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NON-CONSTANT POSITIVE STEADY-STATES OF
A PREDATOR-PREY-MUTUALIST MODEL∗∗∗
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Abstract

In this paper, the authors deal with the non-constant positive steady-states of a
predator-prey-mutualist model with homogeneous Neumann boundary condition. They
first give a priori estimates (positive upper and lower bounds) of positive steady-states,
and then study the non-existence, the global existence and bifurcation of non-constant
positive steady-states as some parameters are varied. Finally the asymptotic behavior
of such solutions as d3 →∞ is discussed.
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§ 1 . Introduction

This paper deals with the positive solutions to the following elliptic system




−d1∆u1 = γu1

(
1− u1

L0 + `u2

)
,

−d2∆u2 = αu2

(
1− u2

K

)
− βu2u3

1 + mu1
, in Ω,

−d3∆u3 = u3

(
− s +

cβu2

1 + mu1

)
,

∂nu1 = ∂nu2 = ∂nu3 = 0, on ∂Ω,

(I)

where Ω is a bounded domain in RN with smooth boundary ∂Ω, ∂n is the directional
derivative normal to ∂Ω, and all parameters are positive. The non-negative solutions of
(I) are in fact the non-negative steady-states (time-independent) of a reaction diffusion
system known as a predator-prey-mutualist model (see [7, 10]). In this model, u1, u2 and u3

represent the population densities of the mutualist, mutualist-prey and predator respectively,
m and ` are the mutualist constants, and di > 0, i = 1, 2, 3, are the diffusion coefficients.
For the biological meaning of the other parameters, please see [7]. In paper [10], Zheng
studied the corresponding reaction diffusion system of (I) with non-negative initial data (as
well as the homogeneous Dirichlet boundary conditions). He first gave the maximum norm
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estimates of non-negative time-dependent solutions, and then discussed the stabilities of
non-negative constant solutions.

There are many related works on the non-constant positive steady-states of reaction
diffusion systems with homogeneous Neumann boundary conditions, see [2, 4, 5, 9] and the
references therein.

We first use the scaling

mu1 → u1, u2/K → u2, d1/γ → d1, d2/α → d2, d3/s → d3, β/α → b, αc/s → a,

and then denote L∗0 = mL0, `∗ = `Km, a∗ = abK, and omit the super script ∗, the problem
(I) can be written as





−d1∆u1 = u1

(
1− u1

L0 + `u2

)
∆= f1(u1, u2, u3),

−d2∆u2 = u2

(
1− u2 − bu3

1 + u1

)
∆= f2(u1, u2, u3), in Ω,

−d3∆u3 = u3

(
− 1 +

au2

1 + u1

)
∆= f3(u1, u2, u3),

∂nu1 = ∂nu2 = ∂nu3 = 0, on ∂Ω.

(1.1)

We call u = (u1, u2, u3) a positive solution of (1.1) provided that u is a solution of (1.1) and
ui(x) > 0 in Ω, i = 1, 2, 3. It is easy to verify that the problem (1.1) has positive constant
solution if and only if ` < a, 1 + L0 < a− ` and this solution is unique and is given by

û = (û1, û2, û3) =
(` + aL0

a− `
,

1 + L0

a− `
,

a(1 + L0)(a− 1− `− L0)
b(a− `)2

)
(1.2)

when it exists. Throughout this paper we assume that ` < a, 1 + L0 < a− `.

This paper will be organized as follows: In §2, we first establish a priori positive upper
and lower bounds for the positive solutions of (1.1). In §3, we prove the non-existence of
non-constant positive solutions for a certain range of the parameters. In §4 and §5 we discuss
the global existence and bifurcation of non-constant positive solutions. Finally, in §6, we
study the profile of these solutions as d3 →∞.

§ 2 . A Priori Estimates

We first state one proposition, which is due to Lin, Ni and Takagi [1].

Proposition 2.1. (Harnack Inequality) (cf. [1]) Let w ∈ C2(Ω)∩C1(Ω) be a positive
solution to ∆w(x)+c(x)w(x) = 0 in Ω subject to homogeneous Neumann boundary condition
with c ∈ C(Ω). Then there exists a positive constant C∗ = C∗(n, Ω, ‖c‖∞) such that

max
Ω

w ≤ C∗min
Ω

w.

