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ON A PROBLEM OF SUMS OF MIXED POWERS (II)***
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Abstract

Let Rb,c(n) denote the number of representations of n as the sum of one square, four cubes,
one b-th power and one c-th power of natural numbers. It is shown that if b = 4, 4 ≤ c ≤ 35,
or b = 5, 5 ≤ c ≤ 13, or b = 6, 6 ≤ c ≤ 9, or b = c = 7, then Rb,c(n) ≫ n5/6+1/b+1/c for all

sufficiently large n.
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§1. Introduction

Let Rb,c(n) denote the number of representations of n as the sum of one square, four cubes,

one b-th power and one c-th power of natural numbers. C. Hooley[3] first got an asymptotic

formula for R3,5(n). From Brüdern’s work[2], one can easily get the asymptotic formulae

for R3,c(n) (see [5]). By improving technique, Lu[5] obtained the asymptotic formulae for

R4,c(n), where 4 ≤ c ≤ 6.

For the larger c’s, however, it is somewhat difficult to get the asymptotic formulae of

R4,c(n). But to obtain lower estimates of the expected order of magnitude for R4,c(n),

furthermore, for Rb,c(n), is of interest to us. The following results are due to Lu[5,Theorem2]:

If b = 4, 7 ≤ c ≤ 17, or b = 5, 5 ≤ c ≤ 9, or b = 6, 6 ≤ c ≤ 7, then

Rb,c(n) ≫ n
5
6+

1
b+

1
c (1.1)

for all sufficiently large n.

By combining the pruning technique with Wooley’s work[10], we obtain a larger rectangle

of (b, c) in which (1.1) is true. Exactly, we have

Theorem. If b = 4, 4 ≤ c ≤ 35, or b = 5, 5 ≤ c ≤ 13, or b = 6, 6 ≤ c ≤ 9, or b = c = 7,

then for all sufficiently large natural number n, (1.1) is true.

The manner used in the proof of each case is similar, and specially, cases b = 4 and b = 5

require furtheremore a result of Davenport’s method. For the reason, the present paper

gives the proof of (1.1) for the case b = 5, 10 ≤ c ≤ 13 only.
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§2. Notation and Auxiliary Results

Throughout η is a sufficiently small but fixed positive number, and ε is a sufficiently small

positive number, not necessarily the same in different places. Let

X = n
1

105 , R = nη,

W = nδ, δ = 10−10, (2.1)

A(n
1
3 , R) = {x : x ≤ n

1
3 , p is prime, p|x implies p ≤ R}, (2.2)

g3(α) =
∑

x∈A(n
1
3 ,R)

e(αx3), (2.3)

fk(α,m) =
∑

x≤n
1
k

(x,m)=1

e(αxk), fk(α) = fk(α, 1), (2.4)

fk(m
kα) =

∑
x≤n

1
k /m

e(αmkxk). (2.5)

For S = nρ(0 < ρ ≤ 1
2 ) and 1 ≤ a ≤ q ≤ S with (a, q) = 1, let M(q, a) denote the set of

real numbers α with

|qα− a| ≤ S/n,

M denote their union. One can observe that M(q, a) are pairwise disjoint and contained in

(S/n, 1 + S/n].

For (a, q) = 1, put

Sk(q, a) =

q∑
m=1

e(amk/q), (2.6)

Vk(α; q, a) = q−1Sk(q, a)

∫ n
1
k

0

e
((

α− a

q

)
tk
)
dt (2.7)

and define Vk(α) and ∆k(α) on M by

Vk(α) = Vk(α, q, a), α ∈ M(q, a), (2.8)

∆k(α) = fk(α)− Vk(α). (2.9)

Theorem 2 of Vaughan[7] showed that

∆k(α) ≪ q
1
2+ε(1 + n|α− a/q|) 1

2 . (2.10)

Lemma 2.1.[10] ∫ 1

0

|f3(α)|2|g3(α)|4dα ≪ n
13
12+ε.

Lemma 2.2. Suppose that t > max(4, k + 1). Then∫
M

|Vk(α)|tdα ≪ n
t
k−1.

Lemma 2.3. Suppose that X ≤ M ≤ XW . Then∫ 1

0

∑
M<p≤2M

|f3(α; p)|2|f5(p5α)|4dα ≪ n
11
15+εM−1.
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The proofs of Lemmas 2.2 and 2.3 are similar to that of Lemma 2.3 of Lu[5] and that of

Theorem 2 of Lu[4], respectively.

Next, let M(K) denote the union of intervals [aq − K
qn ,

a
q + K

qn ] with

1 ≤ a ≤ q ≤ K and (a, q) = 1.

Lemma 2.4. Suppose that

hk(α) =
∑
x∈Bk

e(αxk),

where Bk ⊂ [1, n
1
k ] is a set of integers. If K is sufficiently large, log n ≪ logK, we have∫

M(K)

|hk(α)|2dα ≪ n
1
k−1(n

1
k +K)K(logK)k+2.

