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Abstract

The boundary stabilization problem of a Timoshenko beam attached with a mass at one
end is studied. First, with linear boundary force feedback and moment control simultaneously
at the end attached with the load, the energy corresponding to the closed loop system is proven
to be exponentially convergent to zero as time t → ∞. Then, some counterexamples are given

to show that, in other cases, the corresponding closed loop system is, in general, not stable
asymtotically, let alone exponentially.
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§1. Introduction

The purpose of this paper is to study the stabilization problem of Timoshenko beam

attached with a load of massM at one end and forced by linear boundary feedback controls.

The system to be investigated in this paper is described as follows (see [1] for example):
ρẅ + (K(φ− w′))′ = 0, 0 ≤ x ≤ ℓ, t > 0,
Iρφ̈− (EIφ′)′ +K(φ− w′) = 0, 0 ≤ x ≤ ℓ, t > 0,
w(0, t) = φ(0, t) = 0,
Mẅ(ℓ, t)−K(ℓ)(φ(ℓ, t)− w′(ℓ, t)) = u1(t),
EI(ℓ)φ′(ℓ, t) = u2(t).

(1.1)

Here u1(t) and u2(t) are the boundary feedback controls of force and moment respectively,

the meanings of all the other variables, functions and coefficients are the same as those

described in related papers, say paper [1] for example. In this paper, we always assume that

there exists a positive constant c1 satisfying
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Condition S. ρ, Iρ,K,EI ∈ C1[0, ℓ], ρ, Iρ,K,EI ≥ c1.

Here and afterwards, the prime and the dot always denote derivatives with respect to

space and time variables, respectively.

Up to now, a lot of results on various boundary feedback stabilization problems of Tim-

oshenko beam equation have been turned out (see [1,3,4]). In paper [1], the authors proved

that with both force and moment feedback controls applied to just one end of a Timoshenko

beam, the energy corresponding to the closed loop system decays uniformly to zero as time

t → ∞. In this paper, we consider the asymptotic behavior of a tiploaded Timoshenko

beam with linear boundary controls. As will be seen below, this type of controls, under

some conditions, can stabilize the Timoshenko Beam exponentially, while under others, the

corresponding closed loop system is even not asymptotically stable.

This paper is arranged as follow. In Section 2, by virtue of semigroup theory of linear

operators (see [5, 6]), we prove the well-posedness of the corresponding closed loop system.

In Section 3, by applying the frequency domain multiplier method used in [9], it is shown

that the closed loop system (1.1) and (2.1) is exponentially stable if none of the feedback

constants α, β, µ in (2.1) are zero. Finally in Section 4, we derive some counterexamples

to show that, in general, the closed loop system (1.1) and (2.1) can not even be stabilized

asymptotically in other cases.

§2. The Well-Posedness of the Closed Loop System

For the system (1.1), we apply the following linear boundary feedbacks{
u1(t) = −αẇ(ℓ, t) + β(φ̇(ℓ, t)− ẇ′(ℓ, t)),
u2(t) = −µφ̇(ℓ, t), (2.1)

with α, β, µ ≥ 0. Set

ξ(t) =

{
M
β ẇ(ℓ, t)− (φ(ℓ, t)− w′(ℓ, t)), if β ̸= 0,

ẇ(ℓ, t), if β = 0.
(2.2)

Then we have

ξ̇(t) = g(t)
△
=

{
−K(ℓ)

β ξ +
(

MK(ℓ)
β2 − α

β

)
ẇ(ℓ, t), if β ̸= 0,

− α
M ẇ(ℓ, t) + K(ℓ)

M

(
φ(ℓ, t)− w′(ℓ, t)

)
, if β = 0.

(2.3)

Now the closed loop system (1.1) and (2.1) becomes
ρẅ + (K(φ− w′))

′
= 0, 0 ≤ x ≤ ℓ, t > 0,

Iρφ̈− (EIφ′)′ +K(φ− w′) = 0, 0 ≤ x ≤ ℓ, t > 0,

ξ̇(t)− g(t) = 0,
w(0, t) = φ(0, t) = EI(ℓ)φ′(ℓ, t) + µφ̇(ℓ, t) = 0.

