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Abstract This paper is devoted to the study of fractional (q, p)-Sobolev-Poincaré in-
equalities in irregular domains. In particular, the author establishes (essentially) sharp
fractional (q, p)-Sobolev-Poincaré inequalities in s-John domains and in domains satisfying
the quasihyperbolic boundary conditions. When the order of the fractional derivative tends
to 1, our results tend to the results for the usual derivatives. Furthermore, the author ver-
ifies that those domains which support the fractional (q, p)-Sobolev-Poincaré inequalities
together with a separation property are s-diam John domains for certain s, depending
only on the associated data. An inaccurate statement in [Buckley, S. and Koskela, P.,
Sobolev-Poincaré implies John, Math. Res. Lett., 2(5), 1995, 577–593] is also pointed out.
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1 Introduction

Recall that a bounded domain Ω ⊂ Rn is a John domain if there is a constant C and a point

x0 ∈ Ω so that for each x ∈ Ω, one can find a rectifiable curve γ : [0, 1] → Ω with γ(0) = x,

γ(1) = x0 and

Cd(γ(t), ∂Ω) ≥ l(γ([0, t])) (1.1)

for each 0 < t ≤ 1. F. John used this condition in his work on elasticity (see [11]) and the term

was coined by Martio and Sarvas [14]. Smith and Stegenga [17] introduced the more general

concept of s-John domains, s ≥ 1, by replacing (1.1) with

Cd(γ(t), ∂Ω) ≥ l(γ([0, t]))s. (1.2)

The condition (1.1) is called a “twisted cone condition” in literature. Thus the condition (1.2)

should be called a “twisted cusp condition”.

In the last twenty years, s-John domains have been extensively studied in connection with

Sobolev-type inequalities (see [2, 7–8, 12–13, 17]). Recall that a bounded domain Ω ⊂ Rn,
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n ≥ 2 is said to be a (q, p)-Poincaré domain if there exists a constant Cq,p = Cq,p(Ω) such that(∫
Ω

|u(x)− uΩ|qdx
) 1

q ≤ Cq,p

(∫
Ω

|∇u(x)|pdx
) 1

p

(1.3)

for all u ∈ C∞(Ω) ∩ L1(Ω). Here uΩ = −
∫
Ω
u(x)dx. When q = p, Ω is termed a p -Poincaré

domain and when q > p, we say that Ω supports a (q, p)-Sobolev-Poincaré inequality. Buckley

and Koskela [2] have shown that a simply connected planar domain which supports a ( np
n−p , p)-

Sobolev-Poincaré inequality is a 1-John domain. Smith and Stegenga shown that an s-John

domain Ω is a p -Poincaré domain, provided that 1 ≤ s < n
n−1 + p−1

n . In particular, if 1 ≤ s <
n

n−1 , then Ω is a p -Poincaré domain for all 1 ≤ p < ∞. These results were further generalized

to the case of (q, p)-Poincaré domains in [7, 12–13].

Recently, there has been a growing interest in the study of the so-called fractional (q, p)-

Sobolev-Poincaré inequalities (see for instance [3, 9] and the references therein). In this paper,

we continue the study of the following fractional (q, p)-Sobolev-Poincaré inequality in a domain

Ω ⊂ Rn with finite Lebesgue measure, n ≥ 2,∫
Ω

|u(x)− uΩ|qdx ≤ C
(∫

Ω

∫
Ω∩B(x,τd(x,∂Ω))

|u(x)− u(y)|p

|x− y|n+pδ
dydx

) q
p

, (1.4)

where 1 ≤ p ≤ q < ∞, δ ∈ (0, 1), τ ∈ (0,∞) and the constant C does not depend on

u ∈ C(Ω) ∩ L1(Ω). If Ω supports the fractional (q, p)-Sobolev-Poincaré inequality (1.4), q ≥ p,

then we say that Ω is a fractional (q, p)-Sobolev-Poincaré domain1.

From now on, unless otherwise specified, δ ∈ (0, 1) and τ ∈ (0,∞) will be fixed constants.

Given a function u ∈ C(Ω) ∩ L1(Ω), we define gu : Ω → R as

gu(x) =

∫
Ω∩B(x,τd(x,∂Ω))

|u(x)− u(y)|p

|x− y|n+pδ
dy (1.5)

for x ∈ Ω.

It is well-known, due to Maz’ya [15–16], that the validity of a (q, p)-Sobolev-Poincaré in-

equality in Ω is equivalent to certain capacity-type estimates in Ω. Thus one would expect that

a similar equivalence result holds in the setting of fractional (q, p)-Sobolev-Poincaré inequalities

as well. Our first main result confirms this expectation.

Theorem 1.1 Let Ω ⊂ Rn, n ≥ 2 be a domain with finite Lebesgue measure and 1 ≤ p ≤
q < ∞. Then the following statements are equivalent:

(i) Ω satisfies the fractional (q, p)-Sobolev-Poincaré inequality.

(ii) For an arbitrary ball B0 ⊂ Ω, there exists a constant C = C(Ω, p, q, B0, δ, τ) such that

|A|
p
q ≤ C inf

∫
Ω

gu(x)dx (1.6)

for every measurable set A ⊂ Ω such that A ∩ B0 = ∅. The infimum above is taken over all

functions u ∈ C(Ω) ∩ L1(Ω) that satisfy u|A ≥ 1 and u|B0 = 0.

1Strictly speaking, we should also indicate the parameter δ in the definition of a fractional (q, p)-Sobolev-
Poincaré domain. But since we did not emphasize it in the definition of the fractional (q, p)-Sobolev-Poincaré
inequality either, we keep our current terminology.
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Theorem 1.1 can be regarded as a fractional version of [7, Theorem 1] and it allows us to

study the fractional (q, p)-Sobolev-Poincaré inequalities in irregular domains via capacity esti-

mates. On the other hand, as in the usual Sobolev-Poincaré case, we have standard techniques

for doing capacity estimates.

