THE $(\mathcal{U}+\mathcal{K})$ -ORBIT OF ESSENTIALLY NORMAL OPERATORS AND COMPACT PERTURBATIONS OF STRONGLY IRREDUCIBLE OPERATORS

JI YOUQING* JIANG CHUNLAN** WANG ZONGYAO***

Abstract

Let \mathcal{H} be a complex, separable, infinite dimensional Hilbert space, $T \in \mathcal{L}(\mathcal{H})$. $(\mathcal{U} + \mathcal{K})(T)$ denotes the $(\mathcal{U} + \mathcal{K})$ -orbit of T, i.e., $(\mathcal{U} + \mathcal{K})(T) = \{R^{-1}TR : R \text{ is invertible and of the form unitary plus compact}\}$. Let Ω be an analytic and simply connected Cauchy domain in \mathbb{C} and $n \in \mathbb{N}$. $\mathcal{A}(\Omega, n)$ denotes the class of operators, each of which satisfies

(i) T is essentially normal; (ii) $\sigma(T) = \overline{\Omega}$, $\rho_F(T) \cap \sigma(T) = \Omega$;

(iii) ind $(\lambda - T) = -n$, nul $(\lambda - T) = 0$ $(\lambda \in \Omega)$.

It is proved that given $T_1, T_2 \in \mathcal{A}(\Omega, n)$ and $\epsilon > 0$, there exists a compact operator K with $||K|| < \epsilon$ such that $T_1 + K \in (\mathcal{U} + \mathcal{K})(T_2)$. This result generalizes a result of P. S. Guinand and L. Marcoux^[6,15]. Furthermore, the authors give a character of the norm closure of $(\mathcal{U} + \mathcal{K})(T)$, and prove that for each $T \in \mathcal{A}(\Omega, n)$, there exists a compact (SI) perturbation of T whose norm can be arbitrarily small.

Keywords Essentially normal, $(\mathcal{U} + \mathcal{K})$ -orbit, Compact perturbation, Spectrum, Strongly irreducible operator

1991 MR Subject Classification 47A55, 47B, 47C

Chinese Library Classification 0177.1 Document Code A Article ID 0252-9599(2000)02-0237-12

§1. Introduction

Let \mathcal{H} be a complex, separable, infinite dimensional Hilbert space. Let $\mathcal{L}(\mathcal{H})$ and $\mathcal{K}(\mathcal{H})$ denote the algebra of bounded linear operators and, respectively, the ideal of compact operators acting on \mathcal{H} . We will call $(\mathcal{U}+\mathcal{K})(T) = \{R^{-1}TR : R \in (\mathcal{U}+\mathcal{K})(\mathcal{H})\}$ the $(\mathcal{U}+\mathcal{K})$ -orbit of T, where

$$(\mathcal{U} + \mathcal{K})(\mathcal{H}) = \left\{ R \in \mathcal{L}(\mathcal{H}) : \begin{array}{c} R \text{ is invertible and of the form unitary} \\ \text{operator plus compact operator} \end{array} \right\}$$

 $A \sim_{\mathcal{U}+\mathcal{K}} T$ and $T \to_{\mathcal{U}+\mathcal{K}} B$ imply $A \in (\mathcal{U}+\mathcal{K})(T)$ and, respectively, $B \in (\mathcal{U}+\mathcal{K})(T)^-$, the norm closure of $(\mathcal{U}+\mathcal{K})(T)$. While $\sim_{\mathcal{U}+\mathcal{K}}$ defines an equivalence relation, $\to_{\mathcal{U}+\mathcal{K}}$ does not. An operator is strongly irreducible, or briefly, $T \in (SI)$, if it does not commute with any nontrivial idempotent. An operator is essentially normal if $[T, T^*] := T^*T - TT^* \in \mathcal{K}(\mathcal{H})$. An operator T is said to be shift-like if T is essentially normal with $\sigma(T) = \overline{D} = \{z \in \mathbb{C} :$

Manuscript received September 4, 1998. Revised October 10, 1999.

^{*}Department of Mathematics, Jilin University, Changchun 130023, China.

^{**}Department of Mathematics, Jilin University, Changchun 130023, China.

^{* * *}Department of Mathematics, East China University of Science and Technology, Shanghai 200237, China.

 $|z| \leq 1$ and $\sigma_e(T) = \partial D$ with ind $(\lambda - T) = -1$ and nul $(\lambda - T) = 0$ for all $\lambda \in D$. P. S. Guinand and L. Marcoux^[6,15] proved the following

Theorem G-M. Let T_1 , T_2 be shift-like and let ϵ be a positive number. Then there exists a compact operator K with $||K|| < \epsilon$ such that $T_1 + K \sim_{\mathcal{U}+\mathcal{K}} T_2$.

In this paper we will strengthen the above theorem.