Theorem 2.1. The positive solution u of (1.1) satisfies

max
Ω

u1 ≤ L0 + `, max
Ω

u2 ≤ 1, max
Ω

u3 ≤ (a/b)(1 + d2/d3). (2.1)

Proof. By the simple application of the maximum principle, we can get that

max
Ω

u1(x) ≤ L0 + `, max
Ω

u2(x) ≤ 1.
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Let w = ad2u2 + bd3u3, then
{
−∆w = au2(1− u2)− bu3 in Ω,

∂nw = 0 on ∂Ω.

Let w(x0) = max
Ω

w(x). By the application of the maximum principle, it yields

bu3(x0) ≤ au2(x0)(1− u2(x0)) ≤ au2(x0) ≤ a.

Consequently

bd3 max
Ω

u3 ≤ max
Ω

w = w(x0) = ad2u2(x0) + bd3u3(x0) ≤ ad2 + ad3,

and hence
max

Ω
u3 ≤ (a/b)(1 + d2/d3).

The proof is completed.

Theorem 2.2. Let d > 0 be fixed. Then there exists a positive constant C = C(d) > 0
such that the positive solution of (1.1) satisfies

min
Ω

ui ≥ C, i = 1, 2, 3 (2.2)

provided that di ≥ d, i = 1, 2, 3.

Proof. We assume on the contrary that the (2.2) does not hold, then there exist
sequences {d1i, d2i, d3i}∞i=1 with d1i, d2i, d3i ≥ d, and the corresponding positive solutions
(u1i, u2i, u3i) of (1.1) such that min

Ω
u1i → 0, or min

Ω
u2i → 0, or min

Ω
u3i → 0 as i → ∞.

Moreover

max
Ω

u1i ≤ L0 + `, max
Ω

u2i ≤ 1 (2.3)

by (2.1). We divide the discussion into three cases.

Case 1. min
Ω

u1i → 0. Proposition 2.1 yields that u1i → 0 uniformly on Ω as i → ∞.

Integrating the equation of u1i, we have
∫

Ω

u1i

(
1− u1i

L0 + `u2i

)
dx = 0, ∀ i ≥ 1.

This is a contradiction since u1i > 0 in Ω and u1i → 0 uniformly on Ω.

Case 2. min
Ω

u2i → 0. Since

∫

Ω

u3i

(
− 1 +

au2i

1 + u1i

)
dx = 0, u3i > 0 in Ω, ∀ i ≥ 1,

we get a contradiction.

Case 3. min
Ω

u3i → 0, and min
Ω

u1i, min
Ω

u2i ≥ δ, for some δ > 0. Proposition 2.1 yields

that u3i → 0 uniformly on Ω as i → ∞. By the regularity of elliptic equation it can be



246 CHEN, W. Y. & WANG, M. X.

deduced that there exists a subsequence of (u1i, u2i, u3i), denoted also by itself, and positive
functions ũ1, ũ2 such that u1i → ũ1, u2i → ũ2 in C2(Ω) as i →∞. Moreover,

max
Ω

ũ1 ≤ L0 + `, max
Ω

ũ2 ≤ 1 (2.4)

by (2.3). Integrating the differential equation of u2i, we have

0 =
∫

Ω

u2i

(
1− u2i − bu3i

1 + u1i

)
dx →

∫

Ω

ũ2(1− ũ2)dx as i →∞. (2.5)

As ũ2 > 0, it follows from (2.4) and (2.5) that ũ2 ≡ 1. In a similar way, from the differential
equation of u1i, we have ũ1 ≡ L0 + `. Since (1 + L0)/(a− `) < 1 and u1i → L0 + `, u2i → 1,
we see that

−1 + au2i/(1 + u1i) > 0, ∀ i À 1.

It contradicts the fact that
∫

Ω

u3i

(
− 1 +

au2i

1 + u1i

)
dx = 0, u3i > 0 in Ω, ∀ i ≥ 1.

The proof is completed.

§ 3 . Non-existence of Non-constant Positive Solutions

Let 0 = µ0 < µ1 < µ2 < µ3 < · · · be the eigenvalues of the operator −∆ in Ω with the
homogeneous Neumann boundary condition.

Theorem 3.1. Denote d0 = [2L2
0 + `(L0 + `)2 + (2a/b)(b + a)L2

0]/(2µ1L
2
0). For any

given d2 > d0, there exists D > d2, such that when d3 ≥ D, the problem (1.1) has no
non-constant positive solution provided that d1 > d0.

