and minimal solutions of initial value problem for second order nonlinear impulsive integro-differential equation in a Banach space by establishing a comparison result and using the upper and lower solutions.

Keywords Impulsive integro-differential equation, Banach space, Initial value problem, Comparison result
1991 MR Subject Classification 45J05, 34G20
Chinese Library Classification O175.6

§1. Introduction

The theory of impulsive differential equations in Banach spaces has become an important area of investigation in recent years (see [1]). In paper [2], we have discussed the existence of solutions of boundary value problem for second order nonlinear impulsive differential equation in a Banach space by means of fixed point theory. Now, in this paper, we shall investigate the existence of extremal solutions of initial value problem (IVP) for second order nonlinear impulsive integro-differential equation in a Banach space by means of completely different method, that is, by establishing a comparison result and using the upper and lower solutions. Consider the IVP for impulsive integro-differential equation in Banach space E :

$$
\begin{cases}x^{\prime \prime}=f(t, x, T x), & t \in J, t \neq t_{k}, \tag{1.1}\\ \left.\triangle x\right|_{t=t_{k}}=L_{k} x^{\prime}\left(t_{k}\right), & \\ \left.\triangle x^{\prime}\right|_{t=t_{k}}=L_{k}^{\prime} x\left(t_{k}\right) \\ x(0)=x_{0}, \quad x^{\prime}(0)=x_{1}, & (k=1,2, \cdots, m),\end{cases}
$$

where $f \in C(J \times E \times E, E), J=[0, a](a>0), 0<t_{1}<\cdots<t_{k}<\cdots<t_{m}<$ $a, L_{k}, L_{k}^{\prime}(k=1,2, \cdots, m)$ are constants, $x_{0}, x_{1} \in E$, and

$$
\begin{equation*}
(T x)(t)=\int_{0}^{t} k(t, s) x(s) d s \tag{1.2}
\end{equation*}
$$

[^0]$k \in C\left(D, R_{+}\right), D=\{(t, s) \in J \times J: t \geq s\}, R_{+}$is the set of all nonnegative numbers. $\left.\triangle x\right|_{t=t_{k}}$ denotes the jump of $x(t)$ at $t=t_{k}$, i.e.
$$
\left.\triangle x\right|_{t=t_{k}}=x\left(t_{k}^{+}\right)-x\left(t_{k}^{-}\right)
$$
where $x\left(t_{k}^{+}\right)$and $x\left(t_{k}^{-}\right)$represent the right and left limits of $x(t)$ at $t=t_{k}$ respectively, and $\left.\triangle x^{\prime}\right|_{t=t_{k}}$ has a similar meaning for $x^{\prime}(t)$. Let $P C(J, E)=\{x: x$ is a map from J into E such that $x(t)$ is continuous at $t \neq t_{k}$, left continuous at $t=t_{k}$, and $x\left(t_{k}^{+}\right)$exist, $\left.k=1,2, \cdots, m\right\}$ and $P C^{1}(J, E)=\{x: x$ is a map from J into E such that $x(t)$ is continuously differentiable at $t \neq t_{k}$, left continuous at $t=t_{k}$, and $x\left(t_{k}^{+}\right), x^{\prime}\left(t_{k}^{-}\right), x^{\prime}\left(t_{k}^{+}\right)$exist, $\left.k=1,2, \cdots, m\right\}$. Evidently, $P C(J, E)$ is a Banach space with norm
$$
\|x\|_{P C}=\sup _{t \in J}\|x(t)\| .
$$

For $x \in P C^{1}(J, E)$, by virtue of the mean value theorem

$$
x\left(t_{k}\right)-x\left(t_{k}-h\right) \in h \overline{\operatorname{co}}\left\{x^{\prime}(t): t_{k}-h<t<t_{k}\right\} \quad(h>0),
$$

it is easy to see that the left derivative $x_{-}^{\prime}\left(t_{k}\right)$ exists and

$$
x_{-}^{\prime}\left(t_{k}\right)=\lim _{h \rightarrow 0^{+}} h^{-1}\left[x\left(t_{k}\right)-x\left(t_{k}-h\right)\right]=x^{\prime}\left(t_{k}^{-}\right)
$$

In (1.1) and in the following, $x^{\prime}\left(t_{k}\right)$ is understood as $x_{-}^{\prime}\left(t_{k}\right)$. It is clear that $P C^{1}(J, E)$ is a Banach space with norm

$$
\|x\|_{P C^{1}}=\max \left\{\|x\|_{P C},\left\|x^{\prime}\right\|_{P C}\right\} .
$$

Let $J^{\prime}=J \backslash\left\{t_{1}, \cdots, t_{m}\right\}$. A map $x \in P C^{1}(J, E) \cap C^{2}\left(J^{\prime}, E\right)$ is called a solution of $\operatorname{IVP}(1.1)$ if it satisfies (1.1).

§2. Comparison Result

Let E be partially ordered by a cone P of E, i.e. $x \leq y$ if and only if $y-x \in P . P$ is said to be normal if there exists a positive constant N such that $\theta \leq x \leq y$ implies $\|x\| \leq N\|y\|$, where θ denotes the zero element of E, and P is said to be regular if $x_{1} \leq x_{2} \leq \cdots \leq x_{n} \leq$ $\cdots \leq y$ implies $\left\|x_{n}-x\right\| \rightarrow 0$ as $n \rightarrow \infty$ for some $x \in E$. It is well known that the regularity of P implies the normality of P. For details on cone theory, see [3].

In the following, let $J_{0}=\left[0, t_{1}\right], J_{1}=\left(t_{1}, t_{2}\right], \cdots, J_{m-1}=\left(t_{m-1}, t_{m}\right], J_{m}=\left(t_{m}, a\right], r=$ $\max \left\{t_{k+1}-t_{k}: k=0,1, \cdots, m\right\}$ (here $\left.t_{0}=0, t_{m+1}=a\right)$ and $k_{0}=\max \{k(t, s):(t, s) \in D\}$.

