# ON A PROBLEM OF SUMS OF MIXED POWERS (II)*** 

Lu MingGao* Yu Gang**


#### Abstract

Let $R_{b, c}(n)$ denote the number of representations of $n$ as the sum of one square, four cubes, one $b$-th power and one $c$-th power of natural numbers. It is shown that if $b=4,4 \leq c \leq 35$, or $b=5,5 \leq c \leq 13$, or $b=6,6 \leq c \leq 9$, or $b=c=7$, then $R_{b, c}(n) \gg n^{5 / 6+1 / b+1 / c}$ for all sufficiently large $n$.


Keywords Mixed power, Warings problem and variants, Asymptotic formulae 1991 MR Subject Classification 11A Chinese Library Classification O156.1

## §1. Introduction

Let $R_{b, c}(n)$ denote the number of representations of $n$ as the sum of one square, four cubes, one $b$-th power and one $c$-th power of natural numbers. C. Hooley ${ }^{[3]}$ first got an asymptotic formula for $R_{3,5}(n)$. From Brüdern's work ${ }^{[2]}$, one can easily get the asymptotic formulae for $R_{3, c}(n)$ (see [5]). By improving technique, $\mathrm{Lu}^{[5]}$ obtained the asymptotic formulae for $R_{4, c}(n)$, where $4 \leq c \leq 6$.

For the larger $c$ 's, however, it is somewhat difficult to get the asymptotic formulae of $R_{4, c}(n)$. But to obtain lower estimates of the expected order of magnitude for $R_{4, c}(n)$, furthermore, for $R_{b, c}(n)$, is of interest to us. The following results are due to $\mathrm{Lu}^{[5, T h e o r e m 2]}$ : If $b=4,7 \leq c \leq 17$, or $b=5,5 \leq c \leq 9$, or $b=6,6 \leq c \leq 7$, then

$$
\begin{equation*}
R_{b, c}(n) \gg n^{\frac{5}{6}+\frac{1}{b}+\frac{1}{c}} \tag{1.1}
\end{equation*}
$$

for all sufficiently large $n$.
By combining the pruning technique with Wooley's work ${ }^{[10]}$, we obtain a larger rectangle of $(b, c)$ in which (1.1) is true. Exactly, we have

Theorem. If $b=4,4 \leq c \leq 35$, or $b=5,5 \leq c \leq 13$, or $b=6,6 \leq c \leq 9$, or $b=c=7$, then for all sufficiently large natural number $n$, (1.1) is true.

The manner used in the proof of each case is similar, and specially, cases $b=4$ and $b=5$ require furtheremore a result of Davenport's method. For the reason, the present paper gives the proof of (1.1) for the case $b=5,10 \leq c \leq 13$ only.

[^0]
## §2. Notation and Auxiliary Results

Throughout $\eta$ is a sufficiently small but fixed positive number, and $\varepsilon$ is a sufficiently small positive number, not necessarily the same in different places. Let

$$
\begin{gather*}
X=n^{\frac{1}{105}}, \quad R=n^{\eta}, \\
W=n^{\delta}, \quad \delta=10^{-10},  \tag{2.1}\\
\mathcal{A}\left(n^{\frac{1}{3}}, R\right)=\left\{x: x \leq n^{\frac{1}{3}}, p \text { is prime, } p \mid x \text { implies } p \leq R\right\},  \tag{2.2}\\
g_{3}(\alpha)=\sum_{x \in \mathcal{A}\left(n^{\frac{1}{3}}, R\right)} e\left(\alpha x^{3}\right),  \tag{2.3}\\
f_{k}(\alpha, m)=\sum_{\substack{x \leq n^{\frac{1}{k}} \\
(x, m)=1}} e\left(\alpha x^{k}\right), f_{k}(\alpha)=f_{k}(\alpha, 1),  \tag{2.4}\\
f_{k}\left(m^{k} \alpha\right)=\sum_{x \leq n^{\frac{1}{k}} / m} e\left(\alpha m^{k} x^{k}\right) .
\end{gather*}
$$

For $S=n^{\rho}\left(0<\rho \leq \frac{1}{2}\right)$ and $1 \leq a \leq q \leq S$ with $(a, q)=1$, let $\mathfrak{M}(q, a)$ denote the set of real numbers $\alpha$ with

$$
|q \alpha-a| \leq S / n
$$

$\mathfrak{M}$ denote their union. One can observe that $\mathfrak{M}(q, a)$ are pairwise disjoint and contained in $(S / n, 1+S / n]$.