Our second main result can be regarded as an (un-weighted) fractional version of [7, Theorem

9].

Theorem 1.2 Let Ω ⊂ Rn, n ≥ 2, be an s-John domain. If p < n
δ , s < n

n−pδ and 1 ≤ p ≤
q < np

s(n−pδ)+(s−1)(p−1) , then Ω supports the fractional (q, p)-Sobolev-Poincaré inequality (1.4).

The range for q in Theorem 1.2 is essentially sharp as indicated by the following example.

Example 1.1 Given τ, δ ∈ (0, 1), 1 ≤ p < n
δ and s < n

n−pδ , there exists an s-John domain

Ω ⊂ Rn such that Ω does not support any fractional (q, p)-Sobolev-Poincaré inequality with

q > np
s(n−pδ)+(s−1)(p−1) .

Theorem 1.2 holds for the critical case q = np
s(n−pδ)+(s−1)(p−1) as well, provided that s = 1

or p = 1 (see Remark 4.2). We conjecture that Theorem 1.2 holds under the same assumptions

for the critical case.

The above s-John condition on a domain Ω is very “geometric” and it provides an effective

estimate for capacity. There is another well-known “metric” condition on Ω that is sufficient

for our capacity estimates. The condition is termed the quasihyperbolic boundary condition

in literature and it requires that the quasihyperbolic distance between each point x and a

fixed point x0 in Ω is dominated from above by (a logarithmic function of) its distance to the

boundary of Ω (see Section 2 below for precise definitions). With these understood, our third

main result can be regarded as a fractional version of [13, Theorems 1.4–1.5] and [10, Theorem

1].

Theorem 1.3 Let Ω ⊂ Rn, n ≥ 2, satisfy the quasihyperbolic boundary condition (2.1) for

some β ≤ 1. Then Ω is a fractional (q, p)-Sobolev-Poincaré domain provided that p ∈
[
1, n

δ

)
and q ∈ [p, 2β

1+β
np

n−pδ ).

Note that the condition q ∈ [p, 2β
1+β

np
n−pδ ) implies that p > 1

δ (n− n 2β
1+β ).

Example 1.2 For each q > 2β
1+β

np
n−pδ , there exists a domain Ω ⊂ Rn, n ≥ 2, satisfying (2.1)

which is not a fractional (q, p)-Sobolev-Poincaré domain. For each 1 ≤ p < 1
δ (n− n 2β

1+β ), there

exists a domain Ω ⊂ Rn, n ≥ 2, satisfying (2.1), which is not a fractional (p, p)-Sobolev-Poincaré

domain.

Recall that we say a domain Ω ⊂ Rn with a distinguished point x0 has a separation property

if there exists a constant C0 such that the following property holds: For every x ∈ Ω, there

exists a curve γ : [0, 1] → Ω with γ(0) = x, γ(1) = x0, such that for each t, either

γ([0, t]) ⊂ Bt := B(γ(t), C0d(γ(t), ∂Ω))

or each y ∈ γ([0, t])\Bt and x0 belongs to different components of Ω\∂Bt.
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Theorem 1.4 Assume that Ω ⊂ Rn is a domain of finite Lebesgue measure that satisfies

the separation property with a distinguished point x0. Let 1 ≤ p < n
δ . If Ω is a fractional

(q, p)-Sobolev-Poincaré domain with τ = 1 for some q > p, then for each x ∈ Ω, there is a

curve γ : [0, 1] → Ω with γ(0) = x, γ(1) = x0 such that

diam γ([0, t]) ≤ Cφ(d(γ(t), ∂Ω)), (1.7)

where φ(t) = t
(n−pδ)q

pδ ( 1
p−

1
q ).

The assumptions in Theorem 1.4 can be further relaxed. Indeed, Theorem 1.4 holds if

we only assume that the fractional (q, p)-Sobolev-Poincaré inequality (1.4) holds for all locally

Lipschitz continuous functions in Ω (see Remark 3.1).

Since this paper generalizes the main results of [2–3, 7, 9, 13] to the fractional setting in a

natural way, some of the arguments used in this paper are similar to ones in those papers. In

particular, we benefit a lot from [7, 9, 13]. This paper is organized as follows. Section 2 contains

the basic definitions and Section 3 contains some auxiliary results. We prove our main results,

namely, Theorems 1.1–1.2 and Example 1.1 in Section 4. In Section 5, we prove Theorem 1.3

and give the construction of Example 1.2. In the final section, i.e., Section 6, we discuss the

proof of Theorem 1.4 and point out an inaccurate statement, namely, Corollary 4.1 in [2].

2 Notations and Definitions

Recall that the quasihyperbolic metric kΩ in a domain Ω ( Rn is defined to be

kΩ(x, y) = inf
γ

∫
γ

ds

d(z, ∂Ω)
,

where the infimum is taken over all rectifiable curves γ in Ω which join x to y. This metric was

introduced by Gehring and Palka in [5]. A curve γ joining x to y for which kΩ(x, y) =
∫
γ

ds
d(z,∂Ω)

is called a quasihyperbolic geodesic. Quasihyperbolic geodesics joining any two points of a

proper subdomain of Rn always exists (see [4, Lemma 1]).

Recall that a domain Ω ⊂ Rn, n ≥ 2, is said to satisfy a β-quasihyperbolic boundary

condition, β ∈ (0, 1], if there exists a point x0 ∈ Ω and a constant C0 such that

kΩ(x, x0) ≤
1

β
log

d(x0, ∂Ω)

d(x, ∂Ω)
+ C0 (2.1)

holds for all x ∈ Ω.

Let Ω be a bounded domain in Rn, n ≥ 2. Then W = W(Ω) denotes a Whitney decompo-

sition of Ω, i.e., a collection of closed cubes Q ⊂ Ω with pairwise disjoint interiors and edges

parallel to the coordinate axes, such that Ω =
∪

Q∈W
Q, and the diameters of Q ∈ W belong to

the set {2−j : j ∈ Z} and satisfy the condition

diam(Q) ≤ dist(Q, ∂Ω) ≤ 4 diam(Q).