Lemma 2.1 (a) If $x \in P C(J, E) \cap C^{1}\left(J^{\prime}, E\right)$, then

$$
\begin{equation*}
x(t)=x(0)+\int_{0}^{t} x^{\prime}(s) d s+\sum_{0<t_{k}<t}\left[x\left(t_{k}^{+}\right)-x\left(t_{k}\right)\right], \quad t \in J . \tag{2.1}
\end{equation*}
$$

(b) If $x \in P C^{1}(J, E) \cap C^{2}\left(J^{\prime}, E\right)$, then

$$
\begin{equation*}
x^{\prime}(t)=x^{\prime}(0)+\int_{0}^{t} x^{\prime \prime}(s) d s+\sum_{0<t_{k}<t}\left[x^{\prime}\left(t_{k}^{+}\right)-x^{\prime}\left(t_{k}\right)\right], \quad t \in J, \tag{2.2}
\end{equation*}
$$

and

$$
\begin{align*}
x(t)= & x(0)+t x^{\prime}(0)+\int_{0}^{t}(t-s) x^{\prime \prime}(s) d s \\
& +\sum_{0<t_{k}<t}\left\{\left[x\left(t_{k}^{+}\right)-x\left(t_{k}\right)\right]+\left(t-t_{k}\right)\left[x^{\prime}\left(t_{k}^{+}\right)-x^{\prime}\left(t_{k}\right)\right]\right\}, \quad t \in J . \tag{2.3}
\end{align*}
$$

Proof. (a) Let $x \in P C(J, E) \cap C^{1}\left(J^{\prime}, E\right)$ and $t_{k}<t \leq t_{k+1}$. Then

$$
\begin{aligned}
x\left(t_{1}\right)-x(0) & =\int_{0}^{t_{1}} x^{\prime}(s) d s, \quad x\left(t_{2}\right)-x\left(t_{1}^{+}\right)=\int_{t_{1}}^{t_{2}} x^{\prime}(s) d s, \\
& \cdots \\
x\left(t_{k}\right)-x\left(t_{k-1}^{+}\right) & =\int_{t_{k-1}}^{t_{k}} x^{\prime}(s) d s, \quad x(t)-x\left(t_{k}^{+}\right)=\int_{t_{k}}^{t} x^{\prime}(s) d s .
\end{aligned}
$$

Adding together, we get

$$
x(t)-x(0)-\sum_{i=1}^{k}\left[x\left(t_{i}^{+}\right)-x\left(t_{i}\right)\right]=\int_{0}^{t} x^{\prime}(s) d s
$$

i.e. (2.1) holds.
(b) Let $x \in P C^{1}(J, E) \cap C^{2}\left(J^{\prime}, E\right)$. Replacing $x(t)$ by $x^{\prime}(t)$ in (2.1), we get (2.2). Finally, substituting (2.2) into (2.1), we can obtain (2.3).

Lemma 2.2. (Comparison result) Assume that $p \in P C^{1}(J, E) \cap C^{2}\left(J^{\prime}, E\right)$ satisfies

$$
\left\{\begin{array}{l}
p^{\prime \prime} \leq-M p-N T p, \quad t \in J, t \neq t_{k}, \tag{2.4}\\
\left.\triangle p\right|_{t=t_{k}} \leq L_{k} p^{\prime}\left(t_{k}\right), \\
\left.\triangle p^{\prime}\right|_{t=t_{k}} \leq L_{k}^{\prime} p\left(t_{k}\right) \\
p(0) \leq \theta, \quad p^{\prime}(0) \leq \theta
\end{array} \quad(k=1,2, \cdots, m),\right.
$$

where $M \geq 0, N \geq 0, L_{k} \geq 0, L_{k}^{\prime} \leq 0(k=1,2, \cdots, m)$ are constants and

$$
\begin{equation*}
\left(\sum_{k=1}^{m} L_{k}+(m+1) r\right)\left(-\sum_{k=1}^{m} L_{k}^{\prime}+a\left(M+a k_{0} N\right)\right) \leq 1 \tag{2.5}
\end{equation*}
$$

Then $p(t) \leq \theta$ for $t \in J$.
Proof. For any $g \in P^{*}\left(P^{*}\right.$ denotes the dual cone of $\left.P\right)$, let $u(t)=g(p(t))$. Then $u \in P C^{1}(J, R) \cap C^{2}\left(J^{\prime}, R\right)$, where R is the set of all real numbers, and

$$
u^{\prime}(t)=g\left(p^{\prime}(t)\right), \quad g((T p)(t))=(T u)(t)
$$

By (2.4), we have

$$
\left\{\begin{array}{l}
u^{\prime \prime} \leq-M u-N T u, \quad t \in J, t \neq t_{k}, \tag{2.6}\\
\left.\triangle u\right|_{t=t_{k}} \leq L_{k} u^{\prime}\left(t_{k}\right), \\
\left.\triangle u^{\prime}\right|_{t=t_{k}} \leq L_{k}^{\prime} u\left(t_{k}\right) \\
u(0) \leq 0, \quad u^{\prime}(0) \leq 0
\end{array} \quad(k=1,2, \cdots, m),\right.
$$

We now prove

$$
\begin{equation*}
u(t) \leq 0, \quad t \in J \tag{2.7}
\end{equation*}
$$

Suppose that (2.7) is not true. Then, there is a $0<t^{*} \leq a$ such that $u\left(t^{*}\right)>0$. Let $t^{*} \in J_{j}$ and $\inf \left\{u(t): 0 \leq t \leq t^{*}\right\}=-b$. We have $b \geq 0$.

In case of $b=0: u(t) \geq 0$ for $0 \leq t \leq t^{*}$, so (2.6) implies that $u^{\prime \prime}(t) \leq 0$ for $0 \leq t \leq$ $t^{*}, t \neq t_{k}$, and

$$
\left.\triangle u^{\prime}\right|_{t=t_{k}} \leq L_{k}^{\prime} u\left(t_{k}\right) \leq 0 \quad \text { for } \quad t_{k} \leq t^{*}
$$

Hence, $u^{\prime}(t)$ is nonincreasing in $\left[0, t^{*}\right]$, and therefore $u^{\prime}(t) \leq u^{\prime}(0) \leq 0$ for $0 \leq t \leq t^{*}$ and

$$
\left.\triangle u\right|_{t=t_{k}} \leq L_{k} u^{\prime}\left(t_{k}\right) \leq 0, \quad \text { for } t_{k} \leq t^{*}
$$

Consequently, $u(t)$ is nonincreasing in $\left[0, t^{*}\right]$, so $u(t) \leq u(0) \leq 0$ for $0 \leq t \leq t^{*}$, which contradicts $u\left(t^{*}\right)>0$.