Let Ω be an analytic and simply connected Cauchy domain in \mathbb{C} and $n \in \mathbb{N}$. Then $\mathcal{A}(\Omega, n)$ will denote the class of operators, each of which satisfies

(i) T is essentially normal; (ii) $\sigma(T) = \overline{\Omega}, \rho_F(T) \cap \sigma(T) = \Omega;$

(iii) ind $(\lambda - T) = -n$, nul $(\lambda - T) = 0$ for all $\lambda \in \Omega$.

The next three results are our main results.

Theorem 1.1. Given $T_1, T_2 \in \mathcal{A}(\Omega, n)$ and $\epsilon > 0$, there exists a compact operator K with $||K|| < \epsilon$ such that $T_1 + K \sim_{\mathcal{U}+\mathcal{K}} T_2$.

Theorem 1.2. Let T be in $\mathcal{A}(\Omega, n)$. Then $(\mathcal{U} + \mathcal{K})(T)^-$ consists of all operators A satisfying

(i) A is essentially normal; (ii) $\sigma(A) = \overline{\Omega}, \ \rho_F(A) \cap \sigma(A) = \Omega;$

(iii) ind $(\lambda - A) = -n$ for all $\lambda \in \Omega$.

Theorem 1.3. Let $T \in \mathcal{A}(\Omega, n)$ and $\epsilon > 0$. Then there exists a compact operator K with $||K|| < \epsilon$ such that $T + K \in (SI)$.

Theorem 1.3 partially answers an interesting question posed by D. A. Herrero: Given an essentially normal operator T with connected spectrum and $\epsilon > 0$, is there a $K \in \mathcal{K}(\mathcal{H})$ with $||K|| < \epsilon$, such that $T + K \in (SI)$?

§2. Proof of the Main Theorems

It follows from the Riemann mapping theorem that there is an analytic function ϕ satisfying

(i) $\phi(0) = z_0$, where z_0 is a fixed point in Ω ; (ii) ϕ is injective; (iii) $\phi(D) = \Omega$.

By Schwarz reflection principle ϕ has an analytic continuation on \overline{D} such that $\phi(\partial D) = \partial \Omega$. Let T_{ϕ} be the Toeplitz operator with symbol ϕ . Then $T_{\phi}^* \in \mathcal{B}_1(\Omega^*)$ and $\sigma(T_{\phi}^*) = \overline{\Omega}^*$, where $\mathcal{B}_n(\Omega)$ denotes the set of Cowen-Douglas operators of index n, i.e., $\mathcal{B}_n(\Omega)$ consists of operators B satisfying

(i) $\sigma(B) \supset \Omega$; (ii) ran $(\lambda - B) = \mathcal{H}$ for all $\lambda \in \Omega$;

(iii) nul $(\lambda - B) = n$ for all $\lambda \in \Omega$; (iv) $\bigvee \{ \ker(\lambda - B) : \lambda \in \Omega \} = \mathcal{H}.$

(iv) can be replaced by (iv)'.

(iv)' \bigvee {ker $(\lambda_0 - B)^k$: $k = 1, 2, \dots$ } = \mathcal{H} for a fixed $\lambda_0 \in \Omega$ (see [3]).

In order to prove Theorems 1.1 and 1.2, we need several lemmas.

Lemma 2.1. Let $\mathcal{M} = (\ker(T_{\phi} - \lambda)^*)^{\perp}$. Then $T_{\phi}|_{\mathcal{M}}$ is unitarily equivalent to T_{ϕ} , where $\lambda \in \Omega$.

Proof. Since \mathcal{M} is a hyperinvariant subspace of T_{ϕ} , \mathcal{M} is an invariant subspace of T_z . By Beurling theorem, $\mathcal{M} = T_g H^2$, where g is an inner function and H^2 is the Hardy space. Since $T_{\phi}^* \in \mathcal{B}_1(\Omega^*)$, $g = (z - a)/(1 - a^*z)$, $(0 \le |a| < 1)$. Thus T_g can be considered as a unitary operator from H^2 to \mathcal{M} and $T_g^*(T_g|_{\mathcal{M}})T_g f = T_{\phi}f$ for $f \in H^2$, i.e., $T_g^*(T_{\phi}|_{\mathcal{M}})T_g = T_{\phi}$.

Lemma 2.2. Let $\mathcal{H} = \mathbb{C} \oplus H^2$ and $\lambda \in \Omega$ and let $T = \begin{bmatrix} \lambda & 0 \\ E & T_{\phi} \end{bmatrix} \in \mathcal{L}(\mathcal{H})$, where $E = \alpha e_0 \otimes 1$, $e_0 \in \ker(\lambda - T_{\phi})^*$ and $\|e_0\| = 1$, $\alpha \in \mathbb{C}$ and $\alpha \neq 0$. Then $T \sim_{\mathcal{U} + \mathcal{K}} T_{\phi}$.