For j ∈ Z, we define

Wj = {Q ∈ W : diam(Q) = 2−j}.



Fractional Sobolev-Poincaré Inequalities in Irregular Domains 843

Note that when we write f(x) . g(x), we mean that f(x) ≤ Cg(x) is satisfied for all x with

some fixed constant C ≥ 1. Similarly, the expression f(x) & g(x) means that f(x) ≥ C−1g(x) is

satisfied for all x with some fixed constant C ≥ 1. We write f(x) ≈ g(x) whenever f(x) . g(x)

and f(x) & g(x).

3 Auxiliary Results

We need the following “chain lemma” from [7, Proof of Theorem 9]. Note that the condition

3 below is not stated there, however, the proof adapts to our setting and we omit the details.

Lemma 3.1 Let Ω ⊂ Rn be an s-John domain and M > 1 a fixed constant. Let B0 =

B(x0,
d(x0,∂Ω)

4M ), where x0 ∈ Ω is the John center. There exists a constant c > 0, depending only

on Ω, M and n, such that given x ∈ Ω, there exists a finite “chain” of balls Bi = B(xi, ri),

i = 0, 1, · · · , k (k depends on the choice of x) that joins x0 to x with the following properties:

(1) |Bi ∪Bi+1| ≤ c|Bi ∩Bi+1|.
(2) d(x,Bi) ≤ cr

1
s
i .

(3) d(Bi, ∂Ω) ≥ Mri.

(4)
k∑

i=0

χBi ≤ cχΩ.

(5) |x− xi| ≤ cr
1
s
i and Bk = B(x, d(x,∂Ω)

4M ).

(6) For any r > 0, the number of balls Bi with radius ri > r is less than cr
1−s
s when s > 1.

Recall that for a function f , the Riesz potential Iδ, δ ∈ (0, n) of f is defined by

Iδ(f) =

∫
Rn

f(y)

|x− y|n−δ
dy. (3.1)

The following estimate for the Riesz potential is well-known (see for instance [1, Theorem

3.1.4 and Corollary 3.1.5]).

Theorem 3.1 Let 0 < δ < n, 1 < p < q < ∞, and 1
p − 1

q = δ
n . Then ∥Iδ(f)∥q ≤ c∥f∥p

for some constant c independent of f ∈ Lp(Rn). Moreover, there is a constant c1 = c(n, δ) > 0

such that the weak estimate

sup
t>0

|{x ∈ Rn : |Iδ(f)(x)| > t}|t
n

n−δ ≤ c1∥f∥
n

n−δ

1 (3.2)

holds for every f ∈ L1(Rn).

The following proposition, which can be regarded as a fractional analogy of [2, Theorem

2.1], is proved in [3, Proposition 6.2].

Proposition 3.1 Suppose that Ω ⊂ Rn is a domain of finite Lebesgue measure. Let 1 ≤
p < q < ∞. Assume that the fractional (q, p)-Sobolev-Poincaré inequality (1.4) holds with τ = 1

for every u ∈ C(Ω) ∩ L1(Ω). Fix a ball B0 ⊂ Ω, and let d > 0 and w ∈ Ω. Then there exists a

constant C > 0 such that

diam(T ) ≤ C(d+ |T |(
1
p−

1
q )

1
δ )
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and

|T | 1
n ≤ C(d+ d

(n−pδ)q
np ),

if T is the union of all components of Ω\B(w, d) that do not intersect the ball B0. The constant

C depends only on |B0|, |Ω|, n, p, q, δ and the constant associated to the fractional (q, p)-

Sobolev-Poincaré inequality.

Remark 3.1 As in [2], one can check that the conclusion holds whenever the fractional

(q, p)-Sobolev-Poincaré inequality (1.4) with τ = 1 holds for every locally Lipschitz continuous

functions (see [3, Proof of Proposition 6.2]).

Fix a Whitney cube Q0 and assume that x0 is the center of Q0. For each cube Q ∈ W, we

choose a quasihyperbolic geodesic γ joining x0 to the center of Q and we let P (Q) denote the

collection of all the Whitney cubes Q′ ∈ W which intersect γ. Then the shadow S(Q) of the

cube Q is defined to be

S(Q) =
∪

Q1∈W
Q∈P (Q1)

Q1.

The following lemma is proved in [13, Lemma 2.6].

Lemma 3.2 Let Ω ⊂ Rn, n ≥ 2 be a domain that satisfies the quasihyperbolic boundary

condition (2.1). Then for each ε > 0, there exists a constant C = C(n, diamΩ, ε) such that

sup
Q1∈W

∑
Q∈P (Q1)

|Q|ε ≤ C. (3.3)

We also need the following estimate of the size of the shadow of a Whitney cube Q in terms

of the size of Q. The proof can be found in [10, Lemma 6]. 2

Lemma 3.3 Let Ω ⊂ Rn, n ≥ 2, be a domain that satisfies the quasihyperbolic boundary

condition (2.1). Then there exists a constant C = C(n, d(x0, ∂Ω)) such that

diamS(Q) ≤ C(diamQ)
2β

1+β

for all Q ∈ W. Consequently,

|S(Q)| ≤ C|Q|
2β

1+β . (3.4)

4 Main Proofs

Proof of Theorem 1.1 We first show that the condition (ii) implies the condition (i). Fix

a function u ∈ C(Ω) ∩ L1(Ω). Pick a real number b such that both |{x ∈ Ω : u(x) ≥ b}| and
|{x ∈ Ω : u(x) ≤ b}| are at least |Ω|

2 . It suffices to show the fractional (q, p)-Sobolev-Poincaré

inequality with |u−uΩ| replaced by |u− b|, and by replacing u with u− b, we may assume that

2I would like to thank Renjin Jiang for sharing the manuscript [10] and Aapo Kauranen for pointing out
Lemma 3.3 in their work in [10, Lemma 6].
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b = 0. Write v+ = max{u, 0} and v− = −min{u, 0}. In the sequel, v denotes either v+ or v−;

all the statements below are valid in both cases. Without loss of generality, we may assume

that v ≥ 0.