In case of $b>0$: there exists a $J_{i}(i \leq j)$ such that $u\left(t_{*}\right)=-b$ for some $t_{*} \in J_{i}$ or $u\left(t_{i}^{+}\right)=-b$. From (2.6), we have

$$
\begin{gathered}
u^{\prime \prime}(t) \leq M b+N a k_{0} b, \quad 0 \leq t \leq t^{*}, \quad t \neq t_{k} \\
\left.\triangle u^{\prime}\right|_{t=t_{k}} \leq L_{k}^{\prime} u\left(t_{k}\right) \leq-b L_{k}^{\prime}, \quad t_{k} \leq t^{*}, \quad \text { and } u^{\prime}(0) \leq 0
\end{gathered}
$$

so, by (2.2),

$$
\begin{equation*}
u^{\prime}(t) \leq \int_{0}^{t}\left(M b+N a k_{0} b\right) d s-\sum_{0<t_{k}<t} b L_{k}^{\prime} \leq b M_{0}, \quad 0 \leq t \leq t^{*} \tag{2.8}
\end{equation*}
$$

where

$$
\begin{equation*}
M_{0}=a M+a^{2} k_{0} N-\sum_{k=1}^{m} L_{k}^{\prime} \tag{2.9}
\end{equation*}
$$

Now, mean value theorem implies

$$
\left.\begin{array}{c}
u\left(t^{*}\right)-u\left(t_{j}^{+}\right)=u^{\prime}\left(s_{j}\right)\left(t^{*}-t_{j}\right) \quad\left(t_{j}<s_{j}<t^{*}\right), \\
u\left(t_{j}\right)-u\left(t_{j-1}^{+}\right)=u^{\prime}\left(s_{j-1}\right)\left(t_{j}-t_{j-1}\right) \quad\left(t_{j-1}<s_{j-1}<t_{j}\right), \\
\ldots \ldots \ldots \ldots \ldots \ldots \ldots
\end{array}\right] \begin{gathered}
u\left(t_{i+2}\right)-u\left(t_{i+1}^{+}\right)=u^{\prime}\left(s_{i+1}\right)\left(t_{i+2}-t_{i+1}\right) \quad\left(t_{i+1}<s_{i+1}<t_{i+2}\right), \\
\left\{\begin{array}{cc}
u\left(t_{i+1}\right)-u\left(t_{*}\right)=u^{\prime}\left(s_{i}\right)\left(t_{i+1}-t_{*}\right) & \left(t_{*}<s_{i}<t_{i+1}\right), \text { if } u\left(t_{*}\right)=-b, \\
u\left(t_{i+1}\right)-u\left(t_{i}^{+}\right)=u^{\prime}\left(s_{i}^{*}\right)\left(t_{i+1}-t_{i}\right) & \left(t_{i}<s_{i}^{*}<t_{i+1}\right), \text { if } u\left(t_{i}^{+}\right)=-b,
\end{array}\right.
\end{gathered}
$$

and, by (2.6) and (2.8),

$$
u\left(t_{k}^{+}\right)-u\left(t_{k}\right)=\left.\triangle u\right|_{t=t_{k}} \leq L_{k} u^{\prime}\left(t_{k}\right) \leq b M_{0} L_{k}, \quad t_{k} \leq t^{*}
$$

hence

$$
\left.\begin{array}{c}
u\left(t^{*}\right)-u\left(t_{j}\right)-b M_{0} L_{j} \leq u^{\prime}\left(s_{j}\right)\left(t^{*}-t_{j}\right), \\
u\left(t_{j}\right)-u\left(t_{j-1}\right)-b M_{0} L_{j-1} \leq u^{\prime}\left(s_{j-1}\right)\left(t_{j}-t_{j-1}\right), \\
\ldots \ldots
\end{array}\right\} \begin{gathered}
u\left(t_{i+1}\right)+b=u^{\prime}\left(s_{i}\right)\left(t_{i+1}-t_{*}\right), \quad \text { if } u\left(t_{*}\right)=-b, \\
u\left(t_{i+1}\right)+b=u^{\prime}\left(s_{i}^{*}\right)\left(t_{i+1}-t_{i}\right), \quad \text { if } u\left(t_{i}^{+}\right)=-b .
\end{gathered}
$$

Adding together and using (2.8), we obtain

$$
u\left(t^{*}\right)+b-b M_{0} \sum_{k=i+1}^{j} L_{k} \leq(j-i+1) b M_{0} r
$$

and so

$$
0<u\left(t^{*}\right) \leq-b+b M_{0} \sum_{k=1}^{m} L_{k}+(m+1) b M_{0} r
$$

which contradicts (2.5).
Hence (2.7) holds. Since $g \in P^{*}$ is arbitrary, (2.7) implies that $p(t) \leq \theta$ for $t \in J$. The proof is complete.

Lemma 2.3. Let $z \in P C(J, E)$. Then, $x \in P C^{1}(J, E) \cap C^{2}\left(J^{\prime}, E\right)$ is a solution of the linear IVP

$$
\begin{cases}x^{\prime \prime}=-M x-N T x+z(t), & t \in J, t \neq t_{k}, \tag{2.10}\\ \left.\triangle x\right|_{t=t_{k}}=L_{k} x^{\prime}\left(t_{k}\right), & \\ \left.\triangle x^{\prime}\right|_{t=t_{k}}=L_{k}^{\prime} x\left(t_{k}\right) & (k=1,2, \cdots, m), \\ x(0)=x_{0}, \quad x^{\prime}(0)=x_{1}, & \end{cases}
$$

if and only if $x \in P C^{1}(J, E)$ is a solution of the following linear impulsive integral equation

$$
\begin{align*}
x(t)= & x_{0}+t x_{1}+\int_{0}^{t}(t-s)(-M x(s)-N(T x)(s)+z(s)) d s \\
& +\sum_{0<t_{k}<t}\left[L_{k} x^{\prime}\left(t_{k}\right)+\left(t-t_{k}\right) L_{k}^{\prime} x\left(t_{k}\right)\right] . \tag{2.11}
\end{align*}
$$

Proof. If $x \in P C^{1}(J, E) \cap C^{2}\left(J^{\prime}, E\right)$ is a solution of $\operatorname{IVP}(2.10)$, then, substituting (2.10) into (2.3), we get (2.11).