For $(a, q)=1$, put

$$
\begin{gather*}
S_{k}(q, a)=\sum_{m=1}^{q} e\left(a m^{k} / q\right)  \tag{2.6}\\
V_{k}(\alpha ; q, a)=q^{-1} S_{k}(q, a) \int_{0}^{n^{\frac{1}{k}}} e\left(\left(\alpha-\frac{a}{q}\right) t^{k}\right) d t \tag{2.7}
\end{gather*}
$$

and define $V_{k}(\alpha)$ and $\Delta_{k}(\alpha)$ on $\mathfrak{M}$ by

$$
\begin{gather*}
V_{k}(\alpha)=V_{k}(\alpha, q, a), \quad \alpha \in \mathfrak{M}(q, a),  \tag{2.8}\\
\Delta_{k}(\alpha)=f_{k}(\alpha)-V_{k}(\alpha) \tag{2.9}
\end{gather*}
$$

Theorem 2 of Vaughan ${ }^{[7]}$ showed that

$$
\begin{equation*}
\Delta_{k}(\alpha) \ll q^{\frac{1}{2}+\varepsilon}(1+n|\alpha-a / q|)^{\frac{1}{2}} . \tag{2.10}
\end{equation*}
$$

Lemma 2.1. ${ }^{[10]}$

$$
\int_{0}^{1}\left|f_{3}(\alpha)\right|^{2}\left|g_{3}(\alpha)\right|^{4} d \alpha \ll n^{\frac{13}{12}+\varepsilon}
$$

Lemma 2.2. Suppose that $t>\max (4, k+1)$. Then

$$
\int_{\mathfrak{M}}\left|V_{k}(\alpha)\right|^{t} d \alpha \ll n^{\frac{t}{k}-1} .
$$

Lemma 2.3. Suppose that $X \leq M \leq X W$. Then

$$
\int_{0}^{1} \sum_{M<p \leq 2 M}\left|f_{3}(\alpha ; p)\right|^{2}\left|f_{5}\left(p^{5} \alpha\right)\right|^{4} d \alpha \ll n^{\frac{11}{15}+\varepsilon} M^{-1}
$$

The proofs of Lemmas 2.2 and 2.3 are similar to that of Lemma 2.3 of $\mathrm{Lu}^{[5]}$ and that of Theorem 2 of $\mathrm{Lu}^{[4]}$, respectively.

Next, let $\mathfrak{M}(K)$ denote the union of intervals $\left[\frac{a}{q}-\frac{K}{q n}, \frac{a}{q}+\frac{K}{q n}\right]$ with

$$
1 \leq a \leq q \leq K \quad \text { and } \quad(a, q)=1
$$

Lemma 2.4. Suppose that

$$
h_{k}(\alpha)=\sum_{x \in \mathfrak{B}_{k}} e\left(\alpha x^{k}\right),
$$

where $\mathfrak{B}_{k} \subset\left[1, n^{\frac{1}{k}}\right]$ is a set of integers. If $K$ is sufficiently large, $\log n \ll \log K$, we have

$$
\int_{\mathfrak{M}(K)}\left|h_{k}(\alpha)\right|^{2} d \alpha \ll n^{\frac{1}{k}-1}\left(n^{\frac{1}{k}}+K\right) K(\log K)^{k+2}
$$

Proof. Let $\eta(h)$ denote the number of solutions of

$$
h=x^{k}-y^{k}
$$

subject to $x, y \in \mathfrak{B}_{k}$. Obviously, we have

$$
\begin{align*}
\int_{\mathfrak{M}(K)}\left|h_{k}(\alpha)\right|^{2} d \alpha & \ll \sum_{q \leq K} \sum_{a=1}^{q} \sum_{|h| \leq n} \eta(h) e\left(\frac{a h}{q}\right) \int_{-\frac{K}{q n}}^{\frac{K}{q n}} e(h \beta) d \beta \\
& \ll n^{-1} K \sum_{q \leq K} q^{-1} \sum_{|h| \leq n} \eta(h) \sum_{a=1}^{q} e(a h / q)  \tag{2.11}\\
& =n^{-1} K \sum_{q \leq K} \sum_{\substack{|h| \leq n \\
q \mid h}} \eta(h) .
\end{align*}
$$