Fix a ball B0 such that 2B0 ⊂⊂ Ω. We may further assume that v|B0 = 0. In fact, let

φ ∈ C∞(Ω) satisfy 0 ≤ φ ≤ 1, spt(φ) ⊂ 2B0 and φ|B0 = 1. Note that we may write

v = φv + (1− φ)v.

The first term φv ∈ C∞(2B0\B0) and thus the fractional (q, p)-Sobolev-Poincaré inequality

holds for φv in 2B0\B0. On the other hand, the second term (1 − φ)v ∈ C(Ω) ∩ L1(Ω) and

it vanishes on B0. So if one can prove the fractional (q, p)-Sobolev-Poincaré inequality for

(1 − φ)v, then a simple computation, after summing up these two estimates, will imply the

fractional (q, p)-Sobolev-Poincaré inequality for v.

For each j ∈ Z, we define vj(x) = min{2j ,max{0, v(x)− 2j}}. We next prove the following

inequality:

2qj |{x ∈ Ω : vj(x) ≥ 2j}| ≤ C
(∫

Ω

gvj (x)dx
) q

p

. (4.1)

To see it, notice that 2−jvj |B0 = 0 and 2−jvj |Fj ≥ 1, where Fj = {x ∈ Ω : v(x) ≥ 2j+1}. So

by (1.6), we obtain that

|Fj |
p
q ≤ C

∫
Ω

g2−jvj (x)dx.

Note that g2−jvj = 2−pjgvj . Thus we finally arrive at

2pj |Fj |
p
q ≤ C

∫
Ω

gvj (x)dx,

which is the desired estimate (4.1).

The fractional (q, p)-Sobolev-Poincaré inequality now follows from the weak type estimates

via a standard argument. Write By = B(y, τd(y, ∂Ω)) and Ak = Fk−1\Fk,∫
Ω

|v(x)|qdx ≤
∞∑

k=−∞

2(k+1)q|Ak| ≤ C
∞∑

k=−∞

(∫
Ω

gvk(x)dx
) q

p

≤ C
( ∞∑

k=−∞

∫
Ω

gvk(x)dx
) q

p

≤ C
( ∞∑

k=−∞

(Ik1 + Ik2 )
) q

p

,

where

Ik1 =
∑

i≤k+1

∑
j≥k+1

∫
Ai

∫
Aj∩By

|vk(y)− vk(z)|p

|y − z|n+pδ
dzdy

and

Ik2 =
∑

i≥k+1

∑
j≤k+1

∫
Ai

∫
Aj∩By

|vk(y)− vk(z)|p

|y − z|n+pδ
dzdy.
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For y ∈ Ai and z ∈ Aj with j − 1 > i, |v(y)− v(z)| ≥ |v(z)| − |v(y)| ≥ 2j−2. Hence,

|vk(y)− vk(z)| ≤ 2k+1 ≤ 4 · 2k+1−j |v(y)− v(z)|. (4.2)

Since the estimate

|vk(y)− vk(z)| ≤ |v(y)− v(z)|

holds for every k ∈ Z, (4.2) is valid whenever i ≤ k ≤ j and (y, z) ∈ Ai × Aj . It follows

from (4.2) that

∞∑
k=−∞

Ik1 ≤ 4p
∞∑

k=−∞

∑
i≤k+1

∑
j≥k+1

2p(k+1−j)

∫
Ai

∫
Aj∩By

|v(y)− v(z)|p

|y − z|n+pδ
dzdy.

Since
j−1∑

k=i−1

2p(k+1−j) ≤ (1 − 2−p)−1, changing the order of the summation yields that the

right-hand side of the above inequality is bounded by

4p

1− 2−p

∫
Ω

gv(y)dy.

The estimate of Ik2 is similar. Thus, we have proved that∫
Ω

|v(x)|qdx ≤ C
(∫

Ω

gv(y)dy
) q

p

.

The desired fractional (q, p)-Sobolev-Poincaré inequality (1.4) follows from the above inequality

as we notice that |u| = v+ + v− and |v±(y)− v±(z)| ≤ |u(y)− u(z)| for all y, z ∈ Ω.

The implication from the condition (ii) to the condition (i) is easier. To see it, fix a mea-

surable set A ⊂ Ω such that A ∩ B0 = ∅ and a function u ∈ C(Ω) ∩ L1(Ω) such that u|A ≥ 1

and u|B0 = 0. If uΩ ≤ 1
2 , then by (1.4), we have

2−q|A| ≤
∫
A

|u(x)− uΩ|qdx ≤
∫
Ω

|u(x)− uΩ|qdx

≤ C
(∫

Ω

gu(y)dy
) q

p

.

If uΩ ≥ 1
2 , then by (1.4) we have

2−q|A| ≤ 2−q |Ω|
|B0|

|B0| ≤
|Ω|
|B0|

∫
B0

|u(x)− uΩ|qdx

≤ |Ω|
|B0|

C
(∫

Ω

gu(y)dy
) q

p

.

Combining the above two estimates, we conclude that

|A|
p
q ≤ C

∫
Ω

gu(x)dx,

where C = C(Ω, B0, p, q, δ, τ). Taking the infimum over all such u gives (1.6).
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Remark 4.1 It is clear from the proof above that the condition (ii) of Theorem 1.1 is

equivalent to the following condition: For an arbitrary cube Q0 ⊂ Ω, there exists a constant

C = C(Ω, Q0, p, q, δ, τ) such that

|A|
p
q ≤ C inf

∫
Ω

gu(x)dx

for every measurable set A ⊂ Ω with A∩Q0 = ∅. The infimum above is taken over all functions

u ∈ C(Ω) ∩ L1(Ω) that satisfy u|A ≥ 1 and u|Q0 = 0.

