SEMI-GLOBAL C^{1} SOLUTION TO THE MIXED INITIAL-BOUNDARY VALUE PROBLEM FOR QUASILINEAR HYPERBOLIC SYSTEMS**

LI Ta-tsien (LI Daqian)* JIN Yi*

Abstract

By means of an equivalent invariant form of boundary conditions, the authors get the existence and uniqueness of semi-global C^{1} solution to the mixed initial-boundary value problem for quasilinear hyperbolic systems with general nonlinear boundary conditions.

Keywords Semi-global C^{1} solution, Mixed initial-boundary value problem,
Quasilinear hyperbolic system
2000 MR Subject Classification 35L50
Chinese Library Classification O175.27
Document Code A
Article ID 0252-9599(2000)03-0325-12

§1. Introduction

A systematic theory on the local C^{1} solution to the mixed initial-boundary value problem for quasilinear hyperbolic systems can be found in Li Ta-tsien \& Yu Wenci ${ }^{[1]}$ and Li Tatsien, Yu Wenci \& Shen Weixi ${ }^{[2]}$. In order to study the exact boundary controllability for quasilinear hyperbolic systems (cf. [3-5]), it is necessary to consider the semi-global C^{1} solution, i.e., the C^{1} solution on the time interval $0 \leq t \leq T_{0}$, where $T_{0}>0$ is a preassigned and possibly quite large number. M. Cirina ${ }^{[6,7]}$ considered this kind of problem for special boundary conditions, but he imposed very strong hypotheses on the coefficients of the system (globally bounded and globally Lipschitz continuous), which is a grave restriction to applications. In this paper we first improve the original theory of local C^{1} solution, and then, by establishing a uniform a priori estimate on the C^{1} norm of the solution, the successive extension of local C^{1} solution will lead to the existence and uniqueness of semiglobal C^{1} solution for the mixed initial-boundary value problem with general nonlinear boundary conditions.

Consider the following first order quasilinear hyperbolic system

$$
\begin{equation*}
\frac{\partial u}{\partial t}+A(u) \frac{\partial u}{\partial x}=F(u) \tag{1.1}
\end{equation*}
$$

[^0]where $u=\left(u_{1}, \cdots, u_{n}\right)^{T}$ is the unknown vector function of $(t, x), A(u)$ is a given $n \times n$ matrix with suitably smooth elements $a_{i j}(u)(i, j=1, \cdots, n), F(u)$ is a given vector function with suitably smooth components $f_{i}(u)(i=1, \cdots, n)$ and
\[

$$
\begin{equation*}
F(0)=0 . \tag{1.2}
\end{equation*}
$$

\]

By the definition of hyperbolicity, on the domain under consideration the matrix $A(u)$ has n real eigenvalues $\lambda_{i}(u)(i=1, \cdots, n)$ and a complete set of left eigenvectors $l_{i}(u)=$ $\left(l_{i 1}(u), \cdots, l_{i n}(u)\right)(i=1, \cdots, n)$ and, correspondingly, a complete set of right eigenvectors $r_{i}(u)=\left(r_{i 1}(u), \cdots, r_{i n}(u)\right)^{T}(i=1, \cdots, n):$

$$
\begin{align*}
& l_{i}(u) A(u)=\lambda_{i}(u) l_{i}(u) \quad(i=1, \cdots, n) \tag{1.3}\\
& A(u) r_{i}(u)=\lambda_{i}(u) r_{i}(u) \quad(i=1, \cdots, n) \tag{1.4}
\end{align*}
$$

We have

$$
\begin{equation*}
\operatorname{det}\left|l_{i j}(u)\right| \neq 0 \quad\left(\text { resp. } \quad \operatorname{det}\left|r_{i j}(u)\right| \neq 0\right) \tag{1.5}
\end{equation*}
$$

Without loss of generality, we may assume that

$$
\begin{align*}
l_{i}(u) r_{j}(u) & \equiv \delta_{i j} \quad \tag{1.6}\\
r_{i}^{T}(u) r_{i}(u) & \equiv 1 \quad(i=1, \cdots, \cdots) \tag{1.7}\\
&
\end{align*}
$$

where $\delta_{i j}$ stands for the Kronecker symbol.
In this paper we assume that on the domain under consideration, the eigenvalues satisfy the following conditions:

$$
\begin{equation*}
\lambda_{r}(u)<0<\lambda_{s}(u) \quad(r=1, \cdots, m ; s=m+1, \cdots, n) \tag{1.8}
\end{equation*}
$$

We consider the following mixed initial-boundary value problem (Problem I) for the quasilinear hyperbolic system (1.1) on the domain

$$
R(T)=\{(t, x) \mid 0 \leq t \leq T, \quad 0 \leq x \leq 1\} \quad(T>0)
$$

with the initial condition

$$
\begin{equation*}
t=0: u=\varphi(x) \quad(0 \leq x \leq 1) \tag{1.9}
\end{equation*}
$$

and the boundary conditions

$$
\begin{gather*}
x=0: \tilde{v}_{s}=g_{s}\left(t, \tilde{v}_{1}, \cdots, \tilde{v}_{m}\right)+h_{s}(t) \quad(s=m+1, \cdots, n), \tag{1.10}\\
x=1: \tilde{v}_{r}=g_{r}\left(t, \tilde{v}_{m+1}, \cdots, \tilde{v}_{n}\right)+h_{r}(t) \quad(r=1, \cdots, m), \tag{1.11}
\end{gather*}
$$

where

$$
\begin{equation*}
\tilde{v}_{i}=l_{i}(\varphi(x)) u \quad(i=1, \cdots, n) \tag{1.12}
\end{equation*}
$$

and without loss of generality, we assume that

$$
\begin{equation*}
g_{i}(t, 0, \cdots, 0) \equiv 0 \quad(i=1, \cdots, n) \tag{1.13}
\end{equation*}
$$

Moreover, the conditions of C^{1} compatibility are supposed to be satisfied at the points $(0,0)$ and $(0,1)$ respectively.