If $(q, l)=1$, we know that the number of solutions of

$$
x^{k} \equiv l(\bmod q)
$$

is $O\left(k^{\omega(q)}\right)$, where $\omega(q)$ is the number of distinct prime factors of $q$. Thus, we have

$$
\begin{aligned}
& \sum_{\substack{q \leq K}} \sum_{\substack{|h| \leq n \\
q \mid h}} \eta(h) \ll n^{\frac{1}{k}} K+\sum_{q \leq K} \sum_{m \leq n^{\frac{1}{k}}} \sum_{\substack{x \leq n^{\frac{1}{k}} / m \\
(x, y)=1, x \neq y \\
m^{k}\left(x^{k}-y^{k}\right) \equiv 0(\bmod q)}} 1 \\
& \ll n^{\frac{1}{k}} K+\sum_{q} \sum_{m} \sum_{\substack{\frac{1}{k}} m} 1 \\
& x^{x} \equiv y^{k}\left(\bmod \frac{q}{\left(m^{k}, q\right)}\right) \\
& \ll n^{\frac{1}{k}} K+\sum_{y} \sum_{m} \frac{n^{\frac{1}{k}}}{m} \cdot k^{\omega\left(\frac{q}{\left(q, m^{k}\right)}\right)=1} \\
&\left.=n^{\left.\frac{1}{k}, q\right)}\right)\left(1+\frac{n^{\frac{1}{k}}\left(q, m^{k}\right)}{q m}\right) \\
& \\
&, \text { say. }
\end{aligned}
$$

Observing that Selberg's work ${ }^{[6]}$ implies that

$$
\sum_{n \leq x} k^{\omega(n)} \ll x(\log x)^{k-1}
$$

where the constant implied by the symbol $\ll$ depends on $k$ only, we have

$$
\begin{align*}
\sum & \ll \sum_{q \leq K} \sum_{m \leq n^{1 / k}} \frac{n^{\frac{1}{k}}}{m} k^{\omega(q)}+\sum_{r s \leq K} \sum_{m \leq n^{1 / k}} \sum_{s \mid m^{k}} \frac{n^{\frac{2}{k}} k^{\omega(r)}}{r m^{2}} \\
& \ll n^{\frac{1}{k}} K(\log K)^{k}+n^{\frac{2}{k}} \sum_{r \leq K} \sum_{m \leq n^{\frac{1}{k}}} \frac{k^{\omega(r)} d\left(m^{k}\right)}{r m^{2}}  \tag{2.12}\\
& \ll n^{\frac{1}{k}} K(\log K)^{k}+n^{\frac{2}{k}}(\log K)^{k} .
\end{align*}
$$

From (2.11) and (2.12), we complete the proof.

## §3. The Proof of Case $b=5,10 \leq c \leq 13$.

By an elementary discussion, it is easy to see that

$$
\begin{equation*}
R_{5, c}(n) \gg \int_{\mathcal{R}} f_{2}(\alpha) f_{3}(\alpha) g_{3}^{3}(\alpha)\left(\sum_{X \leq p \leq X W} f_{5}\left(p^{5} \alpha\right)\right) f_{c}(\alpha) e(-n \alpha) d \alpha \tag{3.1}
\end{equation*}
$$

where $\mathcal{R}$ is any interval with length 1 .
Let

$$
\begin{equation*}
Q_{1}=n^{\frac{11}{20}-\frac{1}{c}+3 \delta}, \quad Q_{2}=n^{\frac{59}{168}+7 \delta}, \quad Q_{3}=n^{\frac{197}{560}-\frac{3}{2 c}+5 \delta}, \quad Q_{4}=(\log n)^{\delta} \tag{3.2}
\end{equation*}
$$