Proof. Note that $e_0 \in \operatorname{ran}(T_{\phi} - \lambda)^{\perp}$. By Lemma 2.1,

where g_1, g_2 are rank-1 operators and we assume that $g_2 = f \otimes 1, f \in H^2$. Since $e_0 \in \operatorname{ran}(T_{\phi} - \lambda)^{\perp}, f = \beta e_0 + g_3$, where $\beta \in \mathbb{C}$ and $g_3 \in \operatorname{ran}(T_{\phi} - \lambda)$. If $\beta = 0$, let $g_3 = (T_{\phi} - \lambda)x$, then computation shows that

$$\begin{bmatrix} 1 & 0 \\ x \otimes 1 & 1 \end{bmatrix} \begin{bmatrix} \lambda & 0 \\ g_2 & T_{\phi} \end{bmatrix} \begin{bmatrix} 1 & 0 \\ -x \otimes 1 & 1 \end{bmatrix} = \begin{bmatrix} \lambda & 0 \\ 0 & T_{\phi} \end{bmatrix}$$

This is contradictory to $T_{\phi} \in (SI)$. Thus $\beta \neq 0$, and $X \begin{bmatrix} \lambda & 0 \\ g_2 & T_{\phi} \end{bmatrix} X^{-1} = \begin{bmatrix} \lambda & 0 \\ \beta e_0 \otimes 1 & T_{\phi} \end{bmatrix}$, where $X = \begin{bmatrix} 1 & 0 \\ x \otimes 1 & 1 \end{bmatrix} \in (\mathcal{U} + \mathcal{K})(\mathcal{H})$. Since $\begin{bmatrix} \lambda & 0 \\ \beta e_0 \otimes 1 & T_{\phi} \end{bmatrix} \sim_{\mathcal{U} + \mathcal{K}} \begin{bmatrix} \lambda & 0 \\ E & T_{\phi} \end{bmatrix}$, the proof of Lemma 2.2 is complete.

By the same argument of Lemma 2.2, we can prove

Lemma 2.3. Let $\mathcal{H} = \mathbb{C} \oplus H^2$, $g \notin \operatorname{ran}(T_{\phi} - \lambda)$, $\lambda \in \Omega$ and let $T = \begin{bmatrix} \lambda & 0 \\ g \otimes 1 & T_{\phi} \end{bmatrix} \in \mathcal{L}(\mathcal{H})$. Then $T \sim_{\mathcal{U} + \mathcal{K}} T_{\phi}$.

Lemma 2.4. Let $T \in \mathcal{L}(\mathbb{C}^n \oplus H^2)$ and $T = \begin{bmatrix} F & 0 \\ C_n & T_\phi \end{bmatrix} \overset{\mathbb{C}^n}{H^2}$, where $F \in \mathcal{L}(\mathbb{C}^n)$ with $\sigma(F) \subset \Omega, \ C_n \in \mathcal{L}(\mathbb{C}^n, H^2)$ is a nonzero operator. Then for each $\epsilon > 0$, there exists a compact operator K, $||K|| < \epsilon$, such that $T + K \sim_{\mathcal{U} + \mathcal{K}} T_{\phi}$.

Proof. We will prove the lemma by induction on n.

If $n = 1, T = \begin{bmatrix} \lambda & 0 \\ C_1 & T_{\phi} \end{bmatrix}$, where $C_1 = f \otimes 1$ is a rank-1 operator. Choose $g \in H^2$, $||g|| < \epsilon$, such that $f + g \notin \operatorname{ran}(T_{\phi} - \lambda)$. Set $K = \begin{bmatrix} 0 & 0 \\ g \otimes 1 & 0 \end{bmatrix}$. Then $||K|| < \epsilon$ and by Lemma 2.3,

 $T + K \sim_{\mathcal{U}+\mathcal{K}} T_{\phi}.$

Assume that the conclusion of the lemma is true when $n \leq k - 1$, and let n = k. It is obvious that there is a unitary operator U such that

$$UTU^* = \begin{bmatrix} \lambda & 0 & 0 \\ * & F_{n-1} & 0 \\ * & C_{n-1} & T_{\phi} \end{bmatrix} \begin{bmatrix} \mathbb{C} \\ \mathbb{C}^{n-1} \\ H^2 \end{bmatrix}$$

where $F_{n-1} \in \mathcal{L}(\mathbb{C}^{n-1})$, $\lambda \in \sigma(F)$. By the inductive assumption, we can find a compact operator K_1 with $||K_1|| < \epsilon/2$ and $X_1 \in (\mathcal{U} + \mathcal{K})(\mathcal{H})$ such that

$$X_1(UTU^* + K_1)X_1^{-1} = \begin{bmatrix} \lambda & 0\\ C_1 & T_\phi \end{bmatrix}.$$

By the assumption again, we can find a compact operator K_2 such that $||K_2|| < \frac{\epsilon}{(2||X_1||||X_1^{-1}||)}$ and $X_2\left(\begin{bmatrix} \lambda & 0\\ C_1 & T_{\phi} \end{bmatrix} + K_2\right)X_2^{-1} = T_{\phi}$ for some $X_2 \in (\mathcal{U} + \mathcal{K})(\mathcal{H})$. Thus $K = U^*K_1U + U^*X_1^{-1}K_2X_1U$ satisfies the requirement of the lemma.