Proof of Theorem 1.2 Let B0 = B(x0,
d(x0,∂Ω)

4M ). Assume that p < n
δ , 1 < s < n

n−pδ and

1 ≤ p ≤ q < np
s(n−pδ)+(s−1)(p−1) . Choose ∆ > 0 such that

2∆ =
np

q
− s(n− pδ)− (s− 1)(p− 1).

It suffices to show, by Theorem 1.1, that there exists a constant C = C(Ω, B0, p, q, δ, τ) such

that for every measurable set A ⊂ Ω with A ∩B0 = ∅, we have

|A|
p
q ≤ C

∫
Ω

gu(x)dx

whenever u ∈ C(Ω)∩L1(Ω) satisfies u|A ≥ 1 and u|B0 = 0. Since Ω is bounded, we may further

assume that diamΩ = 1.

For any x ∈ A, we obtain from Lemma 3.1 a finite chain of balls Bi, i = 0, 1, · · · , k, satisfying
conditions (1)–(6) in Lemma 3.1 with M > 2

τ . For all i = 0, 1, · · · , k, we have

Bi ⊂ B(y, τd(y, ∂Ω)), if y ∈ Bi. (4.3)

To see this, fix y ∈ Bi and let z be any other point in Bi. Then by the condition (3) in

Lemma 3.1,

|z − y| ≤ |y − xi|+ |xi − z| ≤ 2ri ≤ 2
d(Bi, ∂Ω)

M

≤ 2

M
d(y, ∂Ω) < τd(y, ∂Ω).

In order to estimate |A|, we divide A into the “bad” and “good” parts. Setting

G =
{
x ∈ A | uBx ≥ 1

2

}
and B = A\G,

where Bx = B(x, d(x,∂Ω)
4M ), we have |A| ≤ |G|+ |B|. We first estimate |G|.

For x ∈ G, let {Bi}ki=0 be the associated chain of balls as described before. Then Bx = Bk.

By the condition (1) in Lemma 3.1, we have

1

2
≤ |uBk

− uB0 | ≤
k−1∑
i=0

|uBi − uBi+1 |

≤
k−1∑
i=0

(|uBi − uBi∩Bi+1 |+ |uBi+1 − uBi∩Bi+1 |)
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.
k∑

i=0

1

|Bi|

∫
Bi

|u(y)− uBi |dy.

For a ball Bi,

1

|Bi|

∫
Bi

|u(y)− uBi |dy ≤ 1

|Bi|

∫
Bi

( 1

|Bi|

∫
Bi

|u(y)− u(z)|pdz
) 1

p

dy

=
1

|Bi|1+
1
p

∫
Bi

(∫
Bi

|u(y)− u(z)|pdz
) 1

p

dy

. |Bi|
δ
n−1

∫
Bi

(∫
Bi

|u(y)− u(z)|p

|y − z|n+pδ
dz

) 1
p

dy.

By (4.3) and the condition (2) in Lemma 3.1,

k∑
i=0

1

|Bi|

∫
Bi

|u(y)− uBi |dy

.
k∑

i=0

|Bi|
δ
n−1

∫
Bi

(∫
Bi

|u(y)− u(z)|p

|y − z|n+pδ
dz

) 1
p

dy

≤
k∑

i=0

|Bi|
δ
n−1

∫
Bi

(∫
B(y,τd(y,∂Ω))

|u(y)− u(z)|p

|y − z|n+pδ
dz

) 1
p

dy

.
k∑

i=0

r
δ−n

p

i

(∫
Bi

gu(y)dy
) 1

p

.

Thus we conclude that

1 .
k∑

i=0

r
δ−n

p

i

(∫
Bi

gu(y)dy
) 1

p

.

Hölder’s inequality implies

1 .
( k∑

i=0

r
κp
p−1

i

) p−1
p
( k∑

i=0

r
p(−κ+δ−n

p )

i

∫
Bi

gu(y)dy
) 1

p

,

where κ = (s−1)(p−1)+∆
sp . Using the condition (6) from Lemma 3.1, one can easily conclude

k∑
i=0

r
κp
p−1

i ≤
∞∑
i=0

(2−i)
κp
p−1 2

i(s−1)
s < C.

Therefore,

k∑
i=0

r
p
(
−κ+δ−n

p

)
i

∫
Bi

gu(y)dy ≥ C, (4.4)

where the constant C depends only on p, n, ∆ and the constant from s-John condition.

By the condition (2) from Lemma 3.1, Cri ≥ |x−y|s for y ∈ Bi, and since p(−κ+δ− n
p ) < 0

according to our choice p ≤ n
δ , we obtain

r−κp−n+pδ
i . |x− y|s(−κp−n+pδ)



Fractional Sobolev-Poincaré Inequalities in Irregular Domains 849

for y ∈ Bi. For y ∈ Bi ∩ (2j+1Bk\2jBk), we have |x− y| ≈ 2jrk and hence for such y,

r−κp−n+pδ
i . (2jrk)

s(−κp−n+pδ). (4.5)

Combining (4.4) with (4.5) leads to

1 .
k∑

i=0

r
p
(
−κ+δ−n

p

)
i

∫
Bi

gu(y)dy . (rk)
s(−κp−n+pδ)

∫
Bi

gu(y)dy

+

| log rk|∑
j=0

(2jrk)
s(−κp−n+pδ)

∫
(2j+1Bk\2jBk)∩Ω

gu(y)dy

.
| log rk|+1∑

l=0

(2lrk)
s(−κp−n+pδ)

∫
2lBk∩Ω

gu(y)dy.

On the other hand,

| log rk|+1∑
l=0

(2lrk)
∆ < r∆k

| log rk|+1∑
l=−∞

2l∆ < C.