For $1 \leq a \leq q \leq Q_{j}$ with $(a, q)=1$ denote by $\mathfrak{M}_{j}(q, a)$ the set of real numbers $\alpha$ with $|q \alpha-a|<Q_{j} / n$, and denote by $\mathfrak{M}_{j}$ their union. Note that $\mathfrak{M}_{j}(q, a)$ are pairwise disjoint and $\mathfrak{M}_{j} \subset \mathfrak{M}_{j-1}(2 \leq j \leq 4), \mathfrak{M}_{1} \subset \mathfrak{U}=\left(Q_{1} / n, 1+Q_{1} / n\right]$. We choose $\mathcal{R}=\mathfrak{U}$ in (3.1) and let $\mathfrak{m}=\mathfrak{U} \backslash \mathfrak{M}_{1}$, and write $\sigma=\frac{31}{30}+\frac{1}{c}$ henceforth.

Lemma 3.1. We have

$$
\begin{align*}
J_{1} & =\int_{\mathfrak{m}} f_{2}(\alpha) f_{3}(\alpha) g_{3}^{3}(\alpha)\left(\sum_{p} f_{5}\left(p^{5} \alpha\right)\right) f_{c}(\alpha) e(-n \alpha) d \alpha \ll n^{\sigma-\delta}  \tag{3.3}\\
J_{2} & =\int_{\mathfrak{M}_{1}} \Delta_{2}(\alpha) f_{3}(\alpha) g_{3}^{3}(\alpha)\left(\sum_{p} f_{5}\left(p^{5} \alpha\right)\right) f_{c}(\alpha) e(-n \alpha) d \alpha \ll n^{\sigma-\delta} \tag{3.4}
\end{align*}
$$

Proof. By Weyl's inequality, Lemma 2.1 and (3.1), we have

$$
\begin{aligned}
J_{1} & \ll\left(\frac{n}{Q_{1}}\right)^{\frac{1}{2}+\varepsilon}\left(\int_{0}^{1}\left|f_{3}^{2}(\alpha) g_{3}^{4}(\alpha)\right| d \alpha\right)^{\frac{1}{2}}\left(\int_{0}^{1}\left|f_{3}(\alpha) f_{5}(\alpha) f_{c}(\alpha)\right|^{2} d \alpha\right)^{\frac{1}{2}} \\
& \ll\left(\frac{n}{Q_{1}}\right)^{\frac{1}{2}+\varepsilon} \cdot n^{\frac{13}{24}+\varepsilon} \cdot n^{\frac{1}{6}+\frac{1}{10}+\frac{1}{2 c}+\varepsilon} \\
& \ll n^{\sigma-\delta} .
\end{aligned}
$$

By (2.9) and in the same manner as for $J_{1}$, (3.4) can be deduced.

## Lemma 3.2.

$$
\begin{align*}
J_{3} & =\int_{\mathfrak{M}_{1} \backslash \mathfrak{M}_{2}} V_{2}(\alpha) f_{3}(\alpha) g_{3}^{3}(\alpha)\left(\sum_{p} f_{5}\left(p^{5} \alpha\right)\right) f_{c}(\alpha) e(-n \alpha) d \alpha \ll n^{\sigma-\delta},  \tag{3.5}\\
J_{4} & =\int_{\mathfrak{M}_{2} \backslash \mathfrak{M}_{3}} V_{2}(\alpha) f_{3}(\alpha) g_{3}^{3}(\alpha)\left(\sum_{p} f_{5}\left(p^{5} \alpha\right)\right) f_{c}(\alpha) e(-n \alpha) d \alpha \ll n^{\sigma-\delta},  \tag{3.6}\\
J_{5} & =\int_{\mathfrak{M}_{3}} V_{2}(\alpha) \Delta_{3}(\alpha) g_{3}^{3}(\alpha)\left(\sum_{p} f_{5}\left(p^{5} \alpha\right)\right) f_{c}(\alpha) e(-n \alpha) d \alpha \ll n^{\sigma-\delta} . \tag{3.7}
\end{align*}
$$