Lemma 2.5. Given $A, B \in \mathcal{L}(\mathcal{H})$, let τ_{AB} denote the Rosenblum operator given by $\tau_{AB}(X) = AX - XB, X \in \mathcal{L}(\mathcal{H})$. Let $\tau = \tau_{AB}|_{\mathcal{K}(\mathcal{H})}$. Then $\tau^* = -\tau_{BA}|_{\mathcal{C}^1(\mathcal{H})}$ and $(\tau^*)^* = \tau_{AB}$, where τ^* is the dual of τ and $\mathcal{C}^1(\mathcal{H})$ is the set of trace class operators.

Proof. Recall that $C^1(\mathcal{H})$ is isometrically isomorphic to the dual $\mathcal{K}(\mathcal{H})^*$ of $\mathcal{K}(\mathcal{H})$. This isomorphism is defined by $C^1(\mathcal{H}) \ni K \leftrightarrow \phi_K \in \mathcal{K}(\mathcal{H})^*$, where $\phi_K(X) = \operatorname{tr}(KX), X \in \mathcal{K}(\mathcal{H})$.

Thus

$$\phi_{\tau^*(K)}(X) = \phi_K(\tau(X)) = \operatorname{tr} \left[K(AX - XB) \right] = \operatorname{tr} \left(KAX \right) - \operatorname{tr} \left(KXB \right)$$
$$= \operatorname{tr} \left(KAX \right) - \operatorname{tr} \left(BKX \right) = \operatorname{tr} \left(-\tau_{BA}(K)X \right) = \phi_{-\tau_{BA}(K)}(X).$$

Therefore $\tau^* = -\tau_{BA}|_{C^1(\mathcal{H})}$.

Since $\mathcal{L}(\mathcal{H})$ is isometrically isomorphic to the dual $C^1(\mathcal{H})^*$ of $C^1(\mathcal{H})$, by the similar arguments we can prove that $(\tau^*)^* = \tau_{AB}$.

Lemma 2.6. Given $T \in \mathcal{A}(\Omega, n)$ and $\epsilon > 0$, then there exists a compact operator K with $||K|| < \epsilon$ such that $T + K \sim_{\mathcal{U}+\mathcal{K}} T_{\phi}^{(n)}$.

Proof. Note that T_{ϕ} admits a lower triangular matrix representation with respect to the $ONB \{e^{ik\theta}\}_{k=0}^{\infty}$ of H^2 . Set $\mathcal{M}_k = \bigvee \{e^{ij\theta} : j = 0, 1, \dots, k\}$ and denote by P_k the orthogonal projection onto $\bigoplus_{k=1}^{n} \mathcal{M}_k$. By Brown-Douglas-Fillmore theorem $UTU^* = T_{\phi}^{(n)} + K$, where U is a unitary operator and K is compact. Set $K_1 = P_m K P_m - K$, and m will be determined later. By Lemma 2.1, we can find a unitary operator U_1 such that

$$U_1(UTU^* + K_1)U_1^* = \begin{bmatrix} F & 0 & \dots & 0 \\ C_1 & T_\phi & & 0 \\ \vdots & & \ddots & \\ C_n & 0 & & T_\phi \end{bmatrix},$$

where $F \in \mathcal{L}(\mathbb{C}^{nm})$, C_k is a finite rank operator $(k = 1, \dots, n)$. Fix m so that $||K_1|| < \epsilon/8$ and $\sigma(F) \subset \Omega_{\epsilon/8}$. Thus we can find an operator $C \in \mathcal{L}(\mathbb{C}^{nm})$ such that $||C|| < \epsilon/4$ and $\sigma(F') \subset \Omega$, where F' = F + C. Therefore there exists a compact operator K_2 with $||K_2|| < \epsilon/4$ such that

$$U_1(UTU^* + K_1)U_1^* + K_2 = \begin{bmatrix} F' & 0 & \dots & 0\\ C_1 & T_{\phi} & & \\ \vdots & & \ddots & \\ C_n & 0 & & T_{\phi} \end{bmatrix} = A_1.$$