Proof. Denote f̄ = 1
|Ω|

∫
Ω

f(x)dx for f ∈ L1(Ω). Assume that u = (u1, u2, u3) is a
positive solution of (1.1). We may assume that d3 > d2. By the third inequality of (2.1) we
get max

Ω
u3 ≤ 2a/b. Multiplying the i-th equation of (1.1) by ui − ūi, and integrating the

results over Ω, we have

di

∫

Ω

|∇(ui − ūi)|2

=
∫

Ω

(fi(u1, u2, u3)− fi(ū1, ū2, ū3))(ui − ūi)

=
∫

Ω

{fiui(ξi)(ui − ūi)2 +
∑

j 6=i

fiuj (ξi)(ui − ūi)(uj − ūj)}, i = 1, 2, 3, (3.1)

where ξi(x) lies between u and ū. By a simple calculation, f1u1 ≤ 1, |f1u2 | ≤ `(L0 + `)2/L2
0,

|f2u1 | ≤ bmax
Ω

u3 ≤ 2a, f2u2 ≤ 1, |f2u3 | ≤ b, |f3u1 |, |f3u2 | ≤ a max
Ω

u3 ≤ 2a2/b, and
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f3u3 ≤ a− 1. Therefore, by (3.1), we get
∫

Ω

{d1|∇(u1 − ū1)|2 + d2|∇(u2 − ū2)|2 + d3|∇(u3 − ū3)|2}dx

≤
∫

Ω

{|u1 − ū1|2 + |u2 − ū2|2 + (a− 1)|u3 − ū3|2

+ (`(L0 + `)2/L2
0 + 2a)|u1 − ū1||u2 − ū2|

+ (2a2/b)|u1 − ū1||u3 − ū3|) + (b + 2a2/b)|u2 − ū2||u3 − ū3|}dx

≤
∫

Ω

{(
1 +

`(L0 + `)2

2L2
0

+
a(a + b)

b

)
(u1 − ū1)2

+
(
1 +

`(L0 + `)2

2L2
0

+
a(a + b)

b
+ ε

)
(u2 − ū2)2 +

(
a− 1 +

2a2

b
+

b2

4ε

)
(u3 − ū3)2

}
dx,

and using the Poincaré inequality, we then have

µ1

∫

Ω

(d1|u1 − ū1|2 + d2|u2 − ū2|2 + d3|u3 − ū3|2)dx

≤
∫

Ω

{(
1 +

`(L0 + `)2

2L2
0

+
a(a + b)

b

)
(u1 − ū1)2

+
(
1 +

`(L0 + `)2

2L2
0

+
a(a + b)

b
+ ε

)
(u2 − ū2)2

+
(
a− 1 +

2a2

b
+

b2

4ε

)
(u3 − ū3)2

}
dx, (3.2)

where 0 < ε ¿ 1. Since d2 > d0, it follows from (3.2) that u1 ≡ ū1, u2 ≡ ū2, u3 ≡ ū3

provided that d1 > d0 and d3 À 1. The proof is completed.

§ 4 . Existence of Non-constant Positive Solutions

We shall discuss the existence of non-constant positive solutions to (1.1). Let û =
(û1, û2, û3), which is given by (1.2), be the unique positive constant solution of (1.1). For
d1, d2, d3 > 0 and µ ≥ 0, we define

H(µ; d1, d2, d3) =µ3 + (d−1
1 + d−1

2 û2)µ2 + d−1
2 {d−1

3 (1− û2) + d−1
1 [û2 − `û2(1 + û1)−1

+ `û2
2(1 + û1)−1]}µ + (ad1d2d3)−1(a− 1− `− L0), (4.1)

A ∆=A(d1, d2, d3) = {i ≥ 1 |H(µi; d1, d2, d3) < 0}.

Then, for any given d1, d2, d3 > 0, H(µ; d1, d2, d3) = 0 has at most two positive roots, and
A(d1, d2, d3) is a finite set. Moreover, as a > 1 + ` + L0,

H(µ0; d1, d2, d3) = H(0; d1, d2, d3) > 0.

Theorem 4.1. Suppose d1, d2, d3 > 0 with H(µi; d1, d2, d3) 6= 0 for all i ≥ 1 and
A = A(d1, d2, d3) 6= ∅. If

∑
i∈A

m(µi) is odd, then the problem (1.1) has at least one non-

constant positive solution, where m(µi) is the multiplicity of µi.