Proof. By Lemmas 2.1 and 2.3, (3.1) and Lemma 2.2 of $\mathrm{Lu}^{[5]}$, we have

$$
\begin{aligned}
J_{3} & \ll(X W)^{\frac{1}{4}}\left(\int_{\mathfrak{M}_{1} \backslash \mathfrak{M}_{2}}\left|V_{2}(\alpha)\right|^{4}\left|\sum_{p} f_{5}\left(p^{5} \alpha\right)\right|^{2}\left|f_{c}(\alpha)\right|^{4} d \alpha\right)^{\frac{1}{4}}\left(\int_{0}^{1}\left|f_{3}(\alpha)\right|^{2}\left|g_{3}(\alpha)\right|^{4} d \alpha\right)^{\frac{1}{2}} \\
& \times\left(\int_{0}^{1}\left|g_{3}(\alpha)\right|^{6} d \alpha\right)^{\frac{1}{8}}\left(\int_{0}^{1} X W \sum_{p}\left|g_{3}(\alpha)\right|^{2}\left|f_{5}\left(p^{5} \alpha\right)\right|^{4} d \alpha\right)^{\frac{1}{8}} \\
& \ll(X W)^{\frac{1}{4}}\left(n\left(n^{\frac{1}{5}+\frac{2}{c}}+Q_{2}^{-1} n^{\frac{2}{5}+\frac{4}{c}}\right)\right)^{\frac{1}{4}} \cdot n^{\frac{13}{24}+\varepsilon} \cdot n^{\frac{13}{96}+\varepsilon} \cdot n^{\frac{11}{120}+\varepsilon} \cdot W^{\frac{1}{4}} \\
& \ll n^{\sigma-\delta}
\end{aligned}
$$

and by Lemma 2.1 of $\mathrm{Lu}^{[5]}$ and Lemma 2 of Brüdern ${ }^{[1]}$, we have

$$
\begin{aligned}
J_{4} & \ll\left(\left(\frac{n}{Q_{3}}\right)^{\frac{1}{3}}+Q_{2}^{\frac{1}{2}+\varepsilon}\right)\left(\int_{\mathfrak{M}_{2} \backslash \mathfrak{M}_{3}}|V(\alpha)|^{2}\left|\sum_{p} f_{5}\left(p^{5} \alpha\right)\right|^{2}\left|f_{c}(\alpha)\right|^{2} d \alpha\right)^{\frac{1}{2}}\left(\int_{0}^{1}\left|g_{3}(\alpha)\right|^{6} d \alpha\right)^{\frac{1}{2}} \\
& \ll\left(\left(\frac{n}{Q_{3}}\right)^{\frac{1}{3}}+Q_{2}^{\frac{1}{2}+\varepsilon}\right)\left(n^{\frac{1}{5}+\frac{1}{c}} Q_{2}+n^{\frac{2}{5}+\frac{2}{c}}\right)^{\frac{1}{2}} n^{\frac{13}{24}+\varepsilon} \\
& \ll n^{\sigma-\delta} .
\end{aligned}
$$

From (2.9), (3.1) and Hua's inequality, we have

$$
\begin{aligned}
J_{5} & \ll n^{\frac{1}{c}} \cdot Q_{3}^{\frac{1}{2}+\varepsilon}\left(\int_{\mathfrak{M}_{3}}\left|V_{2}(\alpha)\right|^{4} d \alpha\right)^{\frac{1}{4}}\left(\int_{0}^{1}\left|g_{3}(\alpha)\right|^{6} d \alpha\right)^{\frac{1}{2}}\left(\int_{0}^{1}\left|f_{5}(\alpha)\right|^{4} d \alpha\right)^{\frac{1}{4}} \\
& \ll n^{\frac{1}{c}} \cdot Q_{3}^{\frac{1}{2}+\varepsilon} \cdot n^{\frac{1}{4}+\varepsilon} \cdot n^{\frac{13}{24}+\varepsilon} \cdot n^{\frac{1}{10}+\varepsilon} \\
& \ll n^{\sigma-\delta} .
\end{aligned}
$$