The mixed initial-boundary value problem (1.1) and (1.9)-(1.11) (Problem I) admits a unique local C^{1} solution $u=u(t, x)$ on $R(T)$ for $T>0$ suitably small (see [1, 2]), however, since (1.10)-(1.11) are not of an invariant form in the course of the successive extension of local C^{1} solution, this kind of boundary conditions is not convenient for the study of semi-global (or global) C^{1} solution. In order to get the semi-global C^{1} solution, instead of (1.10)-(1.11) we consider the following boundary conditions:

$$
\begin{equation*}
x=0: v_{s}=G_{s}\left(t, v_{1}, \cdots, v_{m}\right)+H_{s}(t) \quad(s=m+1, \cdots, n) \tag{1.14}
\end{equation*}
$$

$$
\begin{equation*}
x=1: v_{r}=G_{r}\left(t, v_{m+1}, \cdots, v_{n}\right)+H_{r}(t) \quad(r=1, \cdots, m) \tag{1.15}
\end{equation*}
$$

where

$$
\begin{equation*}
v_{i}=l_{i}(u) u \quad(i=1, \cdots, n) \tag{1.16}
\end{equation*}
$$

and without loss of generality, we assume that

$$
\begin{equation*}
G_{i}(t, 0, \cdots, 0) \equiv 0 \quad(i=1, \cdots, n) . \tag{1.17}
\end{equation*}
$$

Obviously, the boundary conditions (1.14)-(1.15) are invariant under the successive extension of local C^{1} solution, then the corresponding mixed initial-boundary value problem (1.1), (1.9) and (1.14)-(1.15) (Problem II) has an advantage for the study of semi-global (or global) C^{1} solution. Of course, we suppose that the conditions of C^{1} compatibility are still satisfied at the points $(0,0)$ and $(0,1)$ respectively for Problem II.

We first prove in $\S 2$ that when u is suitably small, Problem I is equivalent to problem II; then in $\S 3$ the existence and uniqueness of local C^{1} solution to Problem II follows from the well-known result on the existence and uniqueness of local C^{1} solution to Problem I; finally, by means of a uniform a priori estimate on the C^{1} norm of the solution to Problem II, we get the existence and uniqueness of semi-global C^{1} solution to both Problem I and Problem II, provided that the C^{1} norm of φ and H (resp. h) is small enough.

§1. Equivalence of Problem I and Problem II

In order to prove the equivalence of Problem I and Problem II, it suffices to show that the boundary conditions (1.10)-(1.11) can be equivalently replaced by the boundary conditions (1.14)-(1.15), provided that u is suitably small.

Theorem 2.1. Suppose that $l_{i j}$ (resp. $\left.r_{i j}\right), g_{i}, h_{i}, G_{i}$ and $H_{i}(i, j=1, \cdots, n)$ are all C^{1} functions with respect to their arguments. When

$$
\begin{equation*}
|u| \leq \varepsilon_{0} \tag{2.1}
\end{equation*}
$$

where $\varepsilon_{0}>0$ is a suitably small number, the boundary conditions (1.10)-(1.11) can be equivalently replaced by the boundary conditions (1.14)-(1.15), then Problem I is equivalent to Problem II.

Proof. Let

$$
\begin{equation*}
L(u)=\left(l_{i j}(u)\right) \tag{2.2}
\end{equation*}
$$

be the matrix composed by the left eigenvectors. By (1.6), for the matrix composed by the right eigenvectors

$$
\begin{equation*}
R(u)=\left(r_{i j}(u)\right) \tag{2.3}
\end{equation*}
$$

we have

$$
\begin{equation*}
R(u)=L^{-1}(u) \tag{2.4}
\end{equation*}
$$

By (1.16) we have

$$
\begin{align*}
& v=L(u) u \tag{2.5}\\
& u=R(u) v \tag{2.6}
\end{align*}
$$

Similarly, by (1.12) we have

$$
\begin{align*}
& \tilde{v}=L(\varphi(x)) u \tag{2.7}\\
& u=R(\varphi(x)) \tilde{v} \tag{2.8}
\end{align*}
$$

We now prove that the boundary condition (1.11) on $x=1$ can be equivalently replaced by the boundary condition (1.15). Similarly, we can prove that the boundary condition (1.10) on $x=1$ can be equivalently replaced by the boundary condition (1.14).

Let $x=1$. By (2.7)-(2.8) we have

$$
\begin{align*}
& \tilde{v}=L(\varphi(1)) u \tag{2.9}\\
& u=R(\varphi(1)) \tilde{v} \tag{2.10}
\end{align*}
$$

namely,

$$
\begin{align*}
& \tilde{v}_{i}=\sum_{j=1}^{n} l_{i j}(\varphi(1)) u_{j} \quad(i=1, \cdots, n), \tag{2.9}\\
& u_{i}=\sum_{j=1}^{n} r_{i j}(\varphi(1)) \tilde{v}_{j} \quad(i=1, \cdots, n) . \tag{2.10}
\end{align*}
$$

Then, it follows from (2.5) that

$$
\begin{equation*}
v=L(R(\varphi(1)) \tilde{v}) R(\varphi(1)) \tilde{v} \tag{2.11}
\end{equation*}
$$

or

$$
\begin{equation*}
v_{i}=\sum_{k=1}^{n} l_{i k}(u) u_{k}=\sum_{k, h=1}^{n} l_{i k}\left(R(\varphi(1) \tilde{v}) r_{k h}(\varphi(1)) \tilde{v}_{h}\right. \tag{2.11}
\end{equation*}
$$

Hence, noting (2.10), we get

$$
\begin{equation*}
\frac{\partial v_{i}}{\partial \tilde{v}_{j}}=\sum_{k=1}^{n} l_{i k}(u) r_{k j}(\varphi(1))+\sum_{k, l=1}^{n} \frac{\partial l_{i k}(u)}{\partial u_{l}} r_{l j}(\varphi(1)) u_{k} \tag{2.12}
\end{equation*}
$$

Thus, noting (1.6), when $u=0$ (then $\varphi(1)=0$), $\frac{\partial v_{i}}{\partial \tilde{v}_{j}}=\delta_{i j}$, then, under the hypothesis (2.1), the inverse of (2.11) can be obtained as

$$
\begin{equation*}
\tilde{v}=B(v) \tag{2.13}
\end{equation*}
$$

or

$$
\begin{equation*}
\tilde{v}_{i}=b_{i}\left(v_{1}, \cdots, v_{n}\right) \quad(i=1 \cdots, n) \tag{2.13}
\end{equation*}
$$