248 CHEN, W. Y. & WANG, M. X.

Remark 4.1. Note that, for any given d̃1, d̃2, d̃3 > 0, H(µ; d̃1, d̃2, d̃3) = 0 has at
most two positive real roots, and µ1 < µ2 < · · · < µk → ∞ as k → ∞. We conclude that,
for any B(d̃1, d̃2, d̃3; δ), the neighborhood of (d̃1, d̃2, d̃3), the intersection

{ (d1, d2, d3) | H(µi; d1, d2, d3) 6= 0, ∀ i ≥ 1} ∩B(d̃1, d̃2, d̃3; δ)

is an infinite set.
Remark 4.2. Denote θ = 1 − `(1 + û1)−1 + `û2(1 + û1)−1. If we assume a` >

`2 + (1 + L0)(a + `) (when ` > 1 and a À 1, this is true), then θ < 0. Note that

lim
d3→∞

H(µ; d1, d2, d3) =µ(d1d2)−1[d1d2µ
2 + (d2 + d1û2)µ + û2θ]

∆=(d1d2)−1µh(µ; d1, d2). (4.2)

For any given k ≥ 1, there exist suitable d1, d2 > 0 (d1, d2 may be small) such that
h(µk; d1, d2) < 0 and h(µk+1; d1, d2) > 0. Since h(µ; d1, d2) is increasing in µ, it follows
that{

µih(µi; d1, d2) ≤ µih(µk; d1, d2) ≤ µ1h(µk; d1, d2) < 0, ∀ 1 ≤ i ≤ k,

µih(µi; d1, d2) ≥ µih(µk+1; d1, d2) ≥ µ1h(µk+1; d1, d2) > 0, ∀ i ≥ k + 1.
(4.3)

From (4.2) and (4.3) we see that there exists d∗3, which is large and depends on d1 and d2,
such that for all d3 ≥ d∗3,

H(µi; d1, d2, d3) < 0, ∀ 1 ≤ i ≤ k, H(µi; d1, d2, d3) > 0, ∀ i ≥ k + 1.

Therefore, A(d1, d2, d3) = {1, 2, · · · , k} for such d1, d2 > 0 and d3 ≥ d∗3.

Corollary 4.1. Assume that a` > `2 + (1 + L0)(a + `). If m(µi), the multiplicity of
µi, is odd for some i ≥ 1. Then there exist d1, d2 > 0 and d∗3 = d∗3(d1, d2) > 0 such that,
for all d3 ≥ d∗3, the problem (1.1) has at least one non-constant positive solution.

Proof. Let k ≥ 1 be the smallest one for which m(µk) is odd, Remark 4.2 and Theorem
4.1 conclude our result.

Theorem 3.1 shows that if the diffusion coefficients of the mutualist, mutualist-prey
and predator are large, then such a predator-prey-mutualist system has no pattern phe-
nomenon. While, Corollary 4.1 shows that when the diffusion coefficients of the mutualist
and mutualist-prey are small, and the diffusion coefficient of the predator is large, then such
a predator-prey-mutualist system will have pattern phenomenon.

Proof of Theorem 4.1. We assume on the contrary that the problem (1.1) has no
non-constant positive solution. Choose

d̂1, d̂2 > d1 + d2 + [2L2
0 + `(L0 + `)2 + (2a/b)(b + a)L2

0]/(2µ1L
3
0)

such that

(d̂−1
1 + d̂−1

2 û2)µ1 + d̂−1
2 {d̂−1

1 û2 − `û2d̂
−1
1 (1 + û1)−1 + `û2

2d̂
−1
1 (1 + û1)−1}

=(d̂1d̂2)−1{(d̂2 + d̂1û2)µ1 + [û2 − `û2(1 + û1)−1 + `û2
2(1 + û1)−1]} > 0. (4.4)

For any i ≥ 1, applying (4.4) we have

lim
d̂3→∞

H(µi; d̂1, d̂2, d̂3)

=µ3
i + (d̂−1

1 + d̂−1
2 û2)µ2

i + (d̂1d̂2)−1{û2 − `û2(1 + û1)−1 + `û2
2(1 + û1)−1}µi (4.5)

>µ1{µ2
1 + (d̂−1

1 + d̂−1
2 û2)µ1 + (d̂1d̂2)−1[û2 − `û2(1 + û1)−1 + `û2

2(1 + û1)−1]} > µ3
1.
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From (4.5) and Theorem 3.1 we see that there exists d̂3 À 1 such that

d̂3 > d3d̂2/d2, H(µi; d̂1, d̂2, d̂3) > 0, ∀ i ≥ 1, (4.6)

and the problem (1.1) has no non-constant positive solution for (d1, d2, d3) = (d̂1, d̂2, d̂3).
For 0 ≤ t ≤ 1, we define