## Lemma 3.3. We have

$$
\begin{equation*}
J_{6}=\int_{\mathfrak{M}_{3} \backslash \mathfrak{M}_{4}} V_{2}(\alpha) V_{3}(\alpha) g_{3}^{3}(\alpha)\left(\sum_{p} f_{5}\left(p^{5} \alpha\right)\right) f_{c}(\alpha) e(-n \alpha) d \alpha \ll n^{\sigma}(\log n)^{-\frac{\delta}{49}} . \tag{3.8}
\end{equation*}
$$

Proof. By (3.1), Lemmas 2.2 and 2.4 and Hua's inequality, we have

$$
\begin{aligned}
J_{6} & \left.\ll \sum_{\frac{\log Q_{4}}{\log 2}<t \leq\left[\frac{\log Q_{3}}{\log 2}\right]+1} \int_{\mathfrak{M}\left(2^{t}\right) \backslash \mathfrak{M}\left(2^{t-1}\right)}\left|V_{2}(\alpha) V_{3}(\alpha) g_{3}^{3}(\alpha)\right|\left|f_{c}(\alpha)\right|\left|\sum_{p}\right| f_{5}\left(p^{5} \alpha\right) \right\rvert\, d \alpha \\
& \ll n^{\frac{1}{c}} \cdot \sum_{t} \max _{\alpha \in \mathfrak{M}\left(2^{t}\right) \backslash \mathfrak{M}\left(2^{t-1}\right)}\left|V_{2}(\alpha)\right|\left|V_{3}(\alpha)\right|^{\frac{1}{16}}\left(\int_{\mathfrak{M}\left(2^{t}\right)}\left|V_{3}(\alpha)\right|^{\frac{30}{7}} d \alpha\right)^{\frac{7}{32}} \\
& \times\left(\int_{0}^{1}\left|g_{3}(\alpha)\right|^{8} d \alpha\right)^{\frac{1}{4}}\left(\int_{\mathfrak{M}\left(2^{t}\right)}\left|g_{3}(\alpha)\right|^{2} d \alpha\right)^{\frac{1}{2}}\left(\int_{0}^{1}\left|f_{5}(\alpha)\right|^{32} d \alpha\right)^{\frac{1}{32}} \\
& \ll n^{\sigma} \sum_{t}\left(2^{t}\right)^{-\frac{1}{2}} \cdot\left(2^{t}\right)^{-\frac{1}{48}} \cdot t^{5} \cdot\left(\left(2^{t}\right)^{\frac{1}{2}}+\frac{2^{t}}{n^{\frac{1}{3}}}\right) \\
& \ll n^{\sigma} \sum_{t} t^{5}\left(2^{t}\right)^{-\frac{1}{48}} \\
& \ll n^{\sigma}(\log n)^{-\frac{\delta}{49}},
\end{aligned}
$$

which completes the proof.
Let

$$
W^{*}(\alpha)=\left(\sum_{X<p \leq X W} p^{-1}\right) W_{3}^{3}(\alpha) V_{5}(\alpha) V_{c}(\alpha),
$$

where

$$
\begin{aligned}
W_{3}(\alpha) & =W_{3}(\alpha ; q, a)=q^{-1} S_{3}(q, a) \omega_{3}(\alpha-a / q), \quad \alpha \in \mathfrak{M}_{4}(q, a), \\
\omega_{3}(\beta) & =\sum_{Q_{4}^{3}<m \leq n} \frac{1}{3} m^{-\frac{2}{3}} \rho\left(\frac{\log m}{3 \log Q_{4}}\right) e(m \beta)
\end{aligned}
$$

where $\rho(t)$ is Dickman's function.
From Vaughan's discussion ${ }^{[9]}$, we know that

$$
g_{3}(\alpha)=W_{3}(\alpha ; q, a)+O\left(\frac{n^{\frac{1}{3}} q}{\log n}\left(1+n\left|\alpha-\frac{a}{q}\right|\right)\right), \quad \alpha \in \mathfrak{M}_{4}(q, a)
$$

which implies that

$$
\begin{equation*}
g_{3}^{3}(\alpha)-W_{3}^{3}(\alpha) \ll n(\log n)^{\sigma-1}, \quad \alpha \in \mathfrak{M}_{4} . \tag{3.9}
\end{equation*}
$$