Conversely, if $x \in P C^{1}(J, E)$ is a solution of Equation (2.11), then direct differentiation of (2.11) gives

$$
x^{\prime}(t)=x_{1}+\int_{0}^{t}(-M x(s)-N(T x)(s)+z(s)) d s+\sum_{0<t_{k}<t} L_{k}^{\prime} x\left(t_{k}\right), \quad t \in J, t \neq t_{k},
$$

and

$$
x^{\prime \prime}(t)=-M x(t)-N(T x)(t)+z(t), \quad t \in J, t \neq t_{k}
$$

Hence $x \in P C^{1}(J, E) \cap C^{2}\left(J^{\prime}, E\right)$ and $x(t)$ satisfies (2.10).
Lemma 2.4. Let $z \in P C(J, E)$ and $M \geq 0, N \geq 0, L_{k} \geq 0, L_{k}^{\prime} \leq 0(k=1,2, \cdots, m)$. If

$$
\begin{gather*}
b_{1}=\frac{a^{2}}{2}\left(M+a k_{0} N\right)+\sum_{k=1}^{m}\left[L_{k}-\left(a-t_{k}\right) L_{k}^{\prime}\right]<1 \tag{2.12}\\
b_{2}=a\left(M+a k_{0} N\right)-\sum_{k=1}^{m} L_{k}^{\prime}<1 \tag{2.13}
\end{gather*}
$$

then Equation (2.11) has a unique solution in $P C^{1}(J, E)$.
Proof. Define operator F by

$$
\begin{align*}
(F x)(t)= & x_{0}+t x_{1}+\int_{0}^{t}(t-s)(-M x(s)-N(T x)(s)+z(s)) d s \\
& +\sum_{0<t_{k}<t}\left[L_{k} x^{\prime}\left(t_{k}\right)+\left(t-t_{k}\right) L_{k}^{\prime} x\left(t_{k}\right)\right] \tag{2.14}
\end{align*}
$$

Then

$$
\begin{equation*}
(F x)^{\prime}(t)=x_{1}+\int_{0}^{t}(-M x(s)-N(T x)(s)+z(s)) d s+\sum_{0<t_{k}<t} L_{k}^{\prime} x\left(t_{k}\right) \tag{2.15}
\end{equation*}
$$

and F is an operator from $P C^{1}(J, E)$ into $P C^{1}(J, E)$. For $x, y \in P C^{1}(J, E)$, we have by (2.14),

$$
\begin{aligned}
\|(F x)(t)-(F y)(t)\| \leq & \left(M\|x-y\|_{P C}+a k_{0} N\|x-y\|_{P C}\right) \int_{0}^{t}(t-s) d s \\
& +\sum_{0<t_{k}<t}\left[L_{k}\left\|x^{\prime}-y^{\prime}\right\|_{P C}-\left(t-t_{k}\right) L_{k}^{\prime}\|x-y\|_{P C}\right]
\end{aligned}
$$

so

$$
\begin{aligned}
\|F x-F y\|_{P C} \leq & \frac{a^{2}}{2}\left(M+a k_{0} N\right)\|x-y\|_{P C}+\left(\sum_{k=1}^{m} L_{k}\right)\left\|x^{\prime}-y^{\prime}\right\|_{P C} \\
& -\left(\sum_{k=1}^{m}\left(a-t_{k}\right) L_{k}^{\prime}\right)\|x-y\|_{P C} \\
\leq & b_{1}\|x-y\|_{P C^{1}}
\end{aligned}
$$

where b_{1} is defined by (2.12). Similarly, (2.15) implies

$$
\left\|(F x)^{\prime}-(F y)^{\prime}\right\|_{P C} \leq b_{2}\|x-y\|_{P C^{1}}
$$

where b_{2} is defined by (2.13). Hence

$$
\begin{equation*}
\|F x-F y\|_{P C^{1}} \leq b^{*}\|x-y\|_{P C^{1}}, \quad x, y \in P C^{1}(J, E) \tag{2.16}
\end{equation*}
$$

where

$$
\begin{equation*}
b^{*}=\max \left\{b_{1}, b_{2}\right\}<1 \tag{2.17}
\end{equation*}
$$

Consequently, the Banach fixed point theorem implies that F has a unique fixed point in $P C^{1}(J, E)$, and the lemma is proved.

§3. Main Theorem

Let us list some conditions.
$\left(\mathrm{H}_{1}\right)$ There exist $u_{0}, v_{0} \in P C^{1}(J, E) \cap C^{2}\left(J^{\prime}, E\right)$ with $u_{0}(t) \leq v_{0}(t)(t \in J)$ such that

$$
\left\{\begin{array}{l}
u_{0}^{\prime \prime} \leq f\left(t, u_{0}, T u_{0}\right), \\
\left.\triangle u_{0}\right|_{t=t_{k}} \leq L_{k} u_{0}^{\prime}\left(t_{k}\right), \\
\left.\triangle u_{0}^{\prime}\right|_{t=t_{k}} \leq L_{k}^{\prime} u_{0}\left(t_{k}\right) \\
u_{0}(0) \leq x_{0}, \quad u_{0}^{\prime}(0) \leq x_{1}
\end{array} \quad(k=1,2, \cdots, m),\right.
$$