(2.4)

To incorporate the above closed loop system into a certain function space, we define a

product Hilbert space H by

H = V 1
0 × L2

ρ(0, ℓ)× V 1
0 × L2

Iρ(0, ℓ)× R,

where

V k
0 = {φ ∈ Hk(0, ℓ)

∣∣ φ(0) = 0}, k = 1, 2,

and Hk(0, ℓ) is the usual Sobolev space of order k. The inner product in H is defined as
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follows: for Yk = [wk, zk, φk, ψk, ξk]
τ ∈ H, k = 1, 2,(

Y1, Y2

)
H

=

∫ ℓ

0

K(φ1 − w′
1)(φ2 − w′

2) dx+

∫ ℓ

0

EIφ′
1φ

′
2 dx

+

∫ ℓ

0

ρz1z2 dx+

∫ ℓ

0

Iρψ1ψ2 dx+ τξ1ξ2,

where τ = γ if β ̸= 0 and τ = M if β = 0, and γ = K(ℓ)β2

K(ℓ)M+αβ . We define a linear operator

A in H by

A


w
z
φ
ψ
ξ

 =


z

− (K(φ−w′))′

ρ

ψ
(EIφ′)′

Iρ
− K

Iρ
(φ− w′)

g

 ,

w
z
φ
ψ
ξ

 ∈ D(A),

D(A) =
{
[w, z, φ, ψ, ξ]τ ∈ H

∣∣ w,φ ∈ V 2
0 , z, ψ ∈ V 1

0 , EI(ℓ)φ
′(ℓ) + µψ(ℓ) = 0

}
,

where

ξ =

{
M
β z(ℓ)− φ(ℓ) + w′(ℓ), if β ̸= 0,

z(ℓ), if β = 0,

g =

{
−K(ℓ)

β ξ +
(

MK(ℓ)
β2 − α

β

)
z(ℓ), if β ̸= 0,

− α
M z(ℓ) + K(ℓ)

M

(
φ(ℓ)− w′(ℓ)

)
, if β = 0.

Then we can write the closed loop system (2.4) as the following linear evolution equation

in H:

dY (t)

dt
= AY (t), (2.5)

where Y (t) = [w(·, t), ẇ(·, t), φ(·, t), φ̇(·, t), ξ(t)]τ .
Theorem 2.1. Let A be defined as above, then A generates a C0 semigroup T (t) of

contraction in H. Moreover, A has compact resolvent and 0 ∈ ρ(A).

Proof. For any Y = [w, z, φ, ψ, ξ]τ ∈ D(A), integrating by parts and referring to the

boundary condition of Y ∈ D(A), we have

Re (AY, Y )H =

{
−K(ℓ)γβ−1|φ(ℓ)− w′(ℓ)|2 − αγMβ−2|z(ℓ)|2 − µ|ψ(ℓ)|2, if β ̸= 0,
−µ|ψ(ℓ)|2 − α|z(ℓ)|2, if β = 0,

which implies the dissipativity of A.
For the maximal dissipativity of A, it is sufficient to show that ∀Ỹ = [w̃, z̃, φ̃, ψ̃, ξ̃]τ ∈ H,

there exists Y = [w, z, φ, ψ, ξ]τ ∈ D(A), such that AY = Ỹ . This assertion, however, can be

easily obtained via the direct calculation.

It is easy to show the compactness of the resolvent of A by using the Sobolev embedding

theorem. Finally a direct calculation shows that 0 ∈ ρ(A). The proof is finished.