From (2.10), we have

$$
\begin{equation*}
f_{c}(\alpha)-V_{c}(\alpha) \ll(\log n)^{\sigma} \tag{3.10}
\end{equation*}
$$

when $\alpha \in \mathfrak{M}_{4}$. And by $\S 6$ of Vaughan ${ }^{[8]}$, if $\alpha \in \mathfrak{M}_{4}(q, a)$, we have

$$
\begin{align*}
f_{5}\left(p^{5} \alpha\right) & =(q p)^{-1} \sum_{x=1}^{q} e\left(\frac{a p^{5} x^{5}}{q}\right) v_{4}\left(\alpha-\frac{a}{q}\right)+\Delta_{5}(\alpha ; p)  \tag{3.11}\\
& =p^{-1} V_{5}(\alpha)+O\left((\log n)^{\delta}\right)
\end{align*}
$$

From (3.1), (3.10) and (3.11), it can be deduced that

$$
\begin{equation*}
\left(\sum_{p} f_{5}\left(p^{5} \alpha\right)\right) g_{3}^{3}(\alpha) f_{c}(\alpha)-W^{*}(\alpha) \ll\left(\sum_{p} \frac{1}{p}\right) n^{\frac{6}{5}+\frac{1}{c}}(\log n)^{\delta-1} \ll n^{\frac{6}{5}+\frac{1}{c}}(\log n)^{\delta-1} \tag{3.12}
\end{equation*}
$$

Hence, we can easily obtain

## Lemma 3.4.

$$
\begin{equation*}
J_{7}=\int_{\mathfrak{M}_{4}} V_{2}(\alpha) V_{3}(\alpha)\left(g_{3}^{3}(\alpha)\left(\sum_{p} f_{5}\left(p^{5} \alpha\right)\right) f_{c}(\alpha)-W^{*}(\alpha)\right) e(-n \alpha) d \alpha \ll n^{\sigma}(\log n)^{-\frac{1}{2}} \tag{3.13}
\end{equation*}
$$

Now, from Lemmas 3.1 to 3.4 , and (3.1), in order to prove the theorem for the case $b=5,10 \leq c \leq 13$, it suffices to show that

$$
\begin{equation*}
\int_{\mathfrak{M}_{4}} V_{2}(\alpha) V_{3}(\alpha) W^{*}(\alpha) e(-n \alpha) d \alpha \gg n^{\sigma} . \tag{3.14}
\end{equation*}
$$

Similar to that of $\mathrm{Lu}^{[5]}$, the proof of (3.14) can be easily obtained.

## References

[1] Brüdern, J., Sums of squares and higher powers, J. London Math. Soc., 35:2(1987), 233-243.
[2] Brüdern, J., A problem in additive number theory, Math. Proc. Cambridge Philos. Soc., 103(1988), 27-33.
[3] Hooley, C., On a new approach to various probelems of Waring's type, in Recent Progress in Analytic Number Theory, Vol. 1, Academic Press, London 1981, 127-191.
[4] Lu, M. G., A new application of Davenport's method, Sci. China, Series A, 34:4 (1991), 385-394.
[5] Lu, M. G., On a problem of sums of mixed powers, Acta Arith., 58 (1991), 89-102.
[6] Selberg, A., Note on a paper by L. G. Sathe, J. Indian Math. Soc., 18 (1954), 83-87.
[7] Vaughan, R. C., Some remarks on Weyl sums in Topics in Classical Number Theory, Coll. Math. Soc. Janos Bolyai, Vol. II, Budapest, 34 (1984), 1585-1602.
[8] Vaughan, R. C., On Waring's problem: One square and five cubes, Quart J. Math., 365 (1986), 122-170.
[9] Vaughan, R. C., A new iterative method in Waring's problem, Acta Math., 162 (1989), 1-71.
[10] Wooley, T. D., Large improvements in Waring's problem, Ann. Math., 135 (1992), 131-164.


[^0]:    Manuscript received July 20, 1994. Revised June 21, 1996.
    *Department of Mathematics, Shanghai University (Jiading Campus), Shanghai 201800, China.
    **Department of Mathematics, University of Georgia, Athens GA 30602, USA.
    ${ }^{* * *}$ Project supported by the National Natural Science Foundation of China (Tian Yuan Found).