and

$$
\begin{cases}v_{0}^{\prime \prime} \geq f\left(t, v_{0}, T v_{0}\right), & t \in J, t \neq t_{k}, \\ \left.\triangle v_{0}\right|_{t=t_{k}} \geq L_{k} v_{0}^{\prime}\left(t_{k}\right), & \\ \left.\triangle v_{0}^{\prime}\right|_{t=t_{k}} \geq L_{k}^{\prime} v_{0}\left(t_{k}\right) \\ v_{0}(0) \geq x_{0}, \quad v_{0}^{\prime}(0) \geq x_{1}, & (k=1,2, \cdots, m),\end{cases}
$$

where constants $L_{k} \geq 0, L_{k}^{\prime} \leq 0(k=1,2, \cdots, m)$, i.e. u_{0} and v_{0} are lower and upper solution of $\operatorname{IVP}(1.1)$ respectively.
$\left(\mathrm{H}_{2}\right)$ There exist constants $M \geq 0$ and $N \geq 0$ such that

$$
f(t, x, y)-f(t, \bar{x}, \bar{y}) \geq-M(x-\bar{x})-N(y-\bar{y})
$$

whenever $t \in J, u_{0}(t) \leq \bar{x} \leq x \leq v_{0}(t)$ and $\left(T u_{0}\right)(t) \leq \bar{y} \leq y \leq\left(T v_{0}\right)(t)$.
In the following, let

$$
\left[u_{0}, v_{0}\right]=\left\{x \in P C(J, E): u_{0}(t) \leq x(t) \leq v_{0}(t) \text { for } t \in J\right\}
$$

Theorem 3.1. Let cone P be regular and f be uniformly continuous on $J \times B_{r} \times B_{r}$ for any $r>0$, where $B_{r}=\{x \in E:\|x\| \leq r\}$. Suppose that conditions $\left(\mathrm{H}_{1}\right)$ and $\left(\mathrm{H}_{2}\right)$ are satisfied and inequlities (2.5), (2.12) and (2.13) hold. Then there exist monotone sequences $\left\{u_{n}\right\},\left\{v_{n}\right\} \subset P C^{1}(J, E) \cap C^{2}\left(J^{\prime}, E\right)$ which converge in $P C^{1}(J, E)$ to the minimal and maximal solutions $\bar{x}, x^{*} \in P C^{1}(J, E) \cap C^{2}\left(J^{\prime}, E\right)$ of $\operatorname{IVP}(1.1)$ in $\left[u_{0}, v_{0}\right]$ respectively.

Proof. For any $w \in\left[u_{0}, v_{0}\right]$, consider the linear $\operatorname{IVP}(2.10)$ with

$$
\begin{equation*}
z(t)=f(t, w(t),(T w)(t))+M w(t)+N(T w)(t) \tag{3.1}
\end{equation*}
$$

By Lemma 2.3 and Lemma 2.4, $\operatorname{IVP}(2.10)$ has a unique solution $x \in P C^{1}(J, E) \cap C^{2}\left(J^{\prime}, E\right)$ which is the unique solution of Equation (2.11) in $P C^{1}(J, E)$. Let $x=A w$. Then A is an operator from $\left[u_{0}, v_{0}\right]$ into $P C^{1}(J, E) \cap C^{2}\left(J^{\prime}, E\right)$. We now show that (a) $u_{0} \leq A u_{0}, A v_{0} \leq$ v_{0} and (b) A is nondecreasing in $\left[u_{0}, v_{0}\right]$. To prove (a), we set $u_{1}=A u_{0}$ and $p=u_{0}-u_{1}$. From (2.10) and (3.1), we have

$$
\left\{\begin{array}{l}
u_{1}^{\prime \prime}=-M u_{1}-N T u_{1}+f\left(t, u_{0}, T u_{0}\right)+M u_{0}+N T u_{0}, \quad t \in J, t \neq t_{k}, \\
\left.\triangle u_{1}\right|_{t=t_{k}}=L_{k} u_{1}^{\prime}\left(t_{k}\right), \\
\left.\triangle u_{1}^{\prime}\right|_{t=t_{k}}=L_{k}^{\prime} u_{1}\left(t_{k}\right) \quad(k=1,2, \cdots, m), \\
u_{1}(0)=x_{0}, \quad u_{1}^{\prime}(0)=x_{1},
\end{array}\right.
$$

so, by $\left(\mathrm{H}_{1}\right)$,

$$
\left\{\begin{array}{l}
p^{\prime \prime}=u_{0}^{\prime \prime}-u_{1}^{\prime \prime} \leq-M p-N T p, \quad t \in J, t \neq t_{k} \\
\left.\triangle p\right|_{t=t_{k}}=\left.\triangle u_{0}\right|_{t=t_{k}}-\left.\triangle u_{1}\right|_{t=t_{k}} \leq L_{k} p^{\prime}\left(t_{k}\right) \\
\left.\triangle p^{\prime}\right|_{t=t_{k}}=\left.\triangle u_{0}^{\prime}\right|_{t=t_{k}}-\left.\triangle u_{1}^{\prime}\right|_{t=t_{k}} \leq L_{k}^{\prime} p\left(t_{k}\right) \\
p(0)=u_{0}(0)-u_{1}(0) \leq \theta, \quad p^{\prime}(0)=u_{0}^{\prime}(0)-u_{1}^{\prime}(0) \leq \theta
\end{array}\right.
$$

which implies by virtue of Lemma 2.2 that $p(t) \leq \theta$ for $t \in J$, i.e. $u_{0} \leq A u_{0}$. Similarly, we can show that $A v_{0} \leq v_{0}$. To prove (b), let $w_{1}, w_{2} \in\left[u_{0}, v_{0}\right]$ such that $w_{1} \leq w_{2}$ and let $p=\bar{w}_{1}-\bar{w}_{2}$, where $\bar{w}_{1}=A w_{1}$ and $\bar{w}_{2}=A w_{2}$. Then, from (2.10), (3.1) and (H_{2}), we have

$$
\left\{\begin{array}{l}
p^{\prime \prime}=-M p-N T p-\left[f\left(t, w_{2}, T w_{2}\right)-f\left(t, w_{1}, T w_{1}\right)+M\left(w_{2}-w_{1}\right)+N\left(T w_{2}-T w_{1}\right)\right] \\
\quad \leq-M p-N T p, \quad t \in J, \quad t \neq t_{k}, \\
\left.\triangle p\right|_{t=t_{k}}=L_{k} p^{\prime}\left(t_{k}\right), \\
\left.\triangle p^{\prime}\right|_{t=t_{k}}=L_{k}^{\prime} p\left(t_{k}\right) \quad(k=1,2, \cdots, m), \\
p(0)=\theta, \quad p^{\prime}(0)=\theta .
\end{array}\right.
$$