Thus according to the semigroup theory, we obtain:

Theorem 2.2. For any Y0 ∈ H, (2.5), and hence the closed loop system (1.1) and (2.1),

has a unique weak solution Y (t) = T (t)Y0, where T (t) is the linear semigroup of contraction

generated by A. Moreover, if Y0 ∈ D(A), Y (t) = T (t)Y0 becomes the strong solution to

(2.5).
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§3. Exponential Decay of the Closed Loop System

We now discuss the exponential stability of the closed loop system (2.5) in the case of

αβµ ̸= 0. The energy corresponding to the solution to the closed loop system (2.5) is

E(t) =
1

2

[ ∫ ℓ

0

EI|φ′|2dx+

∫ ℓ

0

K|φ− w′|2dx+

∫ ℓ

0

ρ|ẇ|2dx+

∫ ℓ

0

Iρ|φ̇|2dx+ τ |ξ|2
]
,

where Y (t) = [w(·, t), ẇ(·, t), φ(·, t), φ̇(·, t), ξ(t)]τ is the solution to (2.5). It is easy to check

that in the case of Y0 ∈ D(A) and αβµ ̸= 0,

Ė(t) = −K(ℓ)γβ−1|φ(ℓ)− w′(ℓ)|2 − αγMβ−2|z(ℓ)|2 − µ|ψ(ℓ)|2. (3.1)

Let iR denote the imaginary axis.

Lemma 3.1. iR ⊂ ρ(A), the resolvent set of A.
Proof. Since A has compact resolvent, it is sufficient to prove iR∩σp(A) = ∅. Assuming

the contrary, then there exists an eigenvalue iλ ∈ iR of A. Obviously λ ̸= 0. Let Ψ =

[w, z, φ, ψ, ξ]τ ∈ D(A) be an eigenfunction of A corresponding to iλ. From the assumption

that α, β, µ > 0 and the fact that

Re (AΨ,Ψ)H = −K(ℓ)γβ−1|φ(ℓ)− w′(ℓ)|2 − αγMβ−2|z(ℓ)|2 − µ|ψ(ℓ)|2 = 0,

it follows that w and φ satisfy
(K(w′ − φ))′ + λ2ρw = 0,
(EIφ′)′ −K(φ− w′) + λ2Iρφ = 0,
w(ℓ) = φ(ℓ) = w′(ℓ) = φ′(ℓ) = 0,
ξ − M

β z(ℓ) + φ(ℓ)− w′(ℓ) = 0.

(3.2)

Thus, according to the general theory of ordinary differential equations, we get w = φ =

ξ = 0, and hence Ψ = 0, a contradiction.

Theorem 3.1. Suppose that Condition S holds. Then in the case of αβµ > 0, the energy

corresponding to the closed loop system (2.5) decays exponentially, that is, for every Y0 ∈ H,

there exist positive constants M,ω, independent of Y0, such that E(t) ≤Me−ωt∥Y0∥2.
Proof. From Lemmas 2.1 and 3.1, and according to [7], we need only to prove that

lim
λ∈R, |λ|→+∞

∥(iλ−A)−1∥ < +∞.

Assuming the contrary, then there must be λn ∈ iR and Zn = [wn, zn, φn, ψn, ξn]
τ ∈

D(A), n = 1, 2, · · · such that

∥Zn∥H = 1, |λn| → +∞ (as n→ ∞),

(λn −A)Zn = Z̃n
△
= (w̃n, z̃n, φ̃n, ψ̃n, ξ̃n)

τ → 0 (as n→ ∞),

which means that as n→ ∞,∫ ℓ

0

K|(λn(φn − w′
n)− (ψn − z′n))|2dx+

∫ ℓ

0

EI|(λnφ′
n − ψ′

n)|2dx = o(1), (3.3)∫ ℓ

0

|λnρzn + (K(φn − w′
n))

′|2dx+

∫ ℓ

0

|λnIρψn − (EIφ′
n)

′ +K(φn − w′
n)|2dx

= o(1), (3.4)

Re ((λn −A)Zn, Zn)H = µ|ψn(ℓ)|2 +
αγM

β2
|zn(ℓ)|2 +

Kγ

β
|φn(ℓ)− w′

n(ℓ))|2dx

= o(1), (3.5)
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(
λn +

K(ℓ)

β

)
ξn −

(
MK(ℓ)