Suppose that (1.15) holds on $x=1$. Noting (2.11) , on $x=1$ we have

$$
\begin{align*}
\tilde{v}_{r} & =b_{r}\left(v_{1}, \cdots, v_{n}\right) \\
& =b_{r}\left(G_{1}\left(t, v_{m+1}, \cdots, v_{n}\right)+H_{1}(t), \cdots, G_{m}\left(t, v_{m+1}, \cdots, v_{n}\right)+H_{m}(t), v_{m+1}, \cdots, v_{n}\right) \\
& =\tilde{b}_{r}\left(t, v_{m+1}, \cdots, v_{n}\right) \\
& =\tilde{b}_{r}\left(t, \sum_{k, h=1}^{n} l_{m+1, k}\left(R(\varphi(1) \tilde{v}) r_{k h}(\varphi(1)) \tilde{v}_{k}, \cdots, \sum_{k, h=1}^{n} l_{n k}(R(\varphi(1)) \tilde{v}) r_{k h}(\varphi(1)) \tilde{v}_{k}\right)\right. \\
& \quad(r=1, \cdots, m) . \tag{2.14}
\end{align*}
$$

Hence, noting (2.12), for $r, \bar{r}=1, \cdots, m$ we get

$$
\begin{equation*}
\frac{\partial \tilde{b}_{r}}{\partial \tilde{v}_{\bar{r}}}=\sum_{s=m+1}^{n} \frac{\partial \tilde{b}_{r}}{\partial v_{s}}\left(t, v_{m+1}, \cdots, v_{n}\right)\left[\sum_{k=1}^{n} l_{s k}(u) r_{k \bar{r}}(\varphi(1))+\sum_{k, l=1}^{n} \frac{\partial l_{s k}(u)}{\partial u_{l}} r_{l \bar{r}}(\varphi(1)) u_{k}\right] . \tag{2.15}
\end{equation*}
$$

Noting (1.6), we have

$$
\begin{equation*}
\sum_{k=1}^{n} l_{s k}(u) r_{k \bar{r}}(\varphi(1))=\sum_{k=1}^{n}\left(l_{s k}(u)-l_{s k}(\varphi(1))\right) r_{k \bar{r}}(\varphi(1)) \quad(\bar{r}=1, \cdots, m ; s=m+1, \cdots, n) \tag{2.16}
\end{equation*}
$$

then it follows from (2.15) that when $u=0($ then $\varphi(1)=0)$,

$$
\begin{equation*}
\frac{\partial \tilde{b}_{r}}{\partial \tilde{v}_{\bar{r}}}=0 \quad(r, \bar{r}=1, \cdots, m) \tag{2.17}
\end{equation*}
$$

Hence, it is easy to see that under the hypothesis (2.1), on $x=1$ (2.14) then the boundary condition (1.15) on $x=1$ can be rewritten in a form of (1.11).

Similarly, the boundary condition (1.11) on $x=1$ can be rewritten in a from of (1.15). This finishes the proof.

Theorem 2.2. Under the hypotheses of Theorem 2.1, the functions $h(t)=\left(h_{1}(t), \cdots\right.$, $\left.h_{n}(t)\right)$ and $H(t)=\left(H_{1}(t), \cdots, H_{n}(t)\right)$ in two equivalent boundary conditions (1.10)-(1.11) and (1.14)-(1.15) satisfy the following relationships: for any given $l_{i j}(u)$ and $g_{i}(t, \cdot)$ (resp. $G(t, \cdot))(i, j=1, \cdots, n)$, there exist two positive constants C_{1} and C_{2} depending only on ε_{0}, such that on the domain under consideration we have

$$
\begin{gather*}
C_{1}\|h\|_{0} \leq\|H\|_{0} \leq C_{2}\|h\|_{0} \tag{2.18}\\
\|h\|_{1} \rightarrow 0 \Leftrightarrow\|H\|_{1} \rightarrow 0 \tag{2.19}
\end{gather*}
$$

where $\left\|\|_{0}\right.$ and $\| \|_{1}$ stand for the C^{0} norm and the C^{1} norm respectively:

$$
\begin{equation*}
\|h\|_{0}=\sup _{\substack{i=1, \cdots, n \\ t}}\left|h_{i}(t)\right|, \quad\|h\|_{1}=\sup _{\substack{i=1, \cdots, n \\ t}}\left(\left|h_{i}(t)\right|+\left|h_{i}^{\prime}(t)\right|\right), \quad \text { etc. } \tag{2.20}
\end{equation*}
$$

Proof. We still consider the situation on $x=1$. By Theorem 2.1, under the hypothesis (2.1), (1.11) is equivalent to (1.15).

We take

$$
\begin{equation*}
\tilde{v}_{s}=0 \quad(s=m+1, \cdots, n) \tag{2.21}
\end{equation*}
$$

on $x=1$, then, noting (1.13), it follows from (1.11) that

$$
\begin{equation*}
\tilde{v}_{r}=h_{r}(t) \quad(r=1, \cdots, m) . \tag{2.22}
\end{equation*}
$$

By (2.10), we have

$$
\begin{equation*}
u=\sum_{p=1}^{m} r_{p}(\varphi(1)) h_{p}(t) \tag{2.23}
\end{equation*}
$$

namely,

$$
\begin{equation*}
u_{k}=\sum_{p=1}^{m} r_{k p}(\varphi(1)) h_{p}(t) \quad(k=1, \cdots, n) \tag{2.23}
\end{equation*}
$$

then it follows from $(2.11)^{\prime}$ that

$$
\begin{equation*}
v_{i}=\sum_{k=1}^{n} l_{i k}(u) u_{k}=\sum_{k=1}^{n} l_{i k}\left(\sum_{p=1}^{m} r_{p}(\varphi(1)) h_{p}(t)\right) \sum_{q=1}^{m} r_{k q}(\varphi(1)) h_{q}(t) . \tag{2.24}
\end{equation*}
$$

Hence, by (1.15) we get

$$
\begin{align*}
H_{r}(t)= & \sum_{k=1}^{n} l_{r k}(u) \sum_{q=1}^{m} r_{k q}(\varphi(1)) h_{q}(t)-G_{r}\left(t, \sum_{k=1}^{n} l_{m+1, k}(u) \sum_{q=1}^{m} r_{k q}(\varphi(1)) h_{q}(t), \cdots,\right. \\
& \left.\sum_{k=1}^{n} l_{n k}(u) \sum_{q=1}^{m} r_{k q}(\varphi(1)) h_{q}(t)\right) \quad(r=1, \cdots, m) \tag{2.25}
\end{align*}
$$

then

$$
\begin{align*}
H_{r}^{\prime}(t)= & \sum_{k, h=1}^{n} \frac{\partial l_{r k}(u)}{\partial u_{h}} \sum_{p=1}^{m} r_{h p}(\varphi(1)) h_{p}^{\prime}(t) u_{k}+\sum_{k=1}^{n} l_{r k}(u) \sum_{q=1}^{m} r_{k q}(\varphi(1)) h_{q}^{\prime}(t) \\
& -\frac{\partial G_{r}}{\partial t}-\sum_{s=m+1}^{n} \frac{\partial G_{r}}{\partial v_{s}}\left\{\sum_{k, h=1}^{n} \frac{\partial l_{s k}(u)}{\partial u_{h}} \sum_{p=1}^{m} r_{h p}(\varphi(1)) h_{p}^{\prime}(t) u_{k}\right. \\
& \left.+\sum_{k=1}^{n} l_{s k}(u) \sum_{q=1}^{m} r_{k q}(\varphi(1)) h_{q}^{\prime}(t)\right\} \quad(r=1, \cdots, m) \tag{2.26}
\end{align*}
$$