Comparing the above two estimates, we conclude that there exists an l (depending on ∆) such

that

(2lrk)
∆ . (2lrk)

s(−κp−n+pδ)

∫
2lBk∩Ω

gu(y)dy.

It follows that∫
Ω∩2lBk

gu(y)dy & (2lrk)
s(n+κp−pδ)+∆ = (2lrk)

s(n−pδ)+(s−1)(p−1)+2∆.

In other words, there exists an Rx ≥ d(x,∂Ω)
2 with(∫

Ω∩B(x,Rx)

gu(y)dy
) np

q[s(n−pδ)+(s−1)(p−1)+2∆] & (Rn
x)

p
q .

Note that according to our choice of ∆, the above estimate reduces to the following form:∫
Ω∩B(x,Rx)

gu(y)dy & |B(x,Rx)|
p
q .

Applying the Vitali covering lemma to the covering {B(x,Rx)}x∈E of the set B, we can select

pairwise disjoint balls B1, · · · , Bk, such that B ⊂
∞∪
i=1

5Bi. Let ri denote the radius of the ball

Bi. Then

|G| ≤
∞∑
i=1

|5Bi| = 5n
∞∑
i=1

|Bi| .
∞∑
i=1

(∫
Ω∩Bi

gu(y)dy
) q

p

.
( ∞∑

i=1

∫
Ω∩Bi

gu(y)dy
) q

p .
(∫

Ω

gu(y)dy
) q

p

.
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We next estimate |B|. Note that B ⊂
∪

x∈B
Bx. We may use the Besicovitch covering theorem

to select a subcovering {Bxi
}i∈N with bounded overlap. Since u ≥ 1 on A and uBxi

≤ 1
2 , we

obtain that

|u(y)− uBxi
|q ≥ 2−q

for y ∈ A ∩ Bxi . By the fractional (q, p)-Sobolev-Poincaré inequality for balls (see for in-

stance [9]), we get

|A ∩Bxi | ≤ C

∫
A∩Bxi

|u(y)− uBxi
|qdy

≤ C
(∫

Bxi

gu(y)dy
) q

p

.

Summing over all balls Bxi , we obtain that

|B|
p
q ≤ C

∫
Ω

gu(y)dy.

The proof of Theorem 1.2 is now complete.

Remark 4.2 In Theorem 1.2, q is assumed to be strictly less than np
s(n−pδ)+(s−1)(p−1) .

However, one can easily adapt the proof of Theorem 1.2 to show that when s = 1 or p = 1, q

can reach the critical value (the case s = 1 has already been proved in [3]). Indeed, we only

need to use a variant of Lemma 3.1. Namely, for each x ∈ Ω, we may join x to x0 via an infinite

chain of balls {Bi}i∈N with all the properties listed in Lemma 3.1 except the condition (5) in

Lemma 3.1 replaced by

|x− xi| ≤ cr
1
s
i → 0

as i → ∞. Then following the proof of Theorem 1.2, we easily deduce the following Riesz-

potential-type estimate:

|u(x)− uB0 | .
∞∑
i=1

rδ−n
i

∫
Bi

g(y)dy .
∫
Ω

g(y)

|x− y|s(n−δ)
dy.

Note that ∫
Ω

g(y)

|x− y|s(n−δ)
dy = Iβ(χΩg)(x),

where β = sδ − (s− 1)n. Thus we conclude that

|u(x)− uB0 | . Iβ(χΩg)(x).

For s = 1 and p > 1, the claim follows from the strong-type estimate in Theorem 3.1. For

p = 1, the claim follows from the weak-type estimate (3.2) and the weak-to-strong principle for

fractional Sobolev-Poincaré inequalities (see [9, Theorem 4.1]).
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Proof of Example 1.1 We will use the mushroom-like domain as used in [7]. The

mushroom-like domain Ω ⊂ Rn consists of a cube Q and an attached infinite sequence of

mushrooms F1, F2, · · · growing on the “top” of the cube. By a mushroom F of size r, we mean

a cap C, which is a ball of radius r, and an attached cylindrical stem P of height r and radius

rs. The mushrooms are disjoint, and the corresponding cylinders are perpendicular to the side

of the cube that we have selected as the top of the cube. We can make the mushrooms pairwise

disjoint if the number ri associated with Fi converges to 0 sufficiently fast as i → ∞. We further

write P = T ∪M∪D, where T is the top 3
8 -part of P, M is the middle 1

4 -part of P, and D is

the bottom 3
8 -part of P.

Let ui be a piecewise linear function on Ω such that ui = 1 on the cap Ci ∪ Ti, ui is linear

on Mi and ui = 0 elsewhere. Assume that 1 ≤ s < n
n−pδ , and that one can prove the fractional

(q, p)-Sobolev-Poincaré inequality with q > np
s(n−pδ)+(s−1)(p−1) .

Note that (∫
Ω

|u(x)− uΩ|qdx
) 1

q & r
n
q

i .

On the other hand, (∫
Ω

∫
Ω∩B(x,τd(x,∂Ω))

|u(x)− u(y)|p

|x− y|n+pδ
dx

) 1
p

=
(∫

Pi

∫
Pi∩B(x,τd(x,∂Ω))

|u(x)− u(y)|p

|x− y|n+pδ
dx

) 1
p

.
(
r−p
i

∫
Pi

d(x, ∂Ω)p(1−δ)dx
) 1

p

. (r
s(n−pδ)+(s−1)(p−1)
i )

1
p .

Thus we obtain that for all i ∈ N,

r
n
q

i . r
s(n−pδ)+(s−1)(p−1)

p

i ,

which is impossible if q > np
s(n−pδ)+(s−1)(p−1) .