β2
− α

β

)
zn(ℓ) = o(1). (3.6)

It follows from (3.5) and (3.6) that

|λnξn|, |ξn|, |zn(ℓ)|, |ψn(ℓ)|, |φn(ℓ)− w′
n(ℓ)| = o(1). (3.7)

From the definitions of A and Z̃n, we have

λn

(∫ ℓ

0

K|φn − w′
n|2dx+

∫ ℓ

0

EI|φ′
n|2dx

)
−
∫ ℓ

0

K(ψn − z′n)(φn − w′
n)dx−

∫ ℓ

0

EIψ′
nφ

′
ndx

=

∫ ℓ

0

K(φ̃n − w̃′
n)(φn − w′

n)dx+

∫ ℓ

0

EIφ̃′
nφ

′
ndx.

Using Hölder inequality and the fact of ∥Zn∥H = 1 and ∥Z̃n∥H → 0 as n→ ∞, we obtain

λn

(∫ ℓ

0

K|φn − w′
n|2dx+

∫ ℓ

0

EI|φ′
n|2dx

)
−

∫ ℓ

0

K(ψn − z′n)(φn − w′
n)dx−

∫ ℓ

0

EIψ′
nφ

′
ndx = o(1). (3.8)

Referring to the definition of A and Z̃n, and integrating by parts, we get

λn

(∫ ℓ

0

(ρ|zn|2 + Iρ|ψn|2)dx
)
+

∫ ℓ

0

K(ψn − z′n)(φn − w′
n)dx+

∫ ℓ

0

EIψ
′
nφ

′
ndx

=

∫ ℓ

0

(
ρλnzn + (K(φn − w′

n))
′
)
zndx+

∫ ℓ

0

(
Iρλnψn − (EIφ′

n)
′ +K(φn − w′

n)
)
ψndx

+ EI(ℓ)φ′
n(ℓ)ψn(ℓ)−K(ℓ)(φn(ℓ)− w′

n(ℓ))zn(ℓ)

=

∫ ℓ

0

ρz̃nzndx+

∫ ℓ

0

Iρψ̃nψndx− µ|ψn(ℓ)|2 +K(ℓ)
(
ξn − M

β
zn(ℓ)

)
zn(ℓ).

By the same argument as in proving (3.8) and by using (3.7), it follows that

λn

(∫ ℓ

0

(ρ|zn|2 + Iρ|ψn|2)dx
)
+

∫ ℓ

0

K(ψn − z′n)(φn −w′
n)dx+

∫ ℓ

0

EIψ
′
nφ

′
ndx = o(1). (3.9)

Hence from (3.8) and (3.9) we get

λn

(∫ ℓ

0

K|φn − w′
n|2dx+

∫ ℓ

0

EI|φ′
n|2dx−

∫ ℓ

0

(ρ|zn|2 + Iρ|ψn|2)dx
)
= o(1),

(3.10)∫ ℓ

0

K|φn − w′
n)|2dx+

∫ ℓ

0

EI|φ′
n|2dx−

∫ ℓ

0

(ρ|zn|2 + Iρ|ψn|2)dx = o(1). (3.11)

Consequently, using (3.3) and the fact that

∥Zn∥ = 1, ∥Z̃n∥ = o(1), λnwn = zn + w̃n, λnφn = ψn + φ̃n

and ξn = o(1), we obtain
∫ ℓ

0
K|φn − w′

n|2dx+
∫ ℓ

0
EI|φ′

n|2dx− 1
2 = o(1),∫ ℓ

0
(ρ|zn|2 + Iρ|ψn|2)dx− 1

2 = o(1),∫ ℓ

0
|λn|2(ρ|wn|2 + Iρ|φn|2)dx− 1

2 = o(1).