By Lemma 2.4, there is an $X'_1 \in (\mathcal{U} + \mathcal{K})(\mathbb{C}^{nm} \oplus H^2)$ such that $X'_1 \begin{bmatrix} F' & 0 \\ C_1 & T_{\phi} \end{bmatrix} X'^{-1}_1 = T_{\phi}$. Thus we can find $X_1 \in (\mathcal{U} + \mathcal{K})(\mathbb{C}^{nm} \oplus (H^2)^{(n)})$ such that

$$X_1 A_1 X_1^{-1} = \begin{bmatrix} T_{\phi} & 0 & \dots & 0 \\ C_1' & T_{\phi} & & 0 \\ \vdots & & \ddots & \\ C_{n-1}' & & & T_{\phi} \end{bmatrix} = A_2$$

where C'_k $(k = 1, 2, \dots, n-1)$ is a finite rank operator. Since $\mathcal{A}'(T_{\phi})$ does not contain any compact operators, ker $\tau_{T_{\phi}T_{\phi}}|_{\mathcal{K}(H^2)} = \{0\}$. By Lemma 2.5 $[\operatorname{ran} \tau_{T_{\phi}T_{\phi}}|_{C^1(H^2)}]^- = C^1(H^2)$. Thus for each k $(1 \leq k \leq n-1)$ we can find compact operators D_k and E_k satisfying $T_{\phi}E_k - E_kT_{\phi} = -C'_k - D_k$ and $\|D_k\| < \epsilon/(\|X_1\| \|X_1^{-1}\| 8^k)$.

Set

$$K_3 = \begin{bmatrix} 0 & 0 & \dots & 0 \\ D_1 & 0 & \dots & 0 \\ \vdots & & \ddots & \vdots \\ D_{n-1} & 0 & \dots & 0 \end{bmatrix}, \quad X_2 = \begin{bmatrix} 1 & 0 & \dots & 0 \\ E_1 & 1 & \dots & 0 \\ \vdots & & \ddots & \vdots \\ E_{n-1} & 0 & \dots & 1 \end{bmatrix}.$$

Then K_3 is compact, $||K_3|| < \epsilon/(8||X_1|| ||X_1^{-1}||)$ and $X_2 \in (\mathcal{U} + \mathcal{K})((H^2)^{(n)})$. Calculation indicates that $X_2(A_2 + K_3)X_2^{-1} = T_{\phi}^{(n)}$. Thus, $X(T+K)X^{-1} = T_{\phi}^{(n)}$, where $K = U^*K_1U + U^*U_1^*K_2U_1U + X_1^{-1}K_3X_1$ is a compact operator with $||K|| < \epsilon$, $X = X_2X_1U_1U$ is invertible and of the form unitary plus compact.

Lemma 2.6 implies that $\mathcal{A}(\Omega, n) \subset (\mathcal{U} + \mathcal{K})(T_{\phi}^{(n)})^{-}$.

Lemma 2.7. Let $A, B \in \mathcal{L}(\mathcal{H})$. Assume that $\mathcal{H} = \bigvee \{ \ker(\lambda - B)^k : \lambda \in \Gamma, k \ge 1 \}$ for a certain subset Γ of the point spectrum $\sigma_p(B)$ of B, and $\sigma_p(A) \cap \Gamma = \emptyset$; then τ_{AB} is injective.

Proof. Let p be a monic polynomial with zeros in Γ and let $x \in \mathcal{H}$ be any vector such that p(B)x = 0; then AX = XB implies p(A)Xx = Xp(B)x = 0.

Since p(A) is injective, we infer Xx = 0. It readily follows that ker $X \supset \bigvee \{ \ker(\lambda - B)^k : \lambda \in \Gamma, k \ge 1 \} = \mathcal{H}$. Hence, X = 0.

Lemma 2.8.^[1,Theorem 4.15] Suppose that $T \in \mathcal{L}(\mathcal{H})$ is essentially normal and $\sigma(T) = \sigma_e(T) \cup \sigma_0(T)$. Assume, moreover, that $C(\sigma(T)) = \operatorname{Rat}(\sigma(T))^-$. Then $T \to_{\mathcal{U}+\mathcal{K}} N$, where N is a normal operator such that $\sigma(N) = \sigma(T)$, $\sigma_0(T) = \sigma_0(N)$, and nul $(\lambda - N) = \dim \mathcal{H}(\lambda; T)$ for all $\lambda \in \sigma_0(N)$, Rat $(\sigma(T))^-$ is the uniform closure of rational functions with poles outside $\sigma(T)$.

An operator is almost normal if it has the form of normal + compact.

Lemma 2.9. Suppose $T \in \mathcal{L}(\mathcal{H})$ is almost normal, $\sigma(T)$ is a perfect set with Lebesgue measure 0, N is normal with $\sigma(N) = \sigma(T)$; then for each $\epsilon > 0$, there exists $X \in (\mathcal{U} + \mathcal{K})(\mathcal{H})$ such that

(i) $XTX^{-1} - N \in \mathcal{K}(\mathcal{H});$ (ii) $\|XTX^{-1} - N\| < \epsilon.$