So, Lemma 2.2 implies that $p(t) \leq \theta$ for $t \in J$, i.e. $A w_{1} \leq A w_{2}$, and (b) is proved.
Let $u_{n}=A u_{n-1}$ and $v_{n}=A v_{n-1}(n=1,2,3, \cdots)$. By (a) and (b) just proved, we have

$$
\begin{equation*}
u_{0}(t) \leq u_{1}(t) \leq \cdots \leq u_{n}(t) \leq \cdots \leq v_{n}(t) \leq \cdots \leq v_{1}(t) \leq v_{0}(t), \quad t \in J \tag{3.2}
\end{equation*}
$$

On account of the definition of u_{n} and (2.11), we have

$$
\begin{align*}
u_{n}(t)= & x_{0}+t x_{1}+\int_{0}^{t}(t-s)\left(-M u_{n}(s)-N\left(T u_{n}\right)(s)+z_{n-1}(s)\right) d s \\
& +\sum_{0<t_{k}<t}\left[L_{k} u_{n}^{\prime}\left(t_{k}\right)+\left(t-t_{k}\right) L_{k}^{\prime} u_{n}\left(t_{k}\right)\right] \tag{3.3}
\end{align*}
$$

where

$$
\begin{equation*}
z_{n-1}(t)=f\left(t, u_{n-1}(t),\left(T u_{n-1}\right)(t)\right)+M u_{n-1}(t)+N\left(T u_{n-1}\right)(t) \tag{3.4}
\end{equation*}
$$

So

$$
\begin{equation*}
u_{n}^{\prime}(t)=x_{1}+\int_{0}^{t}\left(-M u_{n}(s)-N\left(T u_{n}\right)(s)+z_{n-1}(s)\right) d s+\sum_{0<t_{k}<t} L_{k}^{\prime} u_{n}\left(t_{k}\right) \tag{3.5}
\end{equation*}
$$

Similar to the proof of (2.16), by using (3.3) and (3.5) instead of (2.14) and (2.15), we can get

$$
\left\|u_{n+i}-u_{n}\right\|_{P C^{1}} \leq b^{*}\left\|u_{n+i}-u_{n}\right\|_{P C^{1}}+a^{*}\left\|z_{n+i-1}-z_{n-1}\right\|_{P C}
$$

where b^{*} is defined by $(2.17),(2.12),(2.13)$ and $a^{*}=\max \left\{\frac{a^{2}}{2}, a\right\}$. Hence

$$
\begin{equation*}
\left\|u_{n+i}-u_{n}\right\|_{P C^{1}} \leq \frac{a^{*}}{1-b^{*}}\left\|z_{n+i-1}-z_{n-1}\right\|_{P C} \quad(n, i=1,2,3, \cdots) \tag{3.6}
\end{equation*}
$$

Since the regularity of P implies the normality of P, we see from (3.2) that $V=\left\{u_{n}: n=\right.$ $0,1,2, \cdots\}$ is a bounded set in $P C(J, E)$. It is easy to show that the uniform continuity of f on $J \times B_{r} \times B_{r}$ implies the boundedness of f on $J \times B_{r} \times B_{r}$, so, by (3.4), there is a constant $c>0$ such that

$$
\left\|z_{n-1}\right\|_{P C} \leq c \quad(n=1,2,3, \cdots)
$$

and therefore, from (3.3) we know that functions $\left\{u_{n}(t)\right\}(n=1,2,3, \cdots)$ are equicontinuous on each $J_{k}(k=0,1, \cdots, m)$. On the other hand, (3.2) and the regularity of P imply that $\alpha(V(t))=0(t \in J)$, where $V(t)=\left\{u_{n}(t): n=0,1,2, \cdots\right\}$ and α denotes the Kuratowski measure of noncompactness in E. Hence V is relatively compact in $P C(J, E)$, and so, there is a subsequence of $\left\{u_{n}\right\}$, which converges uniformly in $t \in J$ to some $\bar{x} \in P C(J, E)$. Since $\left\{u_{n}\right\}$ is nondecreasing and P is normal, the entire sequence $\left\{u_{n}\right\}$ converges uniformly in $t \in J$ to \bar{x}, i.e.

$$
\begin{equation*}
\left\|u_{n}-\bar{x}\right\|_{P C} \rightarrow 0 \quad(n \rightarrow \infty) \tag{3.7}
\end{equation*}
$$

From (3.4) and (3.7), we find

$$
\begin{equation*}
\left\|z_{n-1}-\bar{z}\right\|_{P C} \rightarrow 0 \quad(n \rightarrow \infty) \tag{3.8}
\end{equation*}
$$

where

$$
\begin{equation*}
\bar{z}(t)=f(t, \bar{x}(t),(T \bar{x})(t))+M \bar{x}(t)+N(T \bar{x})(t) \tag{3.9}
\end{equation*}
$$

Now, (3.6) and (3.8) imply that the sequence $\left\{u_{n}\right\}$ is convergent in $P C^{1}(J, E)$, and hence, by (3.7), $\bar{x} \in P C^{1}(J, E)$ and

$$
\begin{equation*}
\left\|u_{n}-\bar{x}\right\|_{P C^{1}} \rightarrow 0 \quad(n \rightarrow \infty) \tag{3.10}
\end{equation*}
$$

Observing (3.10), (3.8) and taking limits in (3.3), we obtain

$$
\begin{aligned}
\bar{x}(t)= & x_{0}+t x_{1}+\int_{0}^{t}(t-s)(-M \bar{x}(s)-N(T \bar{x})(s)+\bar{z}(s)) d s \\
& +\sum_{0<t_{k}<t}\left[L_{k} \bar{x}^{\prime}\left(t_{k}\right)+\left(t-t_{k}\right) L_{k}^{\prime} \bar{x}\left(t_{k}\right)\right]
\end{aligned}
$$

which implies by virtue of Lemma 2.3 that $\bar{x} \in P C^{1}(J, E) \cap C^{2}\left(J^{\prime}, E\right)$ and \bar{x} is a solution of $\operatorname{IVP}(1.1)$.