(3.12)
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We now prove that

λnwn(ℓ), λnφn(ℓ) = o(1), (3.13)

w′
n(ℓ), φ

′
n(ℓ) = o(1), (3.14)

wn(·), φn(·) = o(1) in L2(0, ℓ). (3.15)

First we show (3.13). From (3.3), (3.7) and Condition S, we have∫ ℓ

0

EI|λnφ′
n − ψ′

n|2dx = o(1), ψn(ℓ) = o(1),

and then by using Hölder inequality it follows that

λnφn(ℓ) =

∫ ℓ

0

(λnφ
′
n − ψ′

n)dx+ ψn(ℓ) = o(1).

Similarly, using (3.3), (3.7) and Hölder inequality, we get

λnwn(ℓ) =

∫ ℓ

0

(
λn(w

′
n − z′n)− (λnφn − ψn)

)
dx+

∫ ℓ

0

(λnφn − ψn)dx+ zn(ℓ)

=

∫ ℓ

0

∫ x

0

(λnφ
′
n − ψ′

n)dsdx+ o(1) = o(1).

Next we prove (4.14). From (3.7) and (3.13), we obtain

w′
n(ℓ) = w′

n(ℓ)− φn(ℓ) + φn(ℓ) = o(1), φ′
n(ℓ) = −µEI(ℓ)−1ψn(ℓ) = o(1).

Finally (3.15) follows directly from the third assertion of (3.12).

Based on the above estimates, we now show that

lim
n→∞

∫ ℓ

0

(|λnwn|2 + |λnφn|2) = 0, (3.16)

which contradicts (3.12), and hence the proof of the theorem will be finished.

We have

λ2nwn − 1

ρ
(K(w′

n − φn))
′ = z̃n + λnw̃n, (3.17)

λ2nφn − 1

Iρ
[(EIφ′

n)
′ −K(φn − w′

n)] = ψ̃n + λnφ̃n. (3.18)

Multiplying both sides of (3.17) and (3.18) by ρ(eηx − 1)w′
n and Iρ(e

ηx − 1)φ′
n respectively,

then integrating from 0 to ℓ and adding, we get

Re
(∫ ℓ

0

λ2nρ(e
ηx − 1)wnw

′
ndx+

∫ ℓ

0

λ2nIρ(e
ηx − 1)φnφ

′
ndx

−
∫ ℓ

0

(eηx − 1)(K(w′
n − φn))

′w′
ndx−

∫ ℓ

0

(eηx − 1)
(
(EIφ′

n)
′ −K(φn − w′

n)
)
φ′
ndx

)
= Re

(
(z̃n + λnw̃n, ψ̃n + λnφ̃n), (e

ηx − 1)(w′
n, φ

′
n)
)
L2

ρ×L2
Iρ

△
= ∆n, (3.19)

where η is a positive constant to be determined. It is not difficult to check that

∆n = o(1) (as n→ ∞).
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Referring to (3.13) and integrating by parts, we obtain

Re

∫ ℓ

0

λ2nρ(e
ηx − 1)wnw

′
ndx =

1

2

∫ ℓ

0

(
ηeηxρ+ (eηx − 1)ρ′

)
|λnwn|2dx+ o(1),

(3.20)

Re

∫ ℓ

0

λ2nIρ(e
ηx − 1)φnφ

′
ndx =

1

2

∫ ℓ

0

(
ηeηxIρ + (eηx − 1)I ′ρ

)
|λnφn|2dx+ o(1).

(3.21)

From (3.3), (3.14) and (3.15), it follows that

Re

∫ ℓ

0

(eηx − 1)(K(w′
n − φn))

′w′
ndx

= −Re

∫ ℓ

0

ηeηxK(w′
n − φn)w

′
ndx− Re

∫ ℓ

0

(eηx − 1)K(w′
n − φn)w

′′
ndx+ o(1)

= −
∫ ℓ

0

ηeηxK|w′
n|2dx− Re

∫ ℓ

0

(eηx − 1)Kw′
nw

′′
ndx

+Re

∫ ℓ

0

(eηx − 1)Kφnw
′′
ndx+ o(1), (3.22)

Re

∫ ℓ

0

(eηx − 1)Kw′
nw

′′
ndx = −1

2

∫ ℓ

0

[ηeηxK + (eηx − 1)K ′]|w′
n|2dx+ o(1),

(3.23)