αi(t) = d̂−1
i + t(d−1

i − d̂−1
i ), F(t,u) =




α1(t)f1(u1, u2, u3)

α2(t)f2(u1, u2, u3)

α3(t)f3(u1, u2, u3)


 ,

and consider the boundary value problem

−∆u = F(t,u) in Ω, ∂nu = 0 on ∂Ω. (4.7)

Then u is a non-constant positive solution of (1.1) if and only if it is such a solution of (4.7)
for t = 1. Set

X = {(u1, u2, u3) ∈ [C1(Ω)]3 | ∂nui = 0 on ∂Ω, i = 1, 2, 3 }.

For any 0 ≤ t ≤ 1, u is a non-constant positive solution of (4.7) if and only if it solves

Φ(t; u) := u− (I−∆)−1{F(t, u) + u } = 0 on X,

where (I − ∆)−1 is the inverse of I − ∆ subject to the homogeneous Neumann boundary
condition. The direct computation gives

DuΦ(t; û) = I− (I−∆)−1(Fu(t, û) + I),

where

Fu(t, û) =




−α1(t) −α1(t)` 0
α2(t)û2(1− û2)/(1 + û1) −α2(t)û2 −bα2(t)/a

α3(t)(û2 − 1)/b α3(t)a(1− û2)/b 0


 .

It is easy to calculate that

det[µiI− Fu(1, û)] = H(µi; d1, d2, d3), det[µiI− Fu(0, û)] = H(µi; d̂1, d̂2, d̂3).

Let L be the total number of eigenvalues with negative real parts (counting multiplicity)

of DuΦ(1; û). In order to calculate L, we decompose X =
∞⊕

i=0
Xi, where Xi is the eigenspace

corresponding to µi, i.e. Xi =
m(µi)⊕
j=1

Xij =
m(µi)⊕
j=1

Span{ϕi,j}, and {ϕi,1, · · · , ϕi,m(µi)} is the

base of Xi. Each Xij is invariant for DuΦ(1; û), and ξ is an eigenvalue of DuΦ(1; û) on Xij

if and only if ξ(1 + µi) is an eigenvalue of the matrix I − (1 + µi)−1(Fu(1, û) + I). Hence,
on each Xij , the total number of eigenvalues with negative real parts of DuΦ(1; û) is the
same as that of the matrix I − (1 + µi)−1(Fu(1, û) + I) or the matrix µiI − Fu(1, û). Let
λ1, λ2 and λ3 be the eigenvalues of the matrix µiI− Fu(1, û). Then

λ1λ2λ3 = det[ µiI− Fu(1, û)] = H(µi; d1, d2, d3).
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Therefore, when H(µi; d1, d2, d3) < 0, the number of λi having negative real parts is 1 or 3,
and when H(µi; d1, d2, d3) > 0, the number of λi having negative real parts is 0 or 2. Hence,
modulo 2, the number of eigenvalues with negative real parts of DuΦ(1; û) on Xij is the
same as

1
2
(1− sgn{det[ µiI− Fu(1, û)]}) =

1
2
(1− sgn{H(µi; d1, d2, d3)}),

provided that det[ µiI− Fu(1, û)] 6= 0. Consequently, modulo 2, the total number of eigen-
values with negative real parts of DuΦ(1; û) on Xi is 0 if H(µi; d1, d2, d3) > 0, and m(µi)
if H(µi; d1, d2, d3) < 0. Therefore, modulo 2, L =

∑
i∈A

m(µi)

From the estimate of (4.6), similarly to the above arguments dealing with DuΦ(1; û),
we have that, modulo 2, the total number of eigenvalues with negative real parts of DuΦ(0; û)
is 0.

Applying the first inequality of (4.6), it is easy to check that

α−1
2 (t)/α−1

3 (t) = α3(t)/α2(t) ≤ d2/d3 for all 0 ≤ t ≤ 1.