In the same way, we can show that $\left\|v_{n}-x^{*}\right\|_{P C^{1}} \rightarrow 0(n \rightarrow \infty)$ for some $x^{*} \in P C^{1}(J, E) \cap$ $C^{2}\left(J^{\prime}, E\right)$ and x^{*} is a solution of $\operatorname{IVP}(1.1)$.

Finally, let $x \in P C^{1}(J, E) \cap C^{2}\left(J^{\prime}, E\right)$ be any solution of $\operatorname{IVP}(1.1)$ satisfying $u_{0}(t) \leq$ $x(t) \leq v_{0}(t)$ for $t \in J$. Assume that $u_{n-1}(t) \leq x(t) \leq v_{n-1}(t)$ for $t \in J$, and set $p(t)=$
$u_{n}(t)-x(t)$. Then, by $\left(\mathrm{H}_{2}\right)$,

$$
\left\{\begin{aligned}
& p^{\prime \prime}=-M p-N T p-\left[f(t, x, T x)-f\left(t, u_{n-1}, T u_{n-1}\right)\right. \\
&\left.+M\left(x-u_{n-1}\right)+N\left(T x-T u_{n-1}\right)\right] \\
& \leq-M p-N T p, \quad t \in J, t \neq t_{k}, \\
&\left.\triangle p\right|_{t=t_{k}}=L_{k} p^{\prime}\left(t_{k}\right), \\
&\left.\triangle p^{\prime}\right|_{t=t_{k}}= L_{k}^{\prime} p\left(t_{k}\right) \quad(k=1,2, \cdots, m) \\
& p(0)=\theta, \quad p^{\prime}(0)=\theta,
\end{aligned}\right.
$$

which implies by virtue of Lemma 2.2 that $p(t) \leq \theta$ for $t \in J$, i.e. $u_{n}(t) \leq x(t)$ for $t \in J$. In the same way, we can show that $x(t) \leq v_{n}(t)$ for $t \in J$. Hence, by induction, $u_{n}(t) \leq x(t) \leq v_{n}(t)$ for $t \in J(n=0,1,2, \cdots)$, which implies that $\bar{x}(t) \leq x(t) \leq x^{*}(t)$ for $t \in J$. The proof is complete.

Remark 3.1. The condition that P is regular will be satisfied if E is weakly complete (reflexive, in particular) and P is normal (see [4, Theorem 2]).

\S 4. An Example

Example 4.1. Consider the IVP of infinite system for nonlinear scalar second order integro-differential equations

$$
\left\{\begin{array}{l}
x_{n}^{\prime \prime}=\frac{1}{30}\left(\frac{1}{4 n^{2}}-x_{n}+x_{2 n}\right)+\frac{t}{60 n^{2}}\left(\int_{0}^{t} e^{-t s} x_{n+1}(s) d s\right) \tag{4.1}\\
\quad-\frac{1}{50(n+1)^{2}}\left(\int_{0}^{t} e^{-t s} x_{n}(s) d s\right)^{2}, \quad 0 \leq t \leq 2, t \neq 1 \\
\left.\triangle x_{n}\right|_{t=1}=\frac{1}{2} x_{n}^{\prime}(1), \\
\left.\triangle x_{n}^{\prime}\right|_{t=1}=-\frac{1}{6} x_{n}(1), \\
x_{n}(0)=\frac{1}{n^{2}}, \quad x_{n}^{\prime}(0)=0 \quad(n=1,2,3, \cdots) .
\end{array}\right.
$$

Conclusion. IVP(4.1) admits minimal and maximal solutions which are continuously differentiable on $[0,1) \cup(1,2]$ and satisfy

$$
0 \leq x_{n}(t) \leq \begin{cases}\frac{1}{n^{2}}, & 0 \leq t \leq 1 \\ \frac{t+1}{n^{2}}, & 1<t \leq 2\end{cases}
$$

Proof. Let $E=l^{1}=\left\{x=\left(x_{1}, \cdots, x_{n}, \cdots\right): \sum_{n=1}^{\infty}\left|x_{n}\right|<\infty\right\}$ with norm $\|x\|=\sum_{n=1}^{\infty}\left|x_{n}\right|$ and $P=\left\{x=\left(x_{1}, \cdots, x_{n}, \cdots\right) \in l^{1}: x_{n} \geq 0, n=1,2,3, \cdots\right\}$. Then P is a normal cone in E. Since l^{1} is weakly complete, from Remark 3.1 we know that P is regular. System (4.1) can be regarded as an IVP of form (1.1), where $a=2, k(t, s)=e^{-t s}, x=\left(x_{1}, \cdots, x_{n}, \cdots\right), y=$ $\left(y_{1}, \cdots, y_{n}, \cdots\right), f=\left(f_{1}, \cdots, f_{n}, \cdots\right)$, in which

$$
f_{n}(t, x, y)=\frac{1}{30}\left(\frac{1}{4 n^{2}}-x_{n}+x_{2 n}\right)+\frac{t}{60 n^{2}} y_{n+1}-\frac{1}{50(n+1)^{2}} y_{n}^{2}
$$

and $m=1, t_{1}=1, L_{1}=\frac{1}{2}, L_{1}^{\prime}=-\frac{1}{6}, x_{0}=\left(1, \cdots, \frac{1}{n^{2}}, \cdots\right), x_{1}=(0, \cdots, 0, \cdots)$. Evidently, $f \in C(J \times E \times E, E)(J=[0,2])$. Let $u_{0}(t)=(0, \cdots, 0, \cdots)(t \in J)$ and

$$
v_{0}(t)= \begin{cases}\left(1, \cdots, \frac{1}{n^{2}}, \cdots\right), & 0 \leq t \leq 1 \\ \left(t+1, \cdots, \frac{t+1}{n^{2}}, \cdots\right), & 1<t \leq 2\end{cases}
$$