Re

∫ ℓ

0

(eηx − 1)Kφnw
′′
ndx = −Re

∫ ℓ

0

(eηx − 1)φ′
nw

′
ndx+ o(1). (3.24)

Combining (3.22), (3.23) and (3.24), we deduce

Re

∫ ℓ

0

(eηx − 1)(K(w′
n − φ))′w′

ndx

= −1

2

∫ ℓ

0

(
ηeηxK − (eηx − 1)K ′

)
|w′

n|2dx

− Re

∫ ℓ

0

(eηx − 1)Kφ′
nw

′
ndx+ o(1). (3.25)

Similarly, we have

Re

∫ ℓ

0

(eηx − 1)[(EIφ′
n)

′ −K(φ− w′
n)]φ

′
ndx

= −1

2

∫ ℓ

0

[ηeηxEI − (eηx − 1)EI ′]|φ′
n|2dx

+Re

∫ ℓ

0

(eηx − 1)Kw′
nφ

′
ndx+ o(1). (3.26)

From (3.19), (3.20), (3.25) and (3.26), we obtain∫ ℓ

0

(
ηρeηx + (eηx − 1)ρ′

)
|λnwn|2dx+

∫ ℓ

0

(
ηeηxIρ + (eηx − 1)I ′ρ

)
|λnφn|2dx

+

∫ ℓ

0

(
ηeηxK − (eηx − 1)K ′

)
|w′

n|2dx+

∫ ℓ

0

(
ηeηxEI − (eηx − 1)EI ′

)
|φ′

n|2dx

= o(1) (as n→ ∞). (3.27)
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Therefore, the assertion (3.16) follows from (3.27). The proof is then complete.

§4. Asymptotic Behavior of the Closed Loop System

Throughout this section, we assume that all ρ, Iρ, EI, K are positive constants. We

now discuss the case of αβµ = 0, and prove that the closed loop system (2.5), in general, is

not asymptotically stable. The main result in this section is the following

Theorem 4.1. Assume that αµ = 0. Then there exist some constants ρ0, K0, Iρ0 and

EI0 such that the corresponding closed loop system (2.5) with the coefficients ρ0, K0, Iρ0

and EI0 is not asymptotically stable.

Proof. Since the resolvent of A is compact, according to [8], for the closed loop system

(2.5) to be not asymptotically stable it is necessary and sufficient that there exists ω ∈ R
such that iω ∈ σp(A), the point spectrum of A.

(1) αβ ̸= 0, µ = 0. Let AΨ = iωΨ with Ψ ̸= 0 and

Ψ = [w, z, φ, ψ, ξ]τ ∈ D(A).

It is obvious that ω ̸= 0. From Re (AΨ,Ψ)H = 0, we get

z(ℓ) = φ(ℓ)− w′(ℓ) = 0.

Then w and φ satisfy
K
ρ (w

′′ − φ′) + ω2z = 0,
EI
Iρ
φ′′ − K

Iρ
(φ− w′) + ω2ψ = 0,

w(0) = φ(0) = w(ℓ) = φ′(ℓ) = φ(ℓ)− w′(ℓ) = 0,

(4.1)

K

β
ξ + iωξ =

(MK

β2
− α

β

)
z(ℓ).

(4.1) can be rewritten as Z ′ = ÃZ,
B1Z(0) = 0,
B2Z(ℓ) = 0,

(4.2)

where

Z(x) = [w(x), w′(x), φ(x), φ′(x)]τ , Ã =


0 1 0 0

−ρ21ω2 0 0 1
0 0 0 1
0 −c c− ρ22ω

2 0

 ,

B1 =

[
1 0 0 0
0 0 1 0

]
, B2 =

 1 0 0 0
0 0 0 1
0 −1 1 0

 ,
ρ1 =

√
ρ/K, ρ2 =

√
Iρ/EI, a = ρ21ω

2, b = ρ22ω
2, c = K/EI.