Proof. Since $m(\sigma(T)) = 0$, it follows from [8] that $\operatorname{Rat}(\sigma(T))^{-} = C(\sigma(T))$. By Lemma 2.8, for each $\delta > 0$ there is an $X_1 \in (\mathcal{U} + \mathcal{K})(\mathcal{H})$ such that $||X_1TX_1^{-1} - N|| < \delta$. Since T is almost normal, $X_1TX_1^{-1}$ is also almost normal. Therefore there are normal operator M and compact operator K such that $X_1TX_1^{-1} = M + K$. Since $||M + K - N|| < \delta$, $||[(M + K)^*, (M + K)]|| < 4||N||\delta + 2\delta^2$. I. D. Berg and K. R. Davidson^[2] asserts that there exists a positive valued continuous function f on $[0, \infty)$, f(0) = 0, such that for each almost normal operator Q, there is a compact operator K(Q) with $||K(Q)|| \leq f(||Q^*Q - QQ^*||^{1/2})$ and Q + K(Q) is normal. According to this theorem, we can find a δ and a compact operator K_1 such that

(i) $||K_1|| \le \epsilon/4$; (ii) $X_1 T X_1^{-1} + K_1 = M + K + K_1$ is normal;

(iii)
$$\sigma(M + K + K_1) \subset \sigma(T)_{\epsilon/4}$$
.

Since T is almost normal and $\sigma(T)$ is a perfect set with $m(\sigma(T)) = 0$, $\sigma(T) = \sigma_e(T)$. Thus $\sigma(M) = \sigma(T) \cup \sigma_0(M)$. Since $M + K + K_1$ is normal, $\sigma(M + K + K_1) = \sigma(T) \cup \sigma_0(M + K + K_1)$. Thus we can find a compact operator K_2 , $||K_2|| < \epsilon/2$, such that $\sigma(M + K + K_1 + K_2) = \sigma(T) = \sigma(N)$ and $M + K + K_1 + K_2$ is normal. It follows from Voiculescu theorem that there is a unitary operator U and a compact operator K_3 with $||K_3|| < \epsilon/2$ such that

$$U(X_1TX_1^{-1} + K_1 + K_2)U^* = U(M + K + K_1 + K_2)U^* = N + K_3.$$

Thus $UX_1TX_1^{-1}U^* - N \in \mathcal{K}(\mathcal{H})$, $||UX_1TX_1^{-1}U^* - N|| < \epsilon$, and $X := UX_1$ satisfies the requirements of the lemma.

Let $T \in \mathcal{L}(\mathcal{H})$. λ is an approximate normal eigenvalue of T if for each $\epsilon > 0$, there is a unit vector e_{ϵ} such that $\|(\lambda - T)e_{\epsilon}\| < \epsilon$ and $\|(\lambda - T)^*e_{\epsilon}\| < \epsilon$. If $\lambda \in \sigma_{lre}(T) \subset \sigma_{le}(T)$, by Apostol-Foiaş-Voiculescu Theorem^[9], there exist a compact operator K and an infinite dimensional subspace \mathcal{H}_1 such that $T = \begin{bmatrix} \lambda & E \\ 0 & A \end{bmatrix} \begin{array}{l} \mathcal{H}_1 \\ \mathcal{H}_1^{\perp} \\ \end{array} + K$. Let $\{e_n\}_{n=1}^{\infty}$ be an ONB of \mathcal{H}_1 . Since $e_n \to 0$ weakly, $||Ke_n|| \to 0 \ (n \to \infty)$, i.e. $||(\lambda - T)e_n|| \to 0$. If T is a hyponormal operator, then $||(\lambda - T)e_n||^2 - ||(\lambda - T)^*e_n||^2 \to 0 \ (n \to \infty)$. Thus λ is an approximate normal eigenvalue. Thus we get the following proposition.

Proposition 2.1. Assume that T is essentially normal. Then $\sigma_{lre}(T)$ is contained in the set of approximate normal eigenvalues of T.

Using Proposition 2.1, we get

Theorem 2.1. Given $T, N \in \mathcal{L}(\mathcal{H})$, such that $\sigma_{lre}(T)$ is contained in the set of approximate normal eigenvalues of T, N is a normal operator with $\sigma(N) = \sigma_e(N) = \Gamma, \Gamma \subset \sigma_{lre}(T)$ and given $\epsilon > 0$, there exists a compact operator K with $||K|| < \epsilon$ such that

$$T - K \simeq \begin{bmatrix} N & 0\\ 0 & T \end{bmatrix}$$

Proof. Let $\{\lambda_n\}_{n=1}^{\infty}$ be a sequence of complex numbers such that $\{\lambda_n\}^- = \Gamma$ and card $\{m : \lambda_m = \lambda_n\} = \infty$ for each $n = 1, 2, \cdots$. By the definition of approximate normal eigenvalue, there exists a unit vector e_1 such that $\|(\lambda_1 - T)e_1\| < \epsilon/16$ and $\|(\lambda_1 - T)^*e_1\| < \epsilon/16$. Thus, we have

$$||P_{e_1}(\lambda_1 - T)P_{e_1}|| < \epsilon/16, ||P_{e_1}(\lambda_1 - T)P_{e_1^{\perp}}|| = ||P_{e_1^{\perp}}(\lambda_1 - T)^*P_{e_1}|| < \epsilon/16,$$