We have $u_{0} \in C^{2}(J, E), v_{0} \in P C^{1}(J, E) \cap C^{2}\left(J^{\prime}, E\right), u_{0}(t)<v_{0}(t)(t \in J)$ and

$$
\begin{aligned}
& u_{0}(0)=(0, \cdots, 0, \cdots)<\left(1, \cdots, \frac{1}{n^{2}}, \cdots\right)=x_{0}, \quad u_{0}^{\prime}(0)=(0, \cdots, 0, \cdots)=x_{1}, \\
& v_{0}(0)=\left(1, \cdots, \frac{1}{n^{2}}, \cdots\right)=x_{0}, \quad v_{0}^{\prime}(0)=(0, \cdots, 0, \cdots)=x_{1}, \\
& \left.\triangle u_{0}\right|_{t=1}=(0, \cdots, 0, \cdots)=\frac{1}{2} u_{0}^{\prime}(1),\left.\quad \triangle u_{0}^{\prime}\right|_{t=1}=(0, \cdots, 0, \cdots)=-\frac{1}{6} u_{0}(1) \text {, } \\
& \left.\triangle v_{0}\right|_{t=1}=\left(1, \cdots, \frac{1}{n^{2}}, \cdots\right)>(0, \cdots, 0, \cdots)=\frac{1}{2} v_{0}^{\prime}(1), \\
& \left.\triangle v_{0}^{\prime}\right|_{t=1}=\left(1, \cdots, \frac{1}{n^{2}}, \cdots\right)>-\frac{1}{6}\left(1, \cdots, \frac{1}{n^{2}}, \cdots\right)=-\frac{1}{6} v_{0}(1), \\
& u_{0}^{\prime \prime}(t)=(0, \cdots, 0, \cdots)(t \in J), \quad v_{0}^{\prime \prime}(t)=(0, \cdots, 0, \cdots)(t \in J, t \neq 1) \text {, } \\
& f_{n}\left(t, u_{0}(t),\left(T u_{0}\right)(t)\right)=\frac{1}{120 n^{2}}>0 \quad(t \in J), \\
& 0 \leq t \leq 1 \Longrightarrow f_{n}\left(t, v_{0}(t),\left(T v_{0}\right)(t)\right)<\frac{1}{30}\left(\frac{1}{4 n^{2}}-\frac{1}{n^{2}}+\frac{1}{4 n^{2}}\right)+\frac{t}{60 n^{2}}\left(\frac{1}{(n+1)^{2}} \int_{0}^{t} e^{-t s} d s\right) \\
& \leq-\frac{1}{60 n^{2}}+\frac{1}{60 n^{2}(n+1)^{2}}<0, \\
& 1<t \leq 2 \Longrightarrow f_{n}\left(t, v_{0}(t),\left(T v_{0}\right)(t)\right)<\frac{1}{30}\left(\frac{1}{4 n^{2}}-\frac{t+1}{n^{2}}+\frac{t+1}{4 n^{2}}\right) \\
& +\frac{t}{60 n^{2}}\left\{\frac{1}{(n+1)^{2}}\left(\int_{0}^{1} e^{-t s} d s+\int_{1}^{t} e^{-t s}(s+1) d s\right)\right\} \\
& \leq \frac{1}{30}\left(\frac{1}{4 n^{2}}-\frac{3(t+1)}{4 n^{2}}\right)+\frac{t}{60 n^{2}}\left\{\frac{1}{(n+1)^{2}}\left(1+\frac{1}{e} \int_{1}^{t}(s+1) d s\right)\right\} \\
& <-\frac{1}{60 n^{2}}+\frac{1}{60 n^{2}}=0 .
\end{aligned}
$$

Hence, u_{0} and v_{0} satisfy $\left(\mathrm{H}_{1}\right)$. On the other hand, for $t \in J, u_{0}(t) \leq \bar{x} \leq x \leq v_{0}(t)$ and $\left(T u_{0}\right)(t) \leq \bar{y} \leq y \leq\left(T v_{0}\right)(t)$, we have $0 \leq \bar{x}_{n} \leq x_{n} \leq \frac{3}{n^{2}}, \quad 0 \leq \bar{y}_{n} \leq y \leq \frac{2}{n^{2}} \quad(n=$ $1,2,3, \cdots)$, so

$$
\begin{aligned}
f_{n}(t, x, y)-f_{n}(t, \bar{x}, \bar{y}) & \geq-\frac{1}{30}\left(x_{n}-\bar{x}_{n}\right)-\frac{1}{50(n+1)^{2}}\left(y_{n}^{2}-\bar{y}_{n}^{2}\right) \\
& \geq-\frac{1}{30}\left(x_{n}-\bar{x}_{n}\right)-\frac{1}{50}\left(y_{n}-\bar{y}_{n}\right), \quad(n=1,2,3, \cdots)
\end{aligned}
$$

consequently, $\left(\mathrm{H}_{2}\right)$ is satisfied for $M=\frac{1}{30}$ and $N=\frac{1}{50}$. It is clear that $k_{0}=1$ and $r=1$, and it is easy to verify that inequalities (2.5), (2.12) and (2.13) hold. Hence, our conclusion follows from Theorem 3.1.

References

[1] Guo, D. J. \& Sun, J., The theory of ordinary differential equations in Banach spaces, Adv. in Math. (China), 23(1994), 492-504 (in Chinese).
[2] Guo, D. J., Existence of solutions of boundary value problems for nonlinear second order impulsive differential equations in Banach spaces, J. Math. Anal. Appl., 181(1994), 407-421.
[3] Guo, D. J. \& Lakshmikantham V., Nonlinear problems in abstract cones, Academic Press, New York, 1988.
[4] Du, Y., Fixed points of increasing opeators in ordered Banach spaces and applications, Appl. Anal., 38(1990), 1-20.

[^0]: Manuscript received July 6, 1995.
 *Department of Mathematics, Shandong University, Jinan 250100, Shandong, China.
 **Project supported by the National Natural Science Foundation of China and the Doctoral Program
 Foundation of the State Education Commission of China.