Let Z = PZ1, with

P =


α1 α1 α2 α2

α2
1 −α2

1 α2
2 −α2

2

aβ1 −aβ1 aβ2 −aβ2
aα1β1 aα1β1 aα2β2 aα2β2

 ,
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α1 = i

√
a+ b+

√
(a− b)2 + 4ac

2
, (4.3)

α2 =

 i

√
a+b−

√
(a−b)2+4ac

2 , if b > c,√√
(a−b)2+4ac−(a+b)

2 , if b < c,

(4.4)

β1 = 1 + α2
1/a =

(a− b)−
√
(a− b)2 + 4ac

2a
< 0, (4.5)

β2 = 1 + α2
2/a =

(a− b) +
√
(a− b)2 + 4ac

2a
> 0. (4.6)

Then the first equation of (4.2) becomes Z ′
1 = ÂZ1, where

Â
△
= P−1ÃP = diag{α1,−α1, α2,−α2}.

The general solution to this equations can be written as

Z1(x) = diag{eα1x, e−α1x, eα2x, e−α2x}Θ

where Θ is a 4× 1 constant vector. Denote

Q1
△
=


α1 α1 α2 α2

aβ1 −aβ1 aβ2 −aβ2
α1e

α1ℓ α1e
−α1ℓ α2e

α2ℓ α2e
−α2ℓ

aα1β1e
α1ℓ aα1β1e

−α1ℓ aα2β2e
α2ℓ aα2β2e

−α2ℓ

(aβ1 − α2
1)e

α1ℓ (α2
1 − aβ1)e

−α1ℓ (aβ2 − α2
2)e

α2ℓ (α2
2 − aβ2)e

−α2ℓ

 . (4.7)

Then (4.2) has nontrivial solution if and only if

rank (Q1) = 2 + rank

 1 1
α1 sinh ℓα1 α2 sinh ℓα2

β1 coshα1 β2 cosh ℓα2

 < 4, (4.8)

or equivalently {
α1 sinhα1ℓ = α2 sinhα2ℓ,
β1 coshα1ℓ = β2 coshα2ℓ.

(4.9)

It is easy to see that there exist two positive numbers u0, v0 satisfying

u0 sinu0 = v0 sin v0, 0 < v0 <
π

2
< u0 < π.

Set α1 = iu0, α2 = iv0, and

a0 =
u20 + v20

2− β1 − β2
, b0 = (1− β1 − β2)a0, c0 = −β1β2a0

with

β1 =
(v20 − u20) cos v0

v20 cos v0 − u20 cosu0
, β2 =

(v20 − u20) cosu0
v20 cos v0 − u20 cosu0

.

We can easily check that

β1 < 0 < β2 < 1, , (1− β2)u
2
0 = (1− β1)v

2
0 , a0 > b0 > c0 > 0,

and (4.3)–(4.6), (4.9) hold.

From the definitions of a, b and c, it is trivial to find ρ0, K0, Iρ0 , EI0 and ω0, such that

iω0 ∈ σρ(A) for the system (1.1) with coefficients ρ0, K0, Iρ0 and EI0.
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(2) µβ ̸= 0, α = 0. By the similar discussion, it follows that the closed loop system (2.5)

does not decay asymptotically if and only if{
α1 sinhα2ℓ = α2 sinhα1ℓ,
β1 coshα2ℓ = β2 coshα1ℓ

(4.10)

has positive solution (a0, b0, c0). But the solvability of (4.10) can be proven by the similar

argument as above.

As for other cases of αµ = 0, it is trivial to prove the desired conclusion. The proof is

then complete.

Theorem 4.2. Assume that α, µ > 0 and β ̸= 0. Then for all ρ,K, Iρ and EI satisfying

Condition S, the energy of the loop system (2.5) decays asymptotically, but not exponentially.

The proof of the first assertion of Theorem 4.2 is similar to that of Lemma 3.1. Since

the control operator is compact, it follow from [4] that the closed loop system can not be

exponentially stable.
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