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§1. Introduction

A systematic theory on the local C1 solution to the mixed initial-boundary value problem
for quasilinear hyperbolic systems can be found in Li Ta-tsien & Yu Wenci[1] and Li Ta-
tsien, Yu Wenci & Shen Weixi[2]. In order to study the exact boundary controllability
for quasilinear hyperbolic systems (cf. [3–5]), it is necessary to consider the semi-global
C1 solution, i.e., the C1 solution on the time interval 0 ≤ t ≤ T0, where T0 > 0 is a
preassigned and possibly quite large number. M. Cirina[6,7] considered this kind of problem
for special boundary conditions, but he imposed very strong hypotheses on the coefficients of
the system (globally bounded and globally Lipschitz continuous), which is a grave restriction
to applications. In this paper we first improve the original theory of local C1 solution,
and then, by establishing a uniform a priori estimate on the C1 norm of the solution, the
successive extension of local C1 solution will lead to the existence and uniqueness of semi-
global C1 solution for the mixed initial-boundary value problem with general nonlinear
boundary conditions.

Consider the following first order quasilinear hyperbolic system

∂u

∂t
+A(u)

∂u

∂x
= F (u), (1.1)
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where u = (u1, · · · , un)
T is the unknown vector function of (t, x), A(u) is a given n × n

matrix with suitably smooth elements aij(u)(i, j = 1, · · · , n), F (u) is a given vector function
with suitably smooth components fi(u)(i = 1, · · · , n) and

F (0) = 0. (1.2)

By the definition of hyperbolicity, on the domain under consideration the matrix A(u)
has n real eigenvalues λi(u)(i = 1, · · · , n) and a complete set of left eigenvectors li(u) =
(li1(u), · · · , lin(u))(i = 1, · · · , n) and, correspondingly, a complete set of right eigenvectors
ri(u) = (ri1(u), · · · , rin(u))T (i = 1, · · · , n):

li(u)A(u) = λi(u)li(u) (i = 1, · · · , n), (1.3)

A(u)ri(u) = λi(u)ri(u) (i = 1, · · · , n). (1.4)

We have

det|lij(u)| ̸= 0 (resp. det|rij(u)| ̸= 0). (1.5)

Without loss of generality, we may assume that

li(u)rj(u) ≡ δij (i, j = 1, · · · , n), (1.6)

rTi (u)ri(u) ≡ 1 (i = 1, · · · , n), (1.7)

where δij stands for the Kronecker symbol.
In this paper we assume that on the domain under consideration, the eigenvalues satisfy

the following conditions:

λr(u) < 0 < λs(u) (r = 1, · · · ,m; s = m+ 1, · · · , n). (1.8)

We consider the following mixed initial-boundary value problem (Problem I) for the
quasilinear hyperbolic system (1.1) on the domain

R(T ) =
{
(t, x)

∣∣∣0 ≤ t ≤ T, 0 ≤ x ≤ 1
}

(T > 0)

with the initial condition

t = 0 : u = φ(x) (0 ≤ x ≤ 1) (1.9)

and the boundary conditions

x = 0 : ṽs = gs(t, ṽ1, · · · , ṽm) + hs(t) (s = m+ 1, · · · , n), (1.10)

x = 1 : ṽr = gr(t, ṽm+1, · · · , ṽn) + hr(t) (r = 1, · · · ,m), (1.11)

where

ṽi = li(φ(x))u (i = 1, · · · , n) (1.12)

and without loss of generality, we assume that

gi(t, 0, · · · , 0) ≡ 0 (i = 1, · · · , n). (1.13)

Moreover, the conditions of C1 compatibility are supposed to be satisfied at the points (0,0)
and (0,1) respectively.