and $||P_{e_1^{\perp}}(\lambda_1 - T)P_{e_1}|| < \epsilon/16$, where P_{e_1} and $P_{e_1^{\perp}}$ denote the orthogonal projections onto $\bigvee\{e_1\}$ and, respectively, $[\bigvee\{e_1\}]^{\perp}$. Under the decomposition $\mathcal{H} = \bigvee\{e_1\} \bigoplus [\bigvee\{e_1\}]^{\perp}$, T admits the representation $T = \begin{bmatrix} \lambda_1 + t_{11} & T_{12} \\ T_{21} & T_1 \end{bmatrix}$. Set $K_1 = \begin{bmatrix} t_{11} & T_{12} \\ T_{21} & 0 \end{bmatrix}$; then $K_1 \in \mathcal{K}(\mathcal{H})$, $||K_1|| < \epsilon/8$ and $T - K_1 = \begin{bmatrix} \lambda_1 & 0 \\ 0 & T_1 \end{bmatrix}$. Clearly, $\sigma_{lre}(T_1) = \sigma_{lre}(T)$. Repeat the argument, we can get $K_2 \in \mathcal{K}(\mathcal{H})$, $||K_2|| < \epsilon/2^4$ such that

$$T - K_1 - K_2 = \begin{bmatrix} \lambda_1 & 0 & 0 \\ 0 & \lambda_2 & 0 \\ 0 & 0 & T_2 \end{bmatrix} \bigvee \{e_1\} \\ \bigvee \{e_2\} \\ \left[\bigvee \{e_1, e_2\}\right]^{\perp}$$

By induction, we can find an orthonormal sequence $e_1, e_2, \dots, e_n, \dots$ in \mathcal{H} and a sequence $K_1, K_2, \dots, K_n, \dots$ in $\mathcal{K}(\mathcal{H})$ such that $||K_n|| < \epsilon/2^{n+2}$ $(n = 1, 2, \dots)$ and

$$T - \sum_{n=1}^{m} K_n = \begin{bmatrix} \sum_{n=1}^{m} \lambda_n e_n \otimes e_n & 0\\ 0 & T_{m+1} \end{bmatrix} \bigvee \{e_1, \cdots, e_m\} \qquad m = 1, 2, \cdots$$

Set
$$C_1 = \sum_{n=1}^{\infty} K_n$$
, $N_1 = \sum_{n=1}^{\infty} \lambda_n e_n \otimes e_n$; then $T - C_1 = \begin{bmatrix} N_1 & 0 \\ 0 & T_\infty \end{bmatrix}$ with respect to

the decomposition $\mathcal{H} = \bigvee \{e_n : 1 \leq n < \infty\} \bigoplus [\bigvee \{e_n\}]^{\perp}$, and $C_1 \in \mathcal{K}(\mathcal{H}), ||C_1|| < \epsilon/4$. Applying Voiculescu's non-commutative Weyl-von Neumann Theorem to N_1 , we can find compact operator $C'_2, ||C'_2|| < \epsilon/8$, such that $N_1 + C'_2 \simeq N \oplus N_1$. Therefore,

$$T - C_1 - C_2 \simeq \begin{bmatrix} N & 0 & 0 \\ 0 & N_1 & 0 \\ 0 & 0 & T_\infty \end{bmatrix}$$

where C_2 is compact and $\|C_2\| < \epsilon/8$. Finally, we can find a compact operator C_3 with

 $||C_3|| < \epsilon/4$, such that $T - C_1 - C_2 - C_3 \simeq \begin{bmatrix} N & 0 \\ 0 & T \end{bmatrix}$. Set $K = C_1 + C_2 + C_3$. Then K satisfies all requirements of the theorem.

Lemma 2.10. Let $T \in \mathcal{A}(D, n)$, $\epsilon > 0$. Then there exist an operator $T' \in \mathcal{A}(D, n)$ and a compact operator K such that $||K|| < \epsilon$, T' admits a lower triangular matrix representation with respect to some ONB of \mathcal{H} and $T' + K \sim_{\mathcal{U}+\mathcal{K}} T$.

Proof. By Apostol's triangular representation theorem
$$T = \begin{bmatrix} T_0 & B \\ 0 & T_l \end{bmatrix} \begin{array}{c} \mathcal{H}_0(T) \\ \mathcal{H}_l(T) \end{array}$$
 and

$$\mathcal{H}_0$$
 is a hyperinvariant subspace of T , (2.1)

$$T_l$$
 admits a lower triangular matrix representation, (2.2)

$$\rho_{s-F}(T) \subset \rho(T_0). \tag{2.3}$$

By Brown-Douglas-Fillmore theorem $T \simeq T_z^{(n)} + K$, K is compact, and $\pi(T)$ is a unitary element in the Calkin algebra $\mathcal{A}(\mathcal{H}) = \mathcal{L}(\mathcal{H})/\mathcal{K}(\mathcal{H})$, i.e., $\pi(T^*)\pi(T) - \pi(1) = 0$. Thus

$$\begin{bmatrix} \pi(T_0^*T_0) - \pi(1) & \pi(T_0^*B) \\ \pi(B^*T_0) & \pi(B^*B + T_l^*T_l) - \pi(1) \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}.$$