By Theorem 2.1, the positive solution of (4.7) satisfies

max
Ω

u1 ≤ L0 + `, max
Ω

u2 ≤ 1, max
Ω

u3 ≤ (a/b)[1 + α−1
2 (t)/α−1

3 (t)] ≤ (a/b)(1 + d2/d3)

for all 0 ≤ t ≤ 1. Denote C = max{1, L0+`, (a/b)(1+d2/d3)}. Let d = min{d1, d2, d3} > 0.
By Theorem 2.2, there exists a positive constant C = C(d) > 0 such that the positive solution
of (4.7) satisfies

min
Ω

ui(x) ≥ C, i = 1, 2, 3, ∀ 0 ≤ t ≤ 1.

Set
Σ =

{
u ∈ X | C/2 < u1(x), u2(x), u3(x) < 2C on Ω

}
.

Then Φ(t; u) 6= 0 for all u ∈ ∂Σ and t ∈ [0, 1]. By the homotopy invariance of the Leray-
Schauder degree (see [ 3 ]),

deg (Φ(0 ; ·), Σ, 0) = deg (Φ(1 ; ·), Σ, 0). (4.8)

Since both equations Φ(0;u) = 0 and Φ(1;u) = 0 have the unique positive solution û in Σ,
it follows that

{
deg (Φ(0 ; ·), Σ, 0) = index (Φ(0 ; ·), û) = (−1)0 = 1,

deg (Φ(1 ; ·), Σ, 0) = index (Φ(1 ; ·), û) = (−1)L = −1.

This contradicts (4.8) and our proof is completed.

§ 5 . Bifurcation

In this section we discuss the bifurcation of non-constant positive solutions of (1.1).
Let the parameters a, b, ` and L0 be fixed, and consider d1, d2, d3 > 0 as the bifurcation
parameters. We shall only consider the bifurcation with respect to the parameter d3 when
d1 and d2 are kept fixed.
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We say that (d̂3; û) ∈ (0, ∞)×X is a bifurcation point of (1.1) if for any δ ∈ (0, d̂3),
there exists d3 ∈ [d̂3 − δ, d̂3 + δ] such that (1.1) has a non-constant positive solution. Oth-
erwise, we say that (d̂3; û) is a regular point.

In the sequel, we shall use Sp to denote the positive spectrum of −∆ on Ω with the
homogeneous Neumann boundary condition, i.e., Sp = {µ1, µ2, · · · }. We also introduce the
notation

N (d3) = {µ > 0 | H(d1, d2, d3; µ) = 0} for d3 > 0,

where H(d1, d2, d3; µ) is given by (4.1). Then N (d3) contains at most two elements.

Theorem 5.1. (Local Bifurcation) Let d̂3 > 0 and consider the point (d̂3; û).

( i ) If Sp ∩N (d̂3) = ∅, then (d̂3; û) is a regular point of (1.1).

(ii) Suppose Sp ∩ N (d̂3) 6= ∅. If the sum
∑

µi∈N (d̂3)

m(µi) is odd, then (d̂3; û) is a

bifurcation point of (1.1).

Proof. Define

D =




d1 0 0
0 d2 0
0 0 d3


 , F(u) =




f1(u1, u2, u3)

f2(u1, u2, u3)

f3(u1, u2, u3)


 , Mi = µiI−D−1DuF(û),

and let Ψ(x) = u(x)− û. Then the problem (1.1) is equivalent to
{ −∆Ψ = D−1F(û + Ψ), x ∈ Ω,

∂nΨ = 0, x ∈ ∂Ω,

which, in turn, is equivalent to

f(d3; Ψ) ∆= Ψ− (I−∆)−1{D−1F(û + Ψ) + Ψ} = 0 on X. (5.1)

By direct computation, we have

DΨf(d3; 0) = I− (I−∆)−1(D−1DuF(û) + I ),

and as in §4, for each i, ξ is an eigenvalue of DΨf(d3; 0) on Xi if and only if ξ(1 + µi) is an
eigenvalue of the matrix Mi. Moreover, H(d1, d2, d3; µi) = det Mi.

( i ) If Sp ∩ N (d̂3) = ∅, then det Mi 6= 0 for all i, i.e., 0 is not the eigenvalue of
DΨf(d̂3; 0). This implies that DΨf(d̂3; 0) is a homeomorphism from X to itself. The
implicit function theorem shows that for all d3 close to d̂3, Ψ = 0 is the only solution to
f(d3; Ψ) = 0 in a small neighborhood of the origin, i.e., (d̂3; û) is a regular point of (5.1).

(ii) If Sp ∩ N (d̂3) 6= ∅, it is easy to show that 0 is a simple eigenvalue of Mi for any i

satisfying µi ∈ Sp ∩N (d̂3). Now, suppose on the contrary that the assertion of the theorem
is false. Then there exists a d̂3 > 0 such that the following are true:

(a) Sp ∩N (d̂3) 6= ∅, and
∑

µi∈N (d̂3)

m(µi) is odd.