5 Fractional (q, p)-Sobolev-Poincaré Inequalities in Domains with
Quasihyperbolic Boundary Conditions

Lemma 5.1 Fix p and q as in Theorem 1.3. Then there exists a constant C = C(n, p, q, β)

such that ∑
Q∈W

|S(Q) ∩ E|
p

p−1 |Q|−
n−pδ

n(p−1) ≤ C|E|
p

p−1
q−1
q

whenever E ⊂ Ω.
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Proof For simplicity, we write p∗,δ = np
n−pδ , κ = p

p−1 and λ = q
q−1 . Then n−pδ

n(p−1) = κ
p∗,δ .

Thus ∑
Q∈W

|S(Q) ∩ E|κ|Q|−
κ

p∗,δ ≤ |E|
κ
p−κ

q

∑
Q∈W

∑
Q1∈S(Q)

|Q1 ∩ E|
( |S(Q)|

1
q

|Q|
1

p∗,δ

)κ

= |E|
κ
p−κ

q

∑
Q1∈W

|Q1 ∩ E|
∑

Q∈P (Q1)

( |S(Q)|
1
q

|Q|
1

p∗,δ

)κ

. |E|
κ
p−κ

q

∑
Q1∈W

|Q1 ∩ E|
∑

Q∈P (Q1)

|Q|(
2β

1+β
1
q−

1

p∗,δ
)κ

. |E|
κ
p−κ

q

∑
Q1∈W

|Q1 ∩ E| = |E|κλ ,

where we have used (3.3)–(3.4) with ε = ( 2β
(1+β)q − 1

p∗,δ )κ > 0.

The proof of Theorem 1.3 is again based on Theorem 1.1.

Proof of Theorem 1.3 Fix Q0 ⊂ Ω to be the central Whitney cube containing x0. For

each measurable set A ⊂ Ω with A∩Q0 = ∅, let u ∈ C(Ω)∩L1(Ω) satisfy u|A ≥ 1 and u|Q0 = 0.

As in the proof of Theorem 1.2, we divide A into “good” and “bad” parts. Set

G =
{
x ∈ A | uQ ≥ 1

2
for some Whitney cube Q ∋ x

}
and B = A\G.

We have |A| ≤ |G|+ |B| and we first estimate |B|.
For points x ∈ B, the standard fractional (p∗,δ, p)-Sobolev-Poincaré inequality on cubes

provides a trivial estimate

|A ∩Q|
1

p∗,δ ≤ C
(∫

Q

|u− uQ|p
∗,δ

dy
) 1

p∗,δ ≤ C
(∫

Q

gu(y)dy
) 1

p

on Whitney cube Q containing x, where p∗,δ = np
n−pδ . Since q < p∗,δ, this yields∫

Q

gu(y)dy ≥ 1

C
|A ∩Q|

p
q ,

and by summing over all such Whitney cubes, we deduce that∫
Ω

gu(y)dy ≥ 1

C
|B|

p
q . (5.1)

We next estimate |G| and our aim is to show that∫
Ω

gu(y)dy ≥ 1

C
|G|

p
q , (5.2)

so then the conclusion follows from Theorem 1.1.

For each x ∈ G, let Q(x) be the Whitney cube containing x, for which uQ(x) ≥ 1
2 . Then the

chaining argument used in the proof of Theorem 1.2 gives us the estimate

1 .
∑

Q∈P (Q(x))

(diamQ)δ−
n
p

(∫
Q

gu(y)dy
) 1

p

. (5.3)
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Recall that P (Q(x)) consists of the collection of all the Whitney cubes which intersect the

quasi-hyperbolic geodesic joining x0 to the center of Q(x). Strictly speaking, on the right-hand

side of (5.3), one should replace Q with λQ, where 1 < λ < 11
10 is a fixed constant, when

applying the chaining argument. But a simple maximal function argument would imply that

the two quantities are comparable. We leave the details to the interested readers.

Integrating (5.3) with respect to the Lebesgue measure and interchanging the order of

summation and integration yield

|G| .
∫
G

∑
Q∈P (Q(x))

(diamQ)δ−
n
p

(∫
Q

gu(y)dy
) 1

p

dx

=
∑
Q∈W

|S(Q) ∩ G|(diamQ)δ−
n
p

(∫
Q

gu(y)dy
) 1

p

. (5.4)

Applying Hölder’s inequality leads to

|G| .
( ∑

Q∈W

|S(Q) ∩ G|
p

p−1 |Q|−
n−pδ

n(p−1)

) p−1
p
( ∑

Q∈W

∫
Q

gu(y)dy
) 1

p

≤
( ∑

Q∈W

|S(Q) ∩ G|
p

p−1 |Q|−
n−pδ

n(p−1)

) p−1
p
(∫

Ω

gu(y)dy
) 1

p

.

Applying Lemma 5.1, we find that

|G| . |G|
q−1
q

(∫
Ω

gu(y)dy
) 1

p

,

which proves (5.2).

Proof of Example 1.2 The construction here is similar to that used in the proof of

Example 1.1 and thus we only point out the difference. The mushroom-like domain Ω ⊂ Rn

consists of a cube Q and an attached infinite sequence of mushrooms F1, F2, · · · growing on

the “top” of the cube as in Example 1.1. Now, by a mushroom F of size r, we mean a cap

C, which is a ball of radius r, and an attached cylindrical stem P of height rτ and radius rσ.

The mushrooms are disjoint, and the corresponding cylinders are perpendicular to the side of

the cube that we have selected as the top of the cube. We can make the mushrooms pairwise

disjoint if the number ri associated with Fi converges to 0 sufficiently fast as i → ∞. We further

write P = T ∪M∪D, where T is the top 3
8 -part of P, M is the middle 1

4 -part of P, and D is

the bottom 3
8 -part of P.

It is easy to show that Ω satisfies the β-quasihyperbolic boundary condition (2.1) if σ =
1+β
2β ≤ τ (see for instance [13, Example 5.5]). We next show that Ω is not a fractional (q, p)-

Sobolev-Poincaré domain if

q >
np

σ(n− pδ) + (p− 1)(σ − τ)
. (5.5)

When τ = σ = 1+β
2β , (5.5) implies that Ω is a β-quasihyperbolic boundary condition which

does not support a fractional (q, p)-Sobolev-Poincaré inequality. This verifies Example 1.2.
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Let ui be a piecewise linear function on Ω such that ui = 1 on the cap Ci ∪ Ti, and ui

be linear on Mi and ui = 0 elsewhere. Assume that the fractional (q, p)-Sobolev-Poincaré

inequality holds on Ω.

Note that (∫
Ω

|u(x)− uΩ|qdx
) 1

q & r
n
q

i .

On the other hand, (∫
Ω

∫
Ω∩B(x,d(x,∂Ω))

|u(x)− u(y)|p

|x− y|n+pδ
dx

) 1
p

=
(∫

Pi

∫
Pi∩B(x,d(x,∂Ω))

|u(x)− u(y)|p

|x− y|n+pδ
dx

) 1
p

.
(
r−τp
i

∫
Pi

d(x, ∂Ω)p(1−δ)dx
) 1

p

. (r
σ(n−pδ)+(p−1)(σ−τ)
i )

1
p .

Thus we obtain that for all i ∈ N,

r
n
q

i . r
σ(n−pδ)+(p−1)(σ−τ)

p

i ,

which is impossible if q > np
σ(n−pδ)+(σ−τ)(p−1) .

6 Necessary Conditions for the Fractional (q, p)-Sobolev-Poincaré Do-
mains

Proof of Theorem 1.4 Fix x ∈ Ω. Pick a curve γ : [0, 1] → Ω with γ(0) = x and

γ(1) = x0 as in the definition of separation property.

Let 0 < t < 1 and δ(t) = d(γ(t), Cδ(t)). If γ([0, t]) ⊂ B(γ(t), Cδ(t)), then there is nothing

to prove. Otherwise, the separation property implies that ∂B = ∂B(γ(t), Cδ(t)) separates

γ([0, t])\B from x0. If the component of Ω\∂B containing x0 does not contain a ball centered

at x0 of a radius δ(1)
2 , then B must have a radius at least δ(1)

4 since it intersects both B(x0,
δ(1)
2 )

and ∂Ω. In this case, B′ = 4B contains B(x0,
δ(1)
4 ) and we may assume that B′ does not contain

γ([0, t]) (since otherwise we are done). Thus either Ω\∂B or B′ contains a ball centered at x0

of a radius comparable to δ(1). In either case, we conclude from Proposition 3.1 that

diam γ([0, t]) ≤ Cφ(d(γ(t), ∂Ω)),

where φ(t) = t
(n−pδ)q

pδ ( 1
p−

1
q ).

A bounded domain Ω ⊂ Rn with a distinguished point x0 satisfying (1.7) with φ(t) = t
1
s is

termed s-diam John in [6]. It was proved in [6] that, for s > 1, s-diam John domains are not

necessarily s-John.
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In [2, Corollary 4.1], it was stated that if a bounded domain Ω ⊂ Rn satisfies a separation

property and supports a (q, p)-Sobolev-Poincaré inequality (1.3) with q > p, then Ω is s-John

with s = p2

(n−p)(q−p) . One could immediately check that the proof given there is only sufficient

to deduce that Ω is s-diam John with s = p2

(n−p)(q−p) . In fact, combining [6, Example 5.1]

and [2, Section 4], one can produce an s-diam John domain Ω ⊂ Rn with s = p2

(n−p)(q−p) such

that Ω supports a (q, p)-Sobolev-Poincaré inequality. Moreover, Ω is not s′-diam John whenever

s′ < s and Ω is not s-John.

We next briefly discuss how to construct such an example in the plane (it works in higher

dimensions as well). Set

C(r;α, β) = C(r) = {(x1, x) : 0 < x1 < rα, |x′| < rβ},

where 0 < α < β ≤ 1 will be specified later. The idea is very simple: We first use the

mushroom-like domain Ω′ ⊂ R2 as is constructed in [2] (with different choices of parameters)

and then modify Ω′ to be a spiral domain Ω as in [6, Example 5.1].

The mushroom-like domain Ω′ ⊂ R2 consists of a cube Q and an attached infinite sequence

of mushrooms F1, F2, · · · growing on the “top” of the cube as in Example 1.1. Now, by a

mushroom F of size r, we mean a cap C, which is a ball of radius r, and an attached cylindrical

stem C(r). The mushrooms are disjoint, and the corresponding cylinders are perpendicular to

the side of the cube that we have selected as the top of the cube. We can make the mushrooms

pairwise disjoint if the numbers ri associated with Fi converge to 0 sufficiently fast as i → ∞.

Note first that if β = α p+(p−1)q
(n−1)(q−p) with n = 2, then C(r) satisfies the (q, p)-Sobolev-Poincaré

inequality uniformly in r (see [2]). Let µ = sβ = p2

(2−p)(q−p)β and p∗ = np
n−p . One can show

that Ω′ is a (q, p)-Sobolev-Poincaré domain if

α+ β(n− 1)− nq

p∗
> 0 (6.1)

holds with n = 2 (see [2]). Note also that Ω is 1
α -John.

We next bend each mushroom Fi to make it spiral so that the resulting domain Ω is an

s-diam John domain. According to our choice, s = µ
β . One can check that if β = α p+(p−1)q

q−p ,

then (6.1) reduces to

1

β
<

p2

(2− p)[p+ (p− 1)q]
. (6.2)

Since p < q < p∗, p2

(2−p)[p+(p−1)q] > 1. For any β satisfying (6.2) and β = αp+(p−1)q
q−p , it is

easy to check that 1
α > µ

β = s. It is clear that Ω′ and Ω are bi-Lipschitz equivalent, so the

(q, p)-Sobolev-Poincaré inequality holds in Ω as well. Moreover, Ω satisfies all the required

properties.

One could also modify the above example to the fractional (q, p)-Sobolev-Poincaré case, but

the computations will be too complicated, so we omit them in the present paper.
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