Since $D \subset \rho(T_0) \subset \rho(\pi(T_0))$, $\pi(T_0)$ is invertible and $\pi(T_0)^{-1} = \pi(T_0)^*$. Thus $\pi(T_0)$ is a unitary element in $\mathcal{A}(\mathcal{H}_0(T))$. Since T_0 is invertible, by Brown-Douglas-Fillmore theorem $T_0 \simeq U_0 + K_0$, where U_0 is unitary and K_0 is compact. By (2.3) $\sigma(U_0 + K_0) \subset \partial D$. Since $\pi(T)$ is a unitary element in $\mathcal{A}(\mathcal{H})$, $TT^* - 1 \in \mathcal{K}(\mathcal{H})$, i.e., $\begin{bmatrix} T_0 T_0^* + BB^* - 1 & BT_l^* \\ T_l B^* & T_l T_l^* - 1 \end{bmatrix}$ is compact. Since $\pi(T_0)$ is a unitary element, $T_0 T_0^* - 1$ is compact, thus BB^* and B are compact. Since $T_l^* \in \mathcal{B}_n(D)$ and $D \cap \sigma(T_0^*) = \emptyset$, by Proposition 2.1 ker $\tau_{T_0^* T_l^*} = \{0\}$ and therefore ker $\tau_{T_l T_0} = \{0\}$. By Lemma 2.5, ran $\tau_{T_0 T_l}$ is dense in $\mathcal{K}(\mathcal{H}_l, \mathcal{H}_0)$. Thus for $\delta > 0$, there exist compact operators $E, G \in \mathcal{L}(\mathcal{H}_l(T), \mathcal{H}_0(T))$ such that $T_0 G - GT_l = B + E$ and $\|E\| < \delta$.

Set $X_1 = \begin{bmatrix} 1 & -G \\ 0 & 1 \end{bmatrix} \begin{array}{c} \mathcal{H}_0(T) \\ \mathcal{H}_l(T) \end{array}$ and $K_1 = \begin{bmatrix} 0 & -E \\ 0 & 0 \end{bmatrix} \begin{array}{c} \mathcal{H}_0(T) \\ \mathcal{H}_l(T) \end{array}$. Then $X_1((T_0 \oplus T_l) + K_1)X_1^{-1}$ = T, where $X_1 \in (\mathcal{U} + \mathcal{K})(\mathcal{H})$, K_1 is compact and $\|K_1\| < \delta/2$. Since $\sigma(T_0) \subset \partial D$, Lemma

= T, where $X_1 \in (\mathcal{U} + \mathcal{K})(\mathcal{H})$, K_1 is compact and $||K_1|| < \delta/2$. Since $\sigma(T_0) \subset \partial D$, Lemma 2.9 indicates that there are compact operator K_2 and $X_2 \in (\mathcal{U} + \mathcal{K})(\mathcal{H})$ such that $||K_2|| < \delta$ and $X_2((N_0 \oplus T_l) + K_2)X_2^{-1} = T_0 \oplus T_l$, where N_0 is a diagonal normal operator with $\sigma(N_0) = \sigma(T_0)$. By Theorem 2.1 we can find a compact operator K_3 and a unitary operator U such that $||K_3|| < \delta$ and $U((N_0 \oplus T_l) + K_3)U^* = T_l$, i.e., $U^*(T_l - UK_3U^*)U = N_0 \oplus T_l$. Thus let $\delta = \epsilon/(4||X_2||||X_2^{-1}||)$, $K = UK_2U^* - U^2K_3U^{*2} + UX_2^{-1}K_1X_2U^*$, $T' = T_l$ satisfy the requirement of the lemma.

Lemma 2.11. Let $T \in \mathcal{A}(D, n)$, $0 < \epsilon < 1/10$ and $||T^*T - 1|| < \epsilon$. Then there exists a unitary operator W such that $W^*TW - T_z^{(n)}$ is compact and $||W^*TW - T_z^{(n)}|| < \epsilon$.

Proof. Consider the polar decomposition T = U|T| of T, where U is a partial isometry, ran $U = \operatorname{ran} T$. By the Wold decomposition theorem (see [17]), $U \simeq T_z^{(n)} \oplus V$, where V is a unitary operator. By the assumption $||T|^2 - 1|| < \epsilon$, $|z^2 - 1| < \epsilon$ for all $z \in \sigma(|T|)$. Since $\epsilon < 1/10$, z > 1/2 and $\epsilon > |z^2 - 1| = |z + 1||z - 1| > 3|z - 1|/2$. Thus $\sigma(|T|) \subset \{x \in \mathbb{R} : |x - 1| < 2\epsilon/3\}$. Since |T| is self-adjoint, $||T| - 1|| < 2\epsilon/3$ and therefore