(b) There exists δ ∈ (0, d̂3) such that for every d3 ∈ [d̂3 − δ, d̂3 + δ], Ψ = 0 is the only
solution to f(d3; Ψ) = 0 in a neighborhood Bδ of the origin.
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Since f(d3; ·) is a compact perturbation of an identity function, in view of (b), the
Leray-Schauder degree deg (f(d3; ·), Bδ, 0) is well defined and does not depend on d3 ∈
[d̂3 − δ, d̂3 + δ]. In addition, for those d3 ∈ [d̂3 − δ, d̂3 + δ] where DΨf(d3; 0) is invert-
ible, deg (f(d3; ·), Bδ, 0) = (−1)ν(d3), where ν(d3) is the total number of eigenvalues with
negative real parts (counting multiplicities) of DΨf(d3; 0).

Let
H̃(d1, d2, d3; µ) = d1d2d3H(d1, d2, d3; µ).

For µi ∈ Sp ∩N (d̂3), as H̃(d1, d2, d̂3; µi) = 0, the direct calculation yields

∂

∂d3
H̃(d1, d2, d̂3; µi) = −d̂−1

3 [a−1(a− 1− `− L0) + d1(1− û2)µi] < 0.

Since Sp ∩N (d̂3) contains at most two elements, there exists δ ¿ 1 such that

∂

∂d3
H̃(d1, d2, d3; µi) < 0

for all d3 ∈ [d̂3 − δ, d̂3 + δ] and µi ∈ Sp ∩N (d̂3). Therefore

H̃(d1, d2, d̂3 − δ; µi)H̃(d1, d2, d̂3 + δ; µi) < 0,

and in turn,

H(d1, d2, d̂3 − δ; µi)H(d1, d2, d̂3 + δ; µi) < 0, ∀µi ∈ Sp ∩N (d̂3). (5.2)

Since Sp does not have any accumulation point, by taking δ sufficiently small, we may
assume that N (d3)∩ Sp = ∅ for all d3 ∈ [d̂3 − δ, d̂3)∪ (d̂3, d̂3 + δ]. Therefore, DΨf(d3; 0) is
invertible for all d3 ∈ [d̂3 − δ, d̂3) ∪ (d̂3, d̂3 + δ].

Now, for each i and d3 ∈ [d̂3 − δ, d̂3 + δ], Xi is invariant under DΨf(d3; 0), and the
number of eigenvalues with negative real parts of DΨf(d3; 0) on Xi is the same as that of
the matrix Mi. Hence, modulo 2, the number of eigenvalues with negative real parts of
DΨf(d3; 0) on Xi is the same as

1
2
(1− sgn{detMi}) =

1
2
(1− sgn{H(d1, d2, d3; µi)}),

provided that H(d1, d2, d3; µi) 6= 0.

On the other hand, if µi 6∈ N (d̂3) then the number of eigenvalues with negative real
parts of DΨf(d3; 0) on Xi is independent of d3 ∈ [d̂3−δ, d̂3 +δ]; whereas if µi ∈ N (d̂3) then
the difference between the number of eigenvalues with negative real parts of DΨf(d3; 0) on
Xi for d3 = d̂3 − δ and d3 = d̂3 + δ is 1 by (5.2). Thus, modulo 2, ν(d̂3 + δ) − ν(d̂3 − δ)
is equal to the sum

∑
µi∈N (d̂3)

m(µi), which is odd. Therefore, deg (f(d̂3 − δ, ·), Bδ, 0) 6=

deg (f(d̂3+δ, ·), Bδ, 0), and we have a contradiction. This shows that (d̂3; û) is a bifurcation
point of (5.1).

Theorem 5.2. (Global Bifurcation) Let d̂3 > 0 and suppose that Sp ∩N (d̂3) 6= ∅. If
the sum

∑
µi∈N (d̂3)

m(µi) is odd, then there exists an interval (a, b) ⊂ R+ such that for every

d3 ∈ (a, b), the problem (1.1) admits a non-constant positive solution u = u(d3). Moreover,
one of the following holds:
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( i ) d̂3 = a < b < ∞ and Sp ∩N (b) 6= ∅;
(ii) 0 < a < b = d̂3 and Sp ∩N (a) 6= ∅;
(iii) u(a) = û or u(b) = û;

(iv) (a, b) = (d̂3, ∞);

( v ) (a, b) = (0, d̂3).

Proof. Let

Γ ={ d3 > 0 | Sp ∩N (d3) 6= ∅ },
S =closure{ (d3, u) ∈ R+ ×X | u > 0, u 6= û, u solves (1.1) }.

In view of the estimates (2.1) and (2.2), following the arguments of [6] or [8, pp.181–183]
and incorporating the calculation of the degree deg (f(d3; ·), Bδ, 0) that we presented in the
proof of Theorem 5.1, we can conclude that S contains a component (maximal connected
subset) C which meets (d̂3; û) such that

(1) C meets Γ× {û} at a point (d3; û) with d3 6= d̂3; or
(2) C meets {d3 > 0} × {û} at a point (d3; û) with d3 6= d̂3; or
(3) C is non-compact in (0, ∞)×X.
Now, in the case of (1), either the assertion (i) or the assertion (ii) of the theorem

holds. If (2) happens, then (iii) holds. Finally, if (3) holds, then, applying the estimates
(2.1) and (2.2), we see that either (iv) or (v) holds. This completes the proof.

§ 6 . Asymptotic Behavior

In §4 we proved that for the suitable ranges of the parameters Λ ∆= {a, `, L0} and d1

and d2, the problem (1.1) has at least one non-constant positive solution for all large d3

(Corollary 4.1). In this section we shall discuss the asymptotic behavior of such solutions as
d3 →∞.

Theorem 6.1. Let Λ, b, d1 and d2 be fixed, and let (u1i, u2i, u3i) be non-constant
positive solutions of (1.1) with d3 = d3i, where, d3i → ∞. By passing to a subsequence if
necessary, we have

lim
i→∞

(u1i, u2i, u3i) = (ũ1, ũ2, τ),

where τ is a positive constant, and (ũ1, ũ2) is a positive solution to the problem





−d1∆ũ1 = ũ1

(
1− ũ1

L0 + `ũ2

)
in Ω, ∂nũ1 = 0 on ∂Ω,

−d2∆ũ2 = ũ2

(
1− ũ2 − bτ

1 + ũ1

)
in Ω, ∂nũ2 = 0 on ∂Ω.

(6.1)

Proof. By applying Theorem 2.1 and the regularity for elliptic equations, it follows
that, for any non-negative integer k, there exists a positive constant C = C(k, Λ, b, n) such
that, for all d3i ≥ d2,

‖u1i‖Ck(Ω), ‖u2i‖Ck(Ω), ‖u3i‖Ck(Ω) ≤ C. (6.2)
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By passing to a subsequence if necessary, (u1i, u2i, u3i) → (ũ1, ũ2, ũ3) in [C2(Ω)]3 for some
nonnegative functions ũ1, ũ2 and ũ3. Moreover, since d3,i →∞, (ũ1, ũ2, ũ3) satisfies





−d1∆ũ1 = ũ1

(
1− ũ1

L0 + `ũ2

)
in Ω, ∂nũ1 = 0 on ∂Ω,

−d2∆ũ2 = ũ2

(
1− ũ2 − bũ3

1 + ũ1

)
in Ω, ∂nũ2 = 0 on ∂Ω,

−∆ũ3 = 0 in Ω, ∂nũ3 = 0 on ∂Ω.

(6.3)

Therefore, ũ3 ≡ constant ∆= τ ≥ 0. Integrating the differential equation for u3i we have
∫

Ω

u3i

(
− 1 +

au2i

1 + u1i

)
dx = 0, u3i > 0 on Ω, ∀ i. (6.4)

If τ = 0, the second equation of (6.3) yields ũ2 ≡ 0 or ũ2 ≡ 1. Since u2i → ũ2 uniformly
on Ω, we see from (6.4) that ũ2 ≡ 0 is impossible. Hence ũ2 ≡ 1, and consequently, the
first equation of (6.3) yields ũ1 ≡ 0 or ũ1 ≡ ` + L0. Since u1i → ũ1 uniformly on Ω and
a > 1 + ` + L0, we see from (6.4) that neither ũ1 ≡ 0 nor ũ1 ≡ ` + L0. This contradiction
shows that τ > 0.

As above, ũ1 6≡ 0 and ũ2 6≡ 0. The maximum principle asserts that ũ1 > 0, ũ2 > 0 on
Ω. The proof is completed.
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