The mixed initial-boundary value problem (1.1) and (1.9)–(1.11) (Problem I) admits a
unique local C1 solution u = u(t, x) on R(T ) for T > 0 suitably small (see [1, 2]), however,
since (1.10)–(1.11) are not of an invariant form in the course of the successive extension
of local C1 solution, this kind of boundary conditions is not convenient for the study of
semi-global (or global) C1 solution. In order to get the semi-global C1 solution, instead of
(1.10)–(1.11) we consider the following boundary conditions:

x = 0 : vs = Gs(t, v1, · · · , vm) +Hs(t) (s = m+ 1, · · · , n), (1.14)
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x = 1 : vr = Gr(t, vm+1, · · · , vn) +Hr(t) (r = 1, · · · ,m), (1.15)

where

vi = li(u)u (i = 1, · · · , n) (1.16)

and without loss of generality, we assume that

Gi(t, 0, · · · , 0) ≡ 0 (i = 1, · · · , n). (1.17)

Obviously, the boundary conditions (1.14)–(1.15) are invariant under the successive ex-
tension of local C1 solution, then the corresponding mixed initial-boundary value problem
(1.1), (1.9) and (1.14)–(1.15) (Problem II) has an advantage for the study of semi-global (or
global) C1 solution. Of course, we suppose that the conditions of C1 compatibility are still
satisfied at the points (0,0) and (0,1) respectively for Problem II.

We first prove in §2 that when u is suitably small, Problem I is equivalent to problem II;
then in §3 the existence and uniqueness of local C1 solution to Problem II follows from the
well-known result on the existence and uniqueness of local C1 solution to Problem I; finally,
by means of a uniform a priori estimate on the C1 norm of the solution to Problem II, we
get the existence and uniqueness of semi-global C1 solution to both Problem I and Problem
II, provided that the C1 norm of φ and H (resp. h) is small enough.

§1. Equivalence of Problem I and Problem II

In order to prove the equivalence of Problem I and Problem II, it suffices to show that the
boundary conditions (1.10)-(1.11) can be equivalently replaced by the boundary conditions
(1.14)-(1.15), provided that u is suitably small.

Theorem 2.1. Suppose that lij (resp. rij), gi, hi, Gi and Hi (i, j = 1, · · · , n) are all
C1 functions with respect to their arguments. When

|u| ≤ ε0, (2.1)

where ε0 > 0 is a suitably small number, the boundary conditions (1.10)–(1.11) can be
equivalently replaced by the boundary conditions (1.14)–(1.15), then Problem I is equivalent
to Problem II.

Proof. Let

L(u) = (lij(u)) (2.2)

be the matrix composed by the left eigenvectors. By (1.6), for the matrix composed by the
right eigenvectors

R(u) = (rij(u)), (2.3)

we have

R(u) = L−1(u). (2.4)

By (1.16) we have

v = L(u)u, (2.5)

u = R(u)v. (2.6)

Similarly, by (1.12) we have

ṽ = L(φ(x))u, (2.7)

u = R(φ(x))ṽ. (2.8)

We now prove that the boundary condition (1.11) on x = 1 can be equivalently replaced
by the boundary condition (1.15). Similarly, we can prove that the boundary condition
(1.10) on x = 1 can be equivalently replaced by the boundary condition (1.14).
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Let x = 1. By (2.7)–(2.8) we have

ṽ = L(φ(1))u, (2.9)

u = R(φ(1))ṽ, (2.10)

namely,

ṽi =
n∑

j=1

lij(φ(1))uj (i = 1, · · · , n), (2.9)′

ui =
n∑

j=1

rij(φ(1))ṽj (i = 1, · · · , n). (2.10)′

Then, it follows from (2.5) that

v = L(R(φ(1))ṽ)R(φ(1))ṽ (2.11)

or

vi =
n∑

k=1

lik(u)uk =
n∑

k,h=1

lik(R(φ(1)ṽ)rkh(φ(1))ṽh. (2.11)′

Hence, noting (2.10), we get

∂vi
∂ṽj

=

n∑
k=1

lik(u)rkj(φ(1)) +

n∑
k,l=1

∂lik(u)

∂ul
rlj(φ(1))uk. (2.12)

Thus, noting (1.6), when u = 0 (then φ(1) = 0),
∂vi
∂ṽj

= δij , then, under the hypothesis

(2.1), the inverse of (2.11) can be obtained as

ṽ = B(v) (2.13)

or

ṽi = bi(v1, · · · , vn) (i = 1. · · · , n). (2.13)′

Suppose that (1.15) holds on x = 1. Noting (2.11)′, on x = 1 we have

ṽr = br(v1, · · · , vn)
= br(G1(t, vm+1, · · · , vn) +H1(t), · · · , Gm(t, vm+1, · · · , vn) +Hm(t), vm+1, · · · , vn)

= b̃r(t, vm+1, · · · , vn)

= b̃r

(
t,

n∑
k,h=1

lm+1,k(R(φ(1)ṽ)rkh(φ(1))ṽk, · · · ,
n∑

k,h=1

lnk(R(φ(1))ṽ)rkh(φ(1))ṽk

)
(r = 1, · · · ,m). (2.14)

Hence, noting (2.12), for r, r̄ = 1, · · · ,m we get

∂b̃r
∂ṽr̄

=

n∑
s=m+1

∂b̃r
∂vs

(t, vm+1, · · · , vn)
[ n∑
k=1

lsk(u)rkr̄(φ(1)) +

n∑
k,l=1

∂lsk(u)

∂ul
rlr̄(φ(1))uk

]
. (2.15)

Noting (1.6), we have
n∑

k=1

lsk(u)rkr̄(φ(1)) =

n∑
k=1

(
lsk(u)− lsk(φ(1))

)
rkr̄(φ(1)) (r̄ = 1, · · · ,m; s = m+ 1, · · · , n),

(2.16)
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then it follows from (2.15) that when u = 0 (then φ(1) = 0),

∂b̃r
∂ṽr̄

= 0 (r, r̄ = 1, · · · ,m). (2.17)

Hence, it is easy to see that under the hypothesis (2.1), on x = 1 (2.14) then the boundary
condition (1.15) on x = 1 can be rewritten in a form of (1.11).

Similarly, the boundary condition (1.11) on x = 1 can be rewritten in a from of (1.15).
This finishes the proof.

Theorem 2.2. Under the hypotheses of Theorem 2.1, the functions h(t) = (h1(t), · · · ,
hn(t)) and H(t) = (H1(t), · · · ,Hn(t)) in two equivalent boundary conditions (1.10)–(1.11)
and (1.14)–(1.15) satisfy the following relationships : for any given lij(u) and gi(t, ·) (resp.
G(t, ·)) (i, j = 1, · · · , n), there exist two positive constants C1 and C2 depending only on ε0,
such that on the domain under consideration we have

C1||h||0 ≤ ||H||0 ≤ C2||h||0, (2.18)

||h||1 → 0 ⇔ ||H||1 → 0, (2.19)

where || ||0 and || ||1 stand for the C0 norm and the C1 norm respectively :

||h||0 = sup
i=1,··· ,n

t

|hi(t)|, ||h||1 = sup
i=1,··· ,n

t

(|hi(t)|+ |h′
i(t)|), etc. (2.20)

Proof. We still consider the situation on x = 1. By Theorem 2.1, under the hypothesis
(2.1), (1.11) is equivalent to (1.15).

We take

ṽs = 0 (s = m+ 1, · · · , n) (2.21)

on x = 1, then, noting (1.13), it follows from (1.11) that

ṽr = hr(t) (r = 1, · · · ,m). (2.22)

By (2.10), we have

u =
m∑

p=1

rp(φ(1))hp(t), (2.23)

namely,

uk =
m∑

p=1

rkp(φ(1))hp(t) (k = 1, · · · , n), (2.23)′

then it follows from (2.11)′ that

vi =
n∑

k=1

lik(u)uk =
n∑

k=1

lik

( m∑
p=1

rp(φ(1))hp(t)
) m∑

q=1

rkq(φ(1))hq(t). (2.24)

Hence, by (1.15) we get

Hr(t) =

n∑
k=1

lrk(u)

m∑
q=1

rkq(φ(1))hq(t)−Gr

(
t,

n∑
k=1

lm+1,k(u)

m∑
q=1

rkq(φ(1))hq(t), · · · ,

n∑
k=1

lnk(u)
m∑
q=1

rkq(φ(1))hq(t)
)

(r = 1, · · · ,m), (2.25)
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then

H ′
r(t) =

n∑
k,h=1

∂lrk(u)

∂uh

m∑
p=1

rhp(φ(1))h
′
p(t)uk +

n∑
k=1

lrk(u)
m∑
q=1

rkq(φ(1))h
′
q(t)

− ∂Gr

∂t
−

n∑
s=m+1

∂Gr

∂vs

{ n∑
k,h=1

∂lsk(u)

∂uh

m∑
p=1

rhp(φ(1))h
′
p(t)uk

+
n∑

k=1

lsk(u)
m∑
q=1

rkq(φ(1))h
′
q(t)

}
(r = 1, · · · ,m). (2.26)

Noting (1.17), we have

∂Gi

∂t
(t, 0, · · · , 0) ≡ 0 (i = 1, · · · , n). (2.26)

Hence, under the hypothesis (2.1), it follows immediately from (2.25) and (2.26) that

||H||0 ≤ C2||h||0, (2.28)

||H ′||0 ≤ B(||h||1), (2.29)

where B = B(y) is an increasing continuous function with B(0) = 0, then we get

||h||1 → 0 ⇒ ||H||1 → 0. (2.30)

Similarly, taking

vs = 0 (s = m+ 1, · · · , n) (2.31)

on x = 1 and noting (1.17), it following from (1.15) that

vr = Hr(t) (r = 1, · · · ,m). (2.32)

By (2.5) and (2.7) and noting (2.6), on x = 1 we have

vi − ṽi =
n∑

k=1

(
lik(u)− lik(φ(1))

)
uk, (2.33)

in which

u =
m∑

p=1

rp(u)Hp(t), (2.34)

namely,

uk =

m∑
p=1

rkp(u)Hp(t) (k = 1, · · · , n). (2.34)′

Thus, by (1.11) we get

hr(t) = Hr(t)−
n∑

k=1

(
lrk(u)− lrk(φ(1))

)
uk − gr

(
t,−

n∑
k=1

(
lm+1,k(u)− lm+1,k(φ(1))

)
uk,

· · · ,−
n∑

k=1

(
lnk(u)− lnk(φ(1))

)
uk

)
(r = 1, · · · ,m), (2.35)



No.3 LI, D. Q. & JIN, Y. SEMI-GLOBAL C1 SOLUTION 331

then

h′
r(t) = H ′

r(t)−
n∑

k,h=1

∂lrk(u)

∂uh

∂uh

∂t
uk −

n∑
k=1

(
lrk(u)− lrk(φ(1))

)∂uk

∂t
− ∂gr

∂t

+
n∑

s=m+1

∂gr
∂ṽs

( n∑
k,h=1

∂lsk(u)

∂uh

∂uh

∂t
uk +

n∑
k=1

(
lsk(u)− lsk(φ(1))

)∂uk

∂t

)
(r = 1, · · · ,m). (2.36)

By (2.5)–(2.6) and noting (2.31)–(2.32), under the hypothesis (2.1), it is easy to see that
there exist two positive constants C3 and C4 depending only on ε0, such that on x = 1 we
have

C3||H||0 ≤ ||u||0 ≤ C4||H||0. (2.37)

Moreover, differentiating (2.34)′ with respect to t, on x = 1 we get

∂uk

∂t
=

m∑
p=1

rkp(u)H
′
p(t) +

m∑
p=1

n∑
h=1

∂rkp(u)

∂uh

∂uh

∂t
Hp(t), (2.38)

then, noting (2.37), under the hypothesis (2.1) it is easy to see that on x = 1 we have∥∥∥∂u
∂t

∥∥∥
0
≤ C5||H ′||0, (2.39)

where C5 is a positive constant depending only on ε0.
Noting (1.13), we have

∂gi
∂t

(t, 0, · · · , 0) ≡ 0 (i = 1, · · · , n), (2.40)

then, under the hypothesis (2.1), it follows from (2.35) and (2.36) that

C1||h||0 ≤ ||H||0, (2.41)

||h′||0 ≤ b(||H||1), (2.42)

where b = b(y) is an increasing continuous function with b(0) = 0, hence we get

||H||1 → 0 ⇒ ||h||1 → 0. (2.43)

The proof of Theorem 2.2 is complete.

§3. Local C1 Solution to the Mixed
Initial-Boundary Value Problem

By means of the theory on the local C1 solution to the mixed initial-boundary value
problem in [1, 2], we can obtain the following

Theorem 3.1. Suppose that lij(w), λi(u), fi(u), gi(t, .), hi(t) (i, j = i, · · · , n) and φ(x)
are all C1 functions with respect to their arguments. Suppose furthermore that (1.2), (1.5),
(1.8) and (1.13) hold. Suppose finally that the corresponding conditions of C1 compatibility
are satisfied at points (0, 0) and (0, 1) respectively. Then, for any given A(u), F (u) and
gi(t, ·) (i = 1, · · · , n), there exists a positive constant δ = δ(||φ||1, ||h||1)depending only on
the C1 norms ||φ||1 and ||h||1, such that Problem I admits a unique C1 solution u = u(t, x)
on the domain

R(δ) =
{
(t, x)

∣∣∣0 ≤ t ≤ δ, 0 ≤ x ≤ 1
}
. (3.1)

Moreover, when ∥φ∥1 and ∥h∥1 are suitably small, we have

|u(t, x)| ≤ ε0, ∀(t, x) ∈ R(δ), (3.2)
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where ε0 is the small positive contant given in Theorem 2.1.

Thus, by means of Theorem 2.1 and Theorem 2.2 we have

Theorem 3.2. Suppose that lij(u), λi(u), fi(u), Gi(t, .), Hi(t) (i, j = 1, · · · , n) and
φ(x) are all C1 functions with respect to their arguments. Suppose furthermore that (1.2),
(1.5), (1.8) and (1.17) hold. Suppose finally the corresponding conditions of C1 compatibility
are satisfied at points (0, 0) and (0, 1) respectively. Then for any given A(u), F (u) and
Gi(t, .) (i = 1, · · · , n), if the C1 norms ∥φ∥1 and ∥H∥1 are suitably small, Problem II
admits a unique C1 solution u = u(t, x) on the domain (3.1), where δ is a positive constant
depending only on ∥φ∥1 and ∥H∥1 : δ = δ(∥φ∥1, ∥H∥1).

Proof. We only consider the solution u = u(t, x) satisfying |u| ≤ ε0. By Theorem
2.2, when ∥φ∥1 and ∥H∥1 are suitably small, ∥h||1 is also small, then by Theorem 3.1, the
corresponding Problem I admits a unique C1 solution u = u(t, x) and (3.2) holds. Hence,
by Theorem 2.1, Problem II is equivalent to Problem I, then u = u(t, x) is also the unique
C1 solution to Problem II on the domain (3.1). Moreover, noting (2.28)–(2.29) and (2.41)–
(2.42), from δ = δ(∥φ∥1, ∥h||1) we get δ = δ(∥φ∥1, ∥H∥1).

§4. Semi-Global C1 Solution to the
Mixed Initial-Boundary Value Problem

In this section we will prove the following two main theorems.

Theorem 4.1. Under the hypotheses of Theorem 3.1, for any given T0 > 0, the mixed
initial-boundary value problem (1.1) and (1.9)–(1.11) (Problem I) admits a unique C1 solu-
tion u = u(t, x) on the domain

R(T0) = {(t, x)
∣∣0 ≤ t ≤ T0, 0 ≤ x ≤ 1}, (4.1)

provided that ||φ||C1[0,1] and ||h||C1[0,T0] are suitably small (depending on T0).

Theorem 4.2. Under the hypotheses of Theorem 3.2, for any given T0 > 0, the mixed
initial-boundary value problem (1.1), (1.9) and (1.14)–(1.15) (Problem II) admits a unique
C1 solution u = u(t, x) on the domain (4.1), provided that ∥φ∥C1[0,1] and ∥H∥C1[0,T0] are
suitably small (depending on T0).

We refer to these solutions as semi-global C1 solutions.

We first prove Theorem 4.2. By Theorem 3.2, for this purpose it is only necessary to
prove the following

Lemma 4.1. Under the hypotheses of Theorem 3.2, for any given T0 > 0, if ∥φ∥C1[0,1]

and ∥H∥C1[0,T0] are suitably small (depending on T0), then, for any C1 solution u = u(t, x)
to Problem II on the domain

R(T ) =
{
(t, x)

∣∣∣0 ≤ t ≤ T, 0 ≤ x ≤ 1
}

(4.2)

with 0 < T ≤ T0, we have the following uniform a priori estimate :

||u(t, .)||1 , ||u(t, .)||0 + ||ux(t, .)||0 ≤ C(T0), ∀0 ≤ t ≤ T, (4.3)

where C(T0) is a sufficiently small positive constant independent of T but possibly depending
on T0.

Proof. Let v = (v1, · · · , vn) be defined by (1.16) and

wi = li(u)ux (i = 1, · · · , n). (4.4)
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By (1.6), we have

u =

n∑
i=1

viri(u), (4.5)

ux =
n∑

i=1

wiri(u). (4.6)

Noting (1.7), it suffices to estimate ∥v(t, ·)∥0 and ∥w(t, ·)∥0.
It is easy to see that (cf. [8–10])

dvi
dit

=
n∑

j,k=1

βijk(u)vjwk +
n∑

j=1

β̃ij(u)fj(u), (4.7)

dwi

dit
=

n∑
j,k=1

γijk(u)wjwk +

n∑
j=1

γ̃ij(u)wj , (4.8)

where
d

dit
=

∂

∂t
+ λi(u)

∂

∂x
(4.9)

denotes the directional derivative along the i-th characteristic,

βijk(u) = (λk(u)− λi(u))li(u)∇rj(u)rk(u), (4.10)

γijk(u) =
1

2

{
(λj(u)− λk(u))li(u)∇rk(u)rj(u)−∇λk(u)rj(u)δik + (j|k)

}
, (4.11)

in which (j|k) stands for all terms obtained by changing j and k in the previous terms , and

β̃ij(u) = lij(u)−
n∑

h,k=1

(li(u)∇rk(u)rk(u))(lh(u)u)lkj(u), (4.12)

γ̃ij(u) = li(u)∇F (u)rj(u)−
n∑

k=1

(
li(u)∇rj(u)rk(u)

)
(lk(u)F (u)). (4.13)

For the time being we assume that on the domain R(T )

|v(t, x)| ≤ η0
n
, |w(t, x)| ≤ η1, (4.14)

where η0 and η1 are suitably small positive constants. Then, by (4.5) and noting (1.7), we
have

|u(t, x)| ≤ η0, ∀(t, x) ∈ R(T ). (4.15)

At the end of the proof, we will show the validity of hypothesis (4.14).
Let

T1 = max
i=1,··· ,n
|u|≤η0

1

|λi(u)|
> 0, (4.16)

v(τ) = sup
0≤t≤τ

||v(t, .)||0, w(τ) = sup
0≤t≤τ

||w(t, .)||0. (4.17)

For any given point (t, x) ∈ R(T1), we draw down the r-th characteristic (r = 1, · · · ,m)
passing through (t, x). Noting (1.8) and (4.16), there are only two possibilities:

(a) This r-th characteristic intersects the x-axis at a point (0, α). Integrating the r-th
equation in (4.7) along this characteristic from 0 to t, and noting (1.2), (1.7) and (4.14)–
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(4.15), we get

|vr(t, x)| ≤ ||v(0, .)||0 + C1

∫ t

0

v(τ)dτ, (4.18)

here and hereafter, Ci (i = 1, 2, · · · ) denote positive constants.
(b) This r-characteristic intersects x = 1 at a point (tr, 1), and all s-th characteristics

passing through (tr, 1) intersect the x-axis at point (0, βs) (s = m + 1, · · · , n) respectively.
Similarly to (4.18), we have

|vr(t, x)| ≤ |vr(tr, 1)|+ C1

∫ t

tr

v(τ)dτ. (4.19)

Moreover, by means of the boundary conditions (1.15) it is easy to get that

|vr(tr, 1)| ≤ K1 max
m+1≤s≤n

|vs(tr, 1)|+ ||H||0, (4.20)

henceforth Ki (i = 1, 2, · · · ) denote positive constants depending only on T0, and, without
loss of generality, we may suppose K1 ≥ 1. Similarly to (4.18), integrating the s-th equation
in (4.7) along the s-th characteristic gives

|vs(tr, 1)| ≤ ||v(0, .)||0 + C2

∫ tr

0

v(τ)dτ (s = m+ 1, · · · , n). (4.21)

The combination (4.19)–(4.21) leads to

|vr(t, x)| ≤ K1||v(0, .)||0 + ||H||0 + C3

∫ t

0

v(τ)dτ. (4.22)

Thus, it follows from (4.18) and (4.22) that

|vr(t, x)| ≤ K1||v(0, .)||0 + ||H||0 + C4

∫ t

0

v(τ)dτ (r = 1, · · · ,m). (4.23)

Similar estimates can be obtained for vs(t, x) (s = m+ 1, · · · , n). Hence, we have

v(t) ≤ K1||v(0, .)||0 + ||H||0 + C5

∫ t

0

v(τ)dτ, ∀t ∈ [0, T1], (4.24)

then, using Gronwall’s inequality we get

v(t) ≤ K2 max
{
||v(0, .)||0, ||H||0

}
, ∀t ∈ [0, T1], (4.25)

in which we may assume that K2 ≥ 1.
Taking v(T1, x) as initial data on t = T1 and repeating the previous procedure, we obtain

v(t) ≤ K2 max
{
||v(T1, .)||0, ||H||0

}
≤ K2

2 max
{
||v(0, .)||0, ||H||0

}
, ∀t ∈ [T1, 2T1]. (4.26)

Repeating this procedure at most N ≤ [T0

T1
] + 1 times, we get

v(t) ≤ KN
2 max

{
||v(0, .)||0, ||H||0

}
, ∀t ∈ [0, T ]. (4.27)

Noting (1.16) and (1.9), we finally get

v(t) ≤ K3 max
{
||φ||C0[0,1], ||H||C0[0,T0]

}
, ∀t ∈ [0, T ]. (4.28)

Then, by (4.5) and noting (1.7), we have

|u(t, x)| ≤ K4 max
{
||φ||C0[0,1], ||H||C0[0,T0]

}
, ∀(t, x) ∈ R(T ). (4.29)

We now estimate w(t).
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As before, for any given point (t, x) ∈ R(T1), there are still two possibilities for the r-th
characteristic (r = 1, · · · ,m) passing through (t, x).

In case (a), integrating the r-th equation in (4.8) along this r-th characteristic yields

|wr(t, x)| ≤ ||w(0, .)||0 + C6

∫ t

0

w(τ)dτ. (4.30)

In case (b), similarly to (4.19), we have

|wr(t, x)| ≤ |wr(tr, 1)|+ C6

∫ t

tr

w(τ)dτ. (4.31)

In order to estimate |wr(tr, 1)|, we seek the boundary conditions satisfied by w on x = 1.
Differentiating (1.15) with respect to t, we get

x = 1 :
∂vr
∂t

=
∂Gr

∂t
+

n∑
s=m+1

∂Gr

∂vs

∂vs
∂t

+H ′
r(t) (r = 1, · · · ,m), (4.32)

where Gr = Gr(t, vm+1, · · · , vn).
By (1.16) and using (1.1), (1.3) and (4.6), we have

∂vi
∂t

= li(u)
∂u

∂t
+

n∑
j=1

∂li(u)

∂uj

∂uj

∂t
u

= li(u)
(
F (u)−A(u)

∂u

∂x

)
+

n∑
j=1

∂li(u)

∂uj

(
fj(u)−

n∑
k=1

ajk(u)
∂uk

∂x

)
u

= −λi(u)wi + li(u)F (u) +
n∑

j=1

∂li(u)

∂uj

(
fj(u)−

n∑
k,h=1

ajk(u)rkh(u)wh

)
u

= −λi(u)wi +

n∑
h=1

bih(u)wh + b̄i(u) (i = 1, · · · , n), (4.33)

where bih, b̄i (i, h = 1, · · · , n) are continuous functions of u and, noting (1.2), when |u| ≤ η0,

|bih(u)|, |b̄i(u)| ≤ C7|u| (i, h = 1, · · · , n). (4.34)

Hence, for η0 > 0 small enough, by (4.33) and noting (1.8) and (2.27), (4.32) can by rewritten
as

x = 1 : wr =
n∑

s=m+1

Crs(t, u)ws + C̄r(t, u) +
m∑
r̄=1

¯̄Crr̄(t, u)H
′
r̄(t) (r = 1, · · · ,m), (4.35)

where Crs, C̄r and ¯̄Crr̄ (r, r̄ = 1, · · · ,m; s = m+1, · · · , n) are continuous functions of t and
u, moreover, as |u| → 0,

d(u) = sup
0≤t≤T0
r=1,··· ,m

|C̄r(t, u)| → 0. (4.36)

By (4.35), we have

|wr(tr, 1)| ≤ K5 max
s=m+1,··· ,n

|ws(tr, 1)|+K6(d(u) + ||H ′||0) (r = 1, · · · ,m). (4.37)

Integrating the s-th equation in (4.8) along the corresponding s-th characteristic gives

|ws(tr, 1)| ≤ ||w(0, .)||0 + C8

∫ tr

0

w(τ)dτ (s = m+ 1, · · · , n). (4.38)



336 CHIN. ANN. OF MATH. Vol.22 Ser.B

Combining (4.31) and (4.37)–(4.38) yields

|wr(t, x)| ≤ K5||w(0, .)||0 +K6

(
d(u) + ||H ′||0

)
+ C9

∫ t

0

w(τ)dτ (r = 1, · · · ,m). (4.39)

Similar estimates can be obtained for ws(t, x) (s = m+ 1, · · · , n). Hence we have

w(t) ≤ K5||w(0, .)||0 +K6

(
d(u) + ||H ′||0

)
+ C10

∫ t

0

w(τ)dτ, ∀t ∈ [0, T1], (4.40)

then, using Gronwall’s inequality we get

w(t) ≤ K7 max
{
||w(0, .)||0, d(u) + ||H ′||0

}
, ∀t ∈ [0, T1], (4.41)

in which we may assume that K7 ≥ 1.
Repeating the previous procedure, similarly to (4.27), we have

w(t) ≤ KN
7 max

{
||w(0, .)||0, d(u) + ||H ′||0

}
, ∀t ∈ [0, T ], (4.42)

then, noting (4.4) and using (1.9), we get

w(t) ≤ K8 max
{
||φ′||C0[0.1], d(u) + ||H ′||C1[0,T0]

}
, ∀t ∈ [0, T ]. (4.43)

Noting (4.36) and (4.29), when ||φ||C1[0,1] and ||H||C1[0,T0] are small enough, for any T
with 0 < T ≤ T0, v(t) and w(t) are sufficiently small on 0 ≤ t ≤ T . This implies not only
(4.3) but also the validity of hypothesis (4.14). The proof is finished.

We now proof Theorem 4.1.
By Theorem 2.1, under the hypothesis (2.1), Problem I is equivalent to Problem II.

Consider the C1 solution u = u(t, x) satisfying |u| ≤ ε0 on the domain under consideration.
By Theorem 2.2, when ||φ||C1[0,1] and ||h||C1[0,T0] are small, ||φ||C1[0,1] and ||H||C1[0,T0] are
also small. Then by Theorem 4.2, the corresponding Problem II admits a unique semi-
global C1 solution u = u(t, x) on the domain R(T0), moreover, the C1 norm ∥u(t, .)∥1 is
small enough on 0 ≤ t ≤ T0, then (2.1) holds. Thus, u = u(t, x) is the semi-global C1

solution to Problem I on the domain R(T0). This proves Theorem 4.1.
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[ 7 ] Cirinà, M., Nonlinear hyperbolic problems with solutions on preassigned sets [J], Michigan Math. J.,

17(1970), 193–209.
[ 8 ] John, F., Formation of singularities in one-dimensional nonlinear wave propagation [J], Comm. Pure

Appl. Math., 27(1974), 377–405.
[ 9 ] Li Ta-tsien, Zhou Yi & Kong Dexing, Weak linear degeneracy and global classical solutions for general

quasilinear hyperbolic systems [J], Comm. in Partial Differential Equations, 19(1994), 1263–1317.
[10] Li Ta-tsien, Global classical solutions for quasilinear hyperbolic systems [M], Research in Applied Math-

ematics 32, J. Wiley/Masson, 1994.