Noting (1.17), we have

$$
\begin{equation*}
\frac{\partial G_{i}}{\partial t}(t, 0, \cdots, 0) \equiv 0 \quad(i=1, \cdots, n) \tag{2.26}
\end{equation*}
$$

Hence, under the hypothesis (2.1), it follows immediately from (2.25) and (2.26) that

$$
\begin{align*}
\|H\|_{0} & \leq C_{2}\|h\|_{0} \tag{2.28}\\
\left\|H^{\prime}\right\|_{0} & \leq B\left(\|h\|_{1}\right) \tag{2.29}
\end{align*}
$$

where $B=B(y)$ is an increasing continuous function with $B(0)=0$, then we get

$$
\begin{equation*}
\|h\|_{1} \rightarrow 0 \Rightarrow\|H\|_{1} \rightarrow 0 \tag{2.30}
\end{equation*}
$$

Similarly, taking

$$
\begin{equation*}
v_{s}=0 \quad(s=m+1, \cdots, n) \tag{2.31}
\end{equation*}
$$

on $x=1$ and noting (1.17), it following from (1.15) that

$$
\begin{equation*}
v_{r}=H_{r}(t) \quad(r=1, \cdots, m) \tag{2.32}
\end{equation*}
$$

By (2.5) and (2.7) and noting (2.6), on $x=1$ we have

$$
\begin{equation*}
v_{i}-\tilde{v}_{i}=\sum_{k=1}^{n}\left(l_{i k}(u)-l_{i k}(\varphi(1))\right) u_{k} \tag{2.33}
\end{equation*}
$$

in which

$$
\begin{equation*}
u=\sum_{p=1}^{m} r_{p}(u) H_{p}(t) \tag{2.34}
\end{equation*}
$$

namely,

$$
\begin{equation*}
u_{k}=\sum_{p=1}^{m} r_{k p}(u) H_{p}(t) \quad(k=1, \cdots, n) . \tag{2.34}
\end{equation*}
$$

Thus, by (1.11) we get

$$
\begin{align*}
h_{r}(t)= & H_{r}(t)-\sum_{k=1}^{n}\left(l_{r k}(u)-l_{r k}(\varphi(1))\right) u_{k}-g_{r}\left(t,-\sum_{k=1}^{n}\left(l_{m+1, k}(u)-l_{m+1, k}(\varphi(1))\right) u_{k}\right. \\
& \left.\cdots,-\sum_{k=1}^{n}\left(l_{n k}(u)-l_{n k}(\varphi(1))\right) u_{k}\right) \quad(r=1, \cdots, m) \tag{2.35}
\end{align*}
$$

then

$$
\begin{align*}
h_{r}^{\prime}(t)= & H_{r}^{\prime}(t)-\sum_{k, h=1}^{n} \frac{\partial l_{r k}(u)}{\partial u_{h}} \frac{\partial u_{h}}{\partial t} u_{k}-\sum_{k=1}^{n}\left(l_{r k}(u)-l_{r k}(\varphi(1))\right) \frac{\partial u_{k}}{\partial t}-\frac{\partial g_{r}}{\partial t} \\
+ & \sum_{s=m+1}^{n} \frac{\partial g_{r}}{\partial \tilde{v}_{s}}\left(\sum_{k, h=1}^{n} \frac{\partial l_{s k}(u)}{\partial u_{h}} \frac{\partial u_{h}}{\partial t} u_{k}+\sum_{k=1}^{n}\left(l_{s k}(u)-l_{s k}(\varphi(1))\right) \frac{\partial u_{k}}{\partial t}\right) \\
& (r=1, \cdots, m) . \tag{2.36}
\end{align*}
$$

By (2.5)-(2.6) and noting (2.31)-(2.32), under the hypothesis (2.1), it is easy to see that there exist two positive constants C_{3} and C_{4} depending only on ε_{0}, such that on $x=1$ we have

$$
\begin{equation*}
C_{3}\|H\|_{0} \leq\|u\|_{0} \leq C_{4}\|H\|_{0} \tag{2.37}
\end{equation*}
$$

Moreover, differentiating (2.34) with respect to t, on $x=1$ we get

$$
\begin{equation*}
\frac{\partial u_{k}}{\partial t}=\sum_{p=1}^{m} r_{k p}(u) H_{p}^{\prime}(t)+\sum_{p=1}^{m} \sum_{h=1}^{n} \frac{\partial r_{k p}(u)}{\partial u_{h}} \frac{\partial u_{h}}{\partial t} H_{p}(t) \tag{2.38}
\end{equation*}
$$

then, noting (2.37), under the hypothesis (2.1) it is easy to see that on $x=1$ we have

$$
\begin{equation*}
\left\|\frac{\partial u}{\partial t}\right\|_{0} \leq C_{5}\left\|H^{\prime}\right\|_{0} \tag{2.39}
\end{equation*}
$$

where C_{5} is a positive constant depending only on ε_{0}.
Noting (1.13), we have

$$
\begin{equation*}
\frac{\partial g_{i}}{\partial t}(t, 0, \cdots, 0) \equiv 0 \quad(i=1, \cdots, n) \tag{2.40}
\end{equation*}
$$

then, under the hypothesis (2.1), it follows from (2.35) and (2.36) that

$$
\begin{align*}
C_{1}\|h\|_{0} & \leq\|H\|_{0} \tag{2.41}\\
\left\|h^{\prime}\right\|_{0} & \leq b\left(\|H\|_{1}\right) \tag{2.42}
\end{align*}
$$

where $b=b(y)$ is an increasing continuous function with $b(0)=0$, hence we get

$$
\begin{equation*}
\|H\|_{1} \rightarrow 0 \Rightarrow\|h\|_{1} \rightarrow 0 \tag{2.43}
\end{equation*}
$$

The proof of Theorem 2.2 is complete.

§3. Local C^{1} Solution to the Mixed Initial-Boundary Value Problem

By means of the theory on the local C^{1} solution to the mixed initial-boundary value problem in [1, 2], we can obtain the following

Theorem 3.1. Suppose that $l_{i j}(w), \lambda_{i}(u), f_{i}(u), g_{i}(t,),. h_{i}(t)(i, j=i, \cdots, n)$ and $\varphi(x)$ are all C^{1} functions with respect to their arguments. Suppose furthermore that (1.2), (1.5), (1.8) and (1.13) hold. Suppose finally that the corresponding conditions of C^{1} compatibility are satisfied at points $(0,0)$ and $(0,1)$ respectively. Then, for any given $A(u), F(u)$ and $g_{i}(t, \cdot)(i=1, \cdots, n)$, there exists a positive constant $\delta=\delta\left(\|\varphi\|_{1},\|h\|_{1}\right)$ depending only on the C^{1} norms $\|\varphi\|_{1}$ and $\|h\|_{1}$, such that Problem I admits a unique C^{1} solution $u=u(t, x)$ on the domain

$$
\begin{equation*}
R(\delta)=\{(t, x) \mid 0 \leq t \leq \delta, \quad 0 \leq x \leq 1\} \tag{3.1}
\end{equation*}
$$

Moreover, when $\|\varphi\|_{1}$ and $\|h\|_{1}$ are suitably small, we have

$$
\begin{equation*}
|u(t, x)| \leq \varepsilon_{0}, \quad \forall(t, x) \in R(\delta) \tag{3.2}
\end{equation*}
$$

where ε_{0} is the small positive contant given in Theorem 2.1.
Thus, by means of Theorem 2.1 and Theorem 2.2 we have
Theorem 3.2. Suppose that $l_{i j}(u), \lambda_{i}(u), f_{i}(u), G_{i}(t,),. H_{i}(t)(i, j=1, \cdots, n)$ and $\varphi(x)$ are all C^{1} functions with respect to their arguments. Suppose furthermore that (1.2), (1.5), (1.8) and (1.17) hold. Suppose finally the corresponding conditions of C^{1} compatibility are satisfied at points $(0,0)$ and $(0,1)$ respectively. Then for any given $A(u), F(u)$ and $G_{i}(t,).(i=1, \cdots, n)$, if the C^{1} norms $\|\varphi\|_{1}$ and $\|H\|_{1}$ are suitably small, Problem II admits a unique C^{1} solution $u=u(t, x)$ on the domain (3.1), where δ is a positive constant depending only on $\|\varphi\|_{1}$ and $\|H\|_{1}: \delta=\delta\left(\|\varphi\|_{1},\|H\|_{1}\right)$.

Proof. We only consider the solution $u=u(t, x)$ satisfying $|u| \leq \varepsilon_{0}$. By Theorem 2.2, when $\|\varphi\|_{1}$ and $\|H\|_{1}$ are suitably small, $\|h\|_{1}$ is also small, then by Theorem 3.1, the corresponding Problem I admits a unique C^{1} solution $u=u(t, x)$ and (3.2) holds. Hence, by Theorem 2.1, Problem II is equivalent to Problem I, then $u=u(t, x)$ is also the unique C^{1} solution to Problem II on the domain (3.1). Moreover, noting (2.28)-(2.29) and (2.41)(2.42), from $\delta=\delta\left(\|\varphi\|_{1},\|h\|_{1}\right)$ we get $\delta=\delta\left(\|\varphi\|_{1},\|H\|_{1}\right)$.

§4. Semi-Global C^{1} Solution to the Mixed Initial-Boundary Value Problem

In this section we will prove the following two main theorems.
Theorem 4.1. Under the hypotheses of Theorem 3.1, for any given $T_{0}>0$, the mixed initial-boundary value problem (1.1) and (1.9)-(1.11) (Problem I) admits a unique C^{1} solution $u=u(t, x)$ on the domain

$$
\begin{equation*}
R\left(T_{0}\right)=\left\{(t, x) \mid 0 \leq t \leq T_{0}, 0 \leq x \leq 1\right\} \tag{4.1}
\end{equation*}
$$

provided that $\|\varphi\|_{C^{1}[0,1]}$ and $\|h\|_{C^{1}\left[0, T_{0}\right]}$ are suitably small (depending on T_{0}).
Theorem 4.2. Under the hypotheses of Theorem 3.2, for any given $T_{0}>0$, the mixed initial-boundary value problem (1.1), (1.9) and (1.14)-(1.15) (Problem II) admits a unique C^{1} solution $u=u(t, x)$ on the domain (4.1), provided that $\|\varphi\|_{C^{1}[0,1]}$ and $\|H\|_{C^{1}\left[0, T_{0}\right]}$ are suitably small (depending on T_{0}).

We refer to these solutions as semi-global C^{1} solutions.
We first prove Theorem 4.2. By Theorem 3.2, for this purpose it is only necessary to prove the following

Lemma 4.1. Under the hypotheses of Theorem 3.2, for any given $T_{0}>0$, if $\|\varphi\|_{C^{1}[0,1]}$ and $\|H\|_{C^{1}\left[0, T_{0}\right]}$ are suitably small (depending on T_{0}), then, for any C^{1} solution $u=u(t, x)$ to Problem II on the domain

$$
\begin{equation*}
R(T)=\{(t, x) \mid 0 \leq t \leq T, 0 \leq x \leq 1\} \tag{4.2}
\end{equation*}
$$

with $0<T \leq T_{0}$, we have the following uniform a priori estimate:

$$
\begin{equation*}
\|u(t, .)\|_{1} \triangleq\|u(t, .)\|_{0}+\left\|u_{x}(t, .)\right\|_{0} \leq C\left(T_{0}\right), \quad \forall 0 \leq t \leq T \tag{4.3}
\end{equation*}
$$

where $C\left(T_{0}\right)$ is a sufficiently small positive constant independent of T but possibly depending on T_{0}.

Proof. Let $v=\left(v_{1}, \cdots, v_{n}\right)$ be defined by (1.16) and

$$
\begin{equation*}
w_{i}=l_{i}(u) u_{x} \quad(i=1, \cdots, n) \tag{4.4}
\end{equation*}
$$

By (1.6), we have

$$
\begin{align*}
u & =\sum_{i=1}^{n} v_{i} r_{i}(u) \tag{4.5}\\
u_{x} & =\sum_{i=1}^{n} w_{i} r_{i}(u) . \tag{4.6}
\end{align*}
$$

Noting (1.7), it suffices to estimate $\|v(t, \cdot)\|_{0}$ and $\|w(t, \cdot)\|_{0}$.
It is easy to see that (cf. [8-10])

$$
\begin{align*}
\frac{d v_{i}}{d_{i} t} & =\sum_{j, k=1}^{n} \beta_{i j k}(u) v_{j} w_{k}+\sum_{j=1}^{n} \tilde{\beta}_{i j}(u) f_{j}(u), \tag{4.7}\\
\frac{d w_{i}}{d_{i} t} & =\sum_{j, k=1}^{n} \gamma_{i j k}(u) w_{j} w_{k}+\sum_{j=1}^{n} \tilde{\gamma}_{i j}(u) w_{j}, \tag{4.8}
\end{align*}
$$

where

$$
\begin{equation*}
\frac{d}{d_{i} t}=\frac{\partial}{\partial t}+\lambda_{i}(u) \frac{\partial}{\partial x} \tag{4.9}
\end{equation*}
$$

denotes the directional derivative along the i-th characteristic,

$$
\begin{gather*}
\beta_{i j k}(u)=\left(\lambda_{k}(u)-\lambda_{i}(u)\right) l_{i}(u) \nabla r_{j}(u) r_{k}(u) \tag{4.10}\\
\gamma_{i j k}(u)=\frac{1}{2}\left\{\left(\lambda_{j}(u)-\lambda_{k}(u)\right) l_{i}(u) \nabla r_{k}(u) r_{j}(u)-\nabla \lambda_{k}(u) r_{j}(u) \delta_{i k}+(j \mid k)\right\}, \tag{4.11}
\end{gather*}
$$

in which $(j \mid k)$ stands for all terms obtained by changing j and k in the previous terms, and

$$
\begin{align*}
& \tilde{\beta}_{i j}(u)=l_{i j}(u)-\sum_{h, k=1}^{n}\left(l_{i}(u) \nabla r_{k}(u) r_{k}(u)\right)\left(l_{h}(u) u\right) l_{k j}(u), \tag{4.12}\\
& \tilde{\gamma}_{i j}(u)=l_{i}(u) \nabla F(u) r_{j}(u)-\sum_{k=1}^{n}\left(l_{i}(u) \nabla r_{j}(u) r_{k}(u)\right)\left(l_{k}(u) F(u)\right) . \tag{4.13}
\end{align*}
$$

For the time being we assume that on the domain $R(T)$

$$
\begin{equation*}
|v(t, x)| \leq \frac{\eta_{0}}{n}, \quad|w(t, x)| \leq \eta_{1}, \tag{4.14}
\end{equation*}
$$

where η_{0} and η_{1} are suitably small positive constants. Then, by (4.5) and noting (1.7), we have

$$
\begin{equation*}
|u(t, x)| \leq \eta_{0}, \quad \forall(t, x) \in R(T) \tag{4.15}
\end{equation*}
$$

At the end of the proof, we will show the validity of hypothesis (4.14).
Let

$$
\begin{align*}
T_{1} & =\max _{\substack{i=1, \ldots, n \\
|u| \leq \eta_{0}}} \frac{1}{\left|\lambda_{i}(u)\right|}>0 \tag{4.16}\\
v(\tau) & =\sup _{0 \leq t \leq \tau}\|v(t, .)\|_{0}, \quad w(\tau)=\sup _{0 \leq t \leq \tau}\|w(t, .)\|_{0} . \tag{4.17}
\end{align*}
$$

For any given point $(t, x) \in R\left(T_{1}\right)$, we draw down the r-th characteristic $(r=1, \cdots, m)$ passing through (t, x). Noting (1.8) and (4.16), there are only two possibilities:
(a) This r-th characteristic intersects the x-axis at a point $(0, \alpha)$. Integrating the r-th equation in (4.7) along this characteristic from 0 to t, and noting (1.2), (1.7) and (4.14)-
(4.15), we get

$$
\begin{equation*}
\left|v_{r}(t, x)\right| \leq\|v(0, .)\|_{0}+C_{1} \int_{0}^{t} v(\tau) d \tau \tag{4.18}
\end{equation*}
$$

here and hereafter, $C_{i}(i=1,2, \cdots)$ denote positive constants.
(b) This r-characteristic intersects $x=1$ at a point $\left(t_{r}, 1\right)$, and all s-th characteristics passing through $\left(t_{r}, 1\right)$ intersect the x-axis at point $\left(0, \beta_{s}\right)(s=m+1, \cdots, n)$ respectively. Similarly to (4.18), we have

$$
\begin{equation*}
\left|v_{r}(t, x)\right| \leq\left|v_{r}\left(t_{r}, 1\right)\right|+C_{1} \int_{t_{r}}^{t} v(\tau) d \tau \tag{4.19}
\end{equation*}
$$

Moreover, by means of the boundary conditions (1.15) it is easy to get that

$$
\begin{equation*}
\left|v_{r}\left(t_{r}, 1\right)\right| \leq K_{1} \max _{m+1 \leq s \leq n}\left|v_{s}\left(t_{r}, 1\right)\right|+\|H\|_{0} \tag{4.20}
\end{equation*}
$$

henceforth $K_{i} \quad(i=1,2, \cdots)$ denote positive constants depending only on T_{0}, and, without loss of generality, we may suppose $K_{1} \geq 1$. Similarly to (4.18), integrating the s-th equation in (4.7) along the s-th characteristic gives

$$
\begin{equation*}
\left|v_{s}\left(t_{r}, 1\right)\right| \leq\|v(0, .)\|_{0}+C_{2} \int_{0}^{t_{r}} v(\tau) d \tau \quad(s=m+1, \cdots, n) \tag{4.21}
\end{equation*}
$$

The combination (4.19)-(4.21) leads to

$$
\begin{equation*}
\left|v_{r}(t, x)\right| \leq K_{1}\|v(0, .)\|_{0}+\|H\|_{0}+C_{3} \int_{0}^{t} v(\tau) d \tau \tag{4.22}
\end{equation*}
$$

Thus, it follows from (4.18) and (4.22) that

$$
\begin{equation*}
\left|v_{r}(t, x)\right| \leq K_{1}\|v(0, .)\|_{0}+\|H\|_{0}+C_{4} \int_{0}^{t} v(\tau) d \tau \quad(r=1, \cdots, m) \tag{4.23}
\end{equation*}
$$

Similar estimates can be obtained for $v_{s}(t, x) \quad(s=m+1, \cdots, n)$. Hence, we have

$$
\begin{equation*}
v(t) \leq K_{1}\|v(0, .)\|_{0}+\|H\|_{0}+C_{5} \int_{0}^{t} v(\tau) d \tau, \quad \forall t \in\left[0, T_{1}\right] \tag{4.24}
\end{equation*}
$$

then, using Gronwall's inequality we get

$$
\begin{equation*}
v(t) \leq K_{2} \max \left\{\|v(0, .)\|_{0},\|H\|_{0}\right\}, \quad \forall t \in\left[0, T_{1}\right] \tag{4.25}
\end{equation*}
$$

in which we may assume that $K_{2} \geq 1$.
Taking $v\left(T_{1}, x\right)$ as initial data on $t=T_{1}$ and repeating the previous procedure, we obtain

$$
\begin{equation*}
v(t) \leq K_{2} \max \left\{\left\|v\left(T_{1}, .\right)\right\|_{0},\|H\|_{0}\right\} \leq K_{2}^{2} \max \left\{\|v(0, .)\|_{0},\|H\|_{0}\right\}, \quad \forall t \in\left[T_{1}, 2 T_{1}\right] \tag{4.26}
\end{equation*}
$$

Repeating this procedure at most $N \leq\left[\frac{T_{0}}{T_{1}}\right]+1$ times, we get

$$
\begin{equation*}
v(t) \leq K_{2}^{N} \max \left\{\|v(0, .)\|_{0},\|H\|_{0}\right\}, \quad \forall t \in[0, T] \tag{4.27}
\end{equation*}
$$

Noting (1.16) and (1.9), we finally get

$$
\begin{equation*}
v(t) \leq K_{3} \max \left\{\|\varphi\|_{C^{0}[0,1]},\|H\|_{C^{0}\left[0, T_{0}\right]}\right\}, \quad \forall t \in[0, T] . \tag{4.28}
\end{equation*}
$$

Then, by (4.5) and noting (1.7), we have

$$
\begin{equation*}
|u(t, x)| \leq K_{4} \max \left\{\|\varphi\|_{C^{0}[0,1]},\|H\|_{C^{0}\left[0, T_{0}\right]}\right\}, \quad \forall(t, x) \in R(T) \tag{4.29}
\end{equation*}
$$

We now estimate $w(t)$.

As before, for any given point $(t, x) \in R\left(T_{1}\right)$, there are still two possibilities for the r-th characteristic $(r=1, \cdots, m)$ passing through (t, x).

In case (a), integrating the r-th equation in (4.8) along this r-th characteristic yields

$$
\begin{equation*}
\left|w_{r}(t, x)\right| \leq\|w(0, .)\|_{0}+C_{6} \int_{0}^{t} w(\tau) d \tau \tag{4.30}
\end{equation*}
$$

In case (b), similarly to (4.19), we have

$$
\begin{equation*}
\left|w_{r}(t, x)\right| \leq\left|w_{r}\left(t_{r}, 1\right)\right|+C_{6} \int_{t_{r}}^{t} w(\tau) d \tau \tag{4.31}
\end{equation*}
$$

In order to estimate $\left|w_{r}\left(t_{r}, 1\right)\right|$, we seek the boundary conditions satisfied by w on $x=1$. Differentiating (1.15) with respect to t, we get

$$
\begin{equation*}
x=1: \quad \frac{\partial v_{r}}{\partial t}=\frac{\partial G_{r}}{\partial t}+\sum_{s=m+1}^{n} \frac{\partial G_{r}}{\partial v_{s}} \frac{\partial v_{s}}{\partial t}+H_{r}^{\prime}(t) \quad(r=1, \cdots, m) \tag{4.32}
\end{equation*}
$$

where $G_{r}=G_{r}\left(t, v_{m+1}, \cdots, v_{n}\right)$.
By (1.16) and using (1.1), (1.3) and (4.6), we have

$$
\begin{align*}
\frac{\partial v_{i}}{\partial t} & =l_{i}(u) \frac{\partial u}{\partial t}+\sum_{j=1}^{n} \frac{\partial l_{i}(u)}{\partial u_{j}} \frac{\partial u_{j}}{\partial t} u \\
& =l_{i}(u)\left(F(u)-A(u) \frac{\partial u}{\partial x}\right)+\sum_{j=1}^{n} \frac{\partial l_{i}(u)}{\partial u_{j}}\left(f_{j}(u)-\sum_{k=1}^{n} a_{j k}(u) \frac{\partial u_{k}}{\partial x}\right) u \\
& =-\lambda_{i}(u) w_{i}+l_{i}(u) F(u)+\sum_{j=1}^{n} \frac{\partial l_{i}(u)}{\partial u_{j}}\left(f_{j}(u)-\sum_{k, h=1}^{n} a_{j k}(u) r_{k h}(u) w_{h}\right) u \\
& =-\lambda_{i}(u) w_{i}+\sum_{h=1}^{n} b_{i h}(u) w_{h}+\bar{b}_{i}(u) \quad(i=1, \cdots, n) \tag{4.33}
\end{align*}
$$

where $b_{i h}, \bar{b}_{i}(i, h=1, \cdots, n)$ are continuous functions of u and, noting (1.2), when $|u| \leq \eta_{0}$,

$$
\begin{equation*}
\left|b_{i h}(u)\right|, \quad\left|\overline{b_{i}}(u)\right| \leq C_{7}|u| \quad(i, h=1, \cdots, n) \tag{4.34}
\end{equation*}
$$

Hence, for $\eta_{0}>0$ small enough, by (4.33) and noting (1.8) and (2.27), (4.32) can by rewritten as

$$
\begin{equation*}
x=1: w_{r}=\sum_{s=m+1}^{n} C_{r s}(t, u) w_{s}+\bar{C}_{r}(t, u)+\sum_{\bar{r}=1}^{m} \overline{\bar{C}}_{r \bar{r}}(t, u) H_{\bar{r}}^{\prime}(t) \quad(r=1, \cdots, m), \tag{4.35}
\end{equation*}
$$

where $C_{r s}, \bar{C}_{r}$ and $\overline{\bar{C}}_{r \bar{r}}(r, \bar{r}=1, \cdots, m ; s=m+1, \cdots, n)$ are continuous functions of t and u, moreover, as $|u| \rightarrow 0$,

$$
\begin{equation*}
d(u)=\sup _{\substack{0 \leq t \leq T_{0} \\ r=1, \cdots, m}}\left|\bar{C}_{r}(t, u)\right| \rightarrow 0 \tag{4.36}
\end{equation*}
$$

By (4.35), we have

$$
\begin{equation*}
\left|w_{r}\left(t_{r}, 1\right)\right| \leq K_{5} \max _{s=m+1, \cdots, n}\left|w_{s}\left(t_{r}, 1\right)\right|+K_{6}\left(d(u)+\left\|H^{\prime}\right\|_{0}\right) \quad(r=1, \cdots, m) \tag{4.37}
\end{equation*}
$$

Integrating the s-th equation in (4.8) along the corresponding s-th characteristic gives

$$
\begin{equation*}
\left|w_{s}\left(t_{r}, 1\right)\right| \leq\|w(0, .)\|_{0}+C_{8} \int_{0}^{t_{r}} w(\tau) d \tau \quad(s=m+1, \cdots, n) \tag{4.38}
\end{equation*}
$$

Combining (4.31) and (4.37)-(4.38) yields

$$
\begin{equation*}
\left|w_{r}(t, x)\right| \leq K_{5}\|w(0, .)\|_{0}+K_{6}\left(d(u)+\left\|H^{\prime}\right\|_{0}\right)+C_{9} \int_{0}^{t} w(\tau) d \tau \quad(r=1, \cdots, m) \tag{4.39}
\end{equation*}
$$

Similar estimates can be obtained for $w_{s}(t, x)(s=m+1, \cdots, n)$. Hence we have

$$
\begin{equation*}
w(t) \leq K_{5}\|w(0, .)\|_{0}+K_{6}\left(d(u)+\left\|H^{\prime}\right\|_{0}\right)+C_{10} \int_{0}^{t} w(\tau) d \tau, \quad \forall t \in\left[0, T_{1}\right] \tag{4.40}
\end{equation*}
$$

then, using Gronwall's inequality we get

$$
\begin{equation*}
w(t) \leq K_{7} \max \left\{\|w(0, .)\|_{0}, d(u)+\left\|H^{\prime}\right\|_{0}\right\}, \quad \forall t \in\left[0, T_{1}\right] \tag{4.41}
\end{equation*}
$$

in which we may assume that $K_{7} \geq 1$.
Repeating the previous procedure, similarly to (4.27), we have

$$
\begin{equation*}
w(t) \leq K_{7}^{N} \max \left\{\|w(0, .)\|_{0}, d(u)+\left\|H^{\prime}\right\|_{0}\right\}, \quad \forall t \in[0, T] \tag{4.42}
\end{equation*}
$$

then, noting (4.4) and using (1.9), we get

$$
\begin{equation*}
w(t) \leq K_{8} \max \left\{\left\|\varphi^{\prime}\right\|_{C^{0}[0.1]}, \quad d(u)+\left\|H^{\prime}\right\|_{C^{1}\left[0, T_{0}\right]}\right\}, \quad \forall t \in[0, T] \tag{4.43}
\end{equation*}
$$

Noting (4.36) and (4.29), when $\|\varphi\|_{C^{1}[0,1]}$ and $\|H\|_{C^{1}\left[0, T_{0}\right]}$ are small enough, for any T with $0<T \leq T_{0}, v(t)$ and $w(t)$ are sufficiently small on $0 \leq t \leq T$. This implies not only (4.3) but also the validity of hypothesis (4.14). The proof is finished.

We now proof Theorem 4.1.
By Theorem 2.1, under the hypothesis (2.1), Problem I is equivalent to Problem II. Consider the C^{1} solution $u=u(t, x)$ satisfying $|u| \leq \varepsilon_{0}$ on the domain under consideration. By Theorem 2.2, when $\|\varphi\|_{C^{1}[0,1]}$ and $\|h\|_{C^{1}\left[0, T_{0}\right]}$ are small, $\|\varphi\|_{C^{1}[0,1]}$ and $\|H\|_{C^{1}\left[0, T_{0}\right]}$ are also small. Then by Theorem 4.2, the corresponding Problem II admits a unique semiglobal C^{1} solution $u=u(t, x)$ on the domain $R\left(T_{0}\right)$, moreover, the C^{1} norm $\|u(t, .)\|_{1}$ is small enough on $0 \leq t \leq T_{0}$, then (2.1) holds. Thus, $u=u(t, x)$ is the semi-global C^{1} solution to Problem I on the domain $R\left(T_{0}\right)$. This proves Theorem 4.1.

References

[1] Li Ta-tsien \& Yu Wenci, Boundary value problems for quasilinear hyperbolic systems [M], Duke University Mathematics Series V, 1985.
[2] Li Ta-tsien, Yu Wenci \& Shen Weixi, Second initial-boundary value problems for quasilinear hyperbolicparabolic coupled systems (in Chinese) [J], Chin. Ann. of Math., 2(1981), 65-90.
[3] Li Ta-tsien \& Zhang Bingyu, Global exact controllability of a class of quasilinear hyperbolic systems [J], J. Math. Anal. Appl., 225(1998), 289-311.
[4] Li Ta-tsien, Rao Bopeng \& Jin Yi, Solution C^{1} semi-globale et contrôlabilité exacte frontière de systèmes hyperboliques quasi linéaires réductibles [J], C.R.Acad.Sci.,Paris,t.330, Série I(2000), 205-210.
[5] Li Ta-tisen, Rao Bopeng \& Jin Yi, Semi-global C^{1} solution and exact boundary controllability for reducible quasilinear hyperbolic systems [J], M2AN, 34(2000), 399-408.
[6] Cirinà, M., Boundary controllability of nonlinear hyperbolic systems [J], SIAM J. Control, 7(1969), 198-212.
[7] Cirinà, M., Nonlinear hyperbolic problems with solutions on preassigned sets [J], Michigan Math. J., 17(1970), 193-209.
[8] John, F., Formation of singularities in one-dimensional nonlinear wave propagation [J], Comm. Pure Appl. Math., 27(1974), 377-405.
[9] Li Ta-tsien, Zhou Yi \& Kong Dexing, Weak linear degeneracy and global classical solutions for general quasilinear hyperbolic systems [J], Comm. in Partial Differential Equations, 19(1994), 1263-1317.
[10] Li Ta-tsien, Global classical solutions for quasilinear hyperbolic systems [M], Research in Applied Mathematics 32, J. Wiley/Masson, 1994.

[^0]: Manuscript received March 5, 2001.
 *Department of Mathematics, Fudan University, Shanghai 200433, China.
 **Project supported by the Special Funds for Major State Basic Research Projects of China.