Proof. Let η(h) denote the number of solutions of

h = xk − yk

subject to x, y ∈ Bk. Obviously, we have∫
M(K)

|hk(α)|2dα ≪
∑
q≤K

q∑
a=1

∑
|h|≤n

η(h)e
(ah

q

)∫ K
qn

− K
qn

e(hβ)dβ

≪ n−1K
∑
q≤K

q−1
∑
|h|≤n

η(h)

q∑
a=1

e(ah/q)

= n−1K
∑
q≤K

∑
|h|≤n
q|h

η(h).

(2.11)

If (q, l) = 1, we know that the number of solutions of

xk ≡ l(mod q)

is O(kω(q)), where ω(q) is the number of distinct prime factors of q. Thus, we have∑
q≤K

∑
|h|≤n
q|h

η(h) ≪ n
1
kK +

∑
q≤K

∑
m≤n

1
k

∑
x≤n

1
k /m

(x,y)=1,x ̸=y

mk(xk−yk)≡0(mod q)

∑
y≤n

1
k /m

1

≪ n
1
kK +

∑
q

∑
m

∑
x

xk≡yk
(
mod q

(mk,q)

)
∑
y(

y, q

(q,mk)

)
=1

1

≪ n
1
kK +

∑
q

∑
m

n
1
k

m
· kω( q

(mk,q)
)
(
1 +

n
1
k (q,mk)

qm

)
= n

1
kK +

∑
, say.

Observing that Selberg’s work[6] implies that∑
n≤x

kω(n) ≪ x(log x)k−1,
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where the constant implied by the symbol ≪ depends on k only, we have∑
≪

∑
q≤K

∑
m≤n1/k

n
1
k

m
kω(q) +

∑
rs≤K

∑
m≤n1/k

∑
s|mk

n
2
k kω(r)

rm2

≪ n
1
kK(logK)k + n

2
k

∑
r≤K

∑
m≤n

1
k

kω(r)d(mk)

rm2

≪ n
1
kK(logK)k + n

2
k (logK)k.

(2.12)

From (2.11) and (2.12), we complete the proof.

§3. The Proof of Case b=5,10≤c≤13.

By an elementary discussion, it is easy to see that

R5,c(n) ≫
∫
R
f2(α)f3(α)g

3
3(α)

( ∑
X≤p≤XW

f5(p
5α)

)
fc(α)e(−nα)dα, (3.1)

where R is any interval with length 1.

Let

Q1 = n
11
20−

1
c+3δ, Q2 = n

59
168+7δ, Q3 = n

197
560−

3
2c+5δ, Q4 = (log n)δ. (3.2)

For 1 ≤ a ≤ q ≤ Qj with (a, q) = 1 denote by Mj(q, a) the set of real numbers α with

|qα − a| < Qj/n, and denote by Mj their union. Note that Mj(q, a) are pairwise disjoint

and Mj ⊂ Mj−1(2 ≤ j ≤ 4),M1 ⊂ U = (Q1/n, 1 + Q1/n]. We choose R = U in (3.1) and

let m = U\M1, and write σ = 31
30 + 1

c henceforth.

Lemma 3.1. We have

J1 =

∫
m

f2(α)f3(α)g
3
3(α)(

∑
p

f5(p
5α))fc(α)e(−nα)dα ≪ nσ−δ, (3.3)

J2 =

∫
M1

∆2(α)f3(α)g
3
3(α)(

∑
p

f5(p
5α))fc(α)e(−nα)dα ≪ nσ−δ. (3.4)

Proof. By Weyl’s inequality, Lemma 2.1 and (3.1), we have

J1 ≪
( n

Q1

) 1
2+ε(∫ 1

0

|f2
3 (α)g

4
3(α)|dα

) 1
2
(∫ 1

0

|f3(α)f5(α)fc(α)|2dα
) 1

2

≪
( n

Q1

) 1
2+ε

· n 13
24+ε · n 1

6+
1
10+

1
2c+ε

≪ nσ−δ.

By (2.9) and in the same manner as for J1, (3.4) can be deduced.

Lemma 3.2.

J3 =

∫
M1\M2

V2(α)f3(α)g
3
3(α)

(∑
p

f5(p
5α)

)
fc(α)e(−nα)dα ≪ nσ−δ, (3.5)

J4 =

∫
M2\M3

V2(α)f3(α)g
3
3(α)

(∑
p

f5(p
5α)

)
fc(α)e(−nα)dα ≪ nσ−δ, (3.6)

J5 =

∫
M3

V2(α)∆3(α)g
3
3(α)

(∑
p

f5(p
5α)

)
fc(α)e(−nα)dα ≪ nσ−δ. (3.7)
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Proof. By Lemmas 2.1 and 2.3, (3.1) and Lemma 2.2 of Lu[5], we have

J3 ≪ (XW )
1
4

(∫
M1\M2

|V2(α)|4
∣∣∣∑

p

f5(p
5α)

∣∣∣2|fc(α)|4dα) 1
4
(∫ 1

0

|f3(α)|2|g3(α)|4dα
) 1

2

×
(∫ 1

0

|g3(α)|6dα
) 1

8
(∫ 1

0

XW
∑
p

|g3(α)|2|f5(p5α)|4dα
) 1

8

≪ (XW )
1
4 (n(n

1
5+

2
c +Q−1

2 n
2
5+

4
c ))

1
4 · n 13

24+ε · n 13
96+ε · n 11

120+ε ·W 1
4

≪ nσ−δ

and by Lemma 2.1 of Lu[5] and Lemma 2 of Brüdern[1], we have

J4 ≪
(( n

Q3

) 1
3

+Q
1
2+ε
2

)(∫
M2\M3

|V (α)|2
∣∣∣∑

p

f5(p
5α)

∣∣∣2|fc(α)|2dα) 1
2
(∫ 1

0

|g3(α)|6dα
) 1

2

≪
(( n

Q3

) 1
3

+Q
1
2+ε
2

)
(n

1
5+

1
cQ2 + n

2
5+

2
c )

1
2n

13
24+ε

≪ nσ−δ.

From (2.9), (3.1) and Hua’s inequality, we have

J5 ≪ n
1
c ·Q

1
2+ε
3

(∫
M3

|V2(α)|4dα
) 1

4
(∫ 1

0

|g3(α)|6dα
) 1

2
(∫ 1

0

|f5(α)|4dα
) 1

4

≪ n
1
c ·Q

1
2+ε
3 · n 1

4+ε · n 13
24+ε · n 1

10+ε

≪ nσ−δ.

Lemma 3.3. We have

J6 =

∫
M3\M4

V2(α)V3(α)g
3
3(α)

(∑
p

f5(p
5α)

)
fc(α)e(−nα)dα ≪ nσ(log n)−

δ
49 . (3.8)

Proof. By (3.1), Lemmas 2.2 and 2.4 and Hua’s inequality, we have

J6 ≪
∑

log Q4
log 2 <t≤[

log Q3
log2 ]+1

∫
M(2t)\M(2t−1)

|V2(α)V3(α)g
3
3(α)||fc(α)||

∑
p

|f5(p5α)|dα

≪ n
1
c ·

∑
t

max
α∈M(2t)\M(2t−1)

|V2(α)||V3(α)|
1
16

(∫
M(2t)

|V3(α)|
30
7 dα

) 7
32

×
(∫ 1

0

|g3(α)|8dα
) 1

4
(∫

M(2t)

|g3(α)|2dα
) 1

2
(∫ 1

0

|f5(α)|32dα
) 1

32

≪ nσ
∑
t

(2t)−
1
2 · (2t)− 1

48 · t5 ·
(
(2t)

1
2 +

2t

n
1
3

)
≪ nσ

∑
t

t5(2t)−
1
48

≪ nσ(log n)−
δ
49 ,

which completes the proof.

Let

W ∗(α) =
( ∑

X<p≤XW

p−1
)
W 3

3 (α)V5(α)Vc(α),
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where

W3(α) = W3(α; q, a) = q−1S3(q, a)ω3(α− a/q), α ∈ M4(q, a),

ω3(β) =
∑

Q3
4<m≤n

1

3
m− 2

3 ρ
( logm

3 logQ4

)
e(mβ),

where ρ(t) is Dickman’s function.

From Vaughan’s discussion[9], we know that

g3(α) = W3(α; q, a) +O
( n

1
3 q

log n
(1 + n|α− a

q
|)
)
, α ∈ M4(q, a),

which implies that

g33(α)−W 3
3 (α) ≪ n(log n)σ−1, α ∈ M4. (3.9)

From (2.10), we have

fc(α)− Vc(α) ≪ (log n)σ (3.10)

when α ∈ M4. And by §6 of Vaughan[8], if α ∈ M4(q, a), we have

f5(p
5α) = (qp)−1

q∑
x=1

e
(ap5x5

q

)
v4

(
α− a

q

)
+∆5(α; p)

= p−1V5(α) +O((log n)δ).

(3.11)

From (3.1), (3.10) and (3.11), it can be deduced that(∑
p

f5(p
5α)

)
g33(α)fc(α)−W ∗(α) ≪

(∑
p

1

p

)
n

6
5+

1
c (log n)δ−1 ≪ n

6
5+

1
c (log n)δ−1. (3.12)

Hence, we can easily obtain

Lemma 3.4.

J7 =

∫
M4

V2(α)V3(α)(g
3
3(α)

(∑
p

f5(p
5α)

)
fc(α)−W ∗(α))e(−nα)dα ≪ nσ(log n)−

1
2 . (3.13)

Now, from Lemmas 3.1 to 3.4, and (3.1), in order to prove the theorem for the case

b = 5, 10 ≤ c ≤ 13, it suffices to show that∫
M4

V2(α)V3(α)W
∗(α)e(−nα)dα ≫ nσ. (3.14)

Similar to that of Lu[5], the proof of (3.14) can be easily obtained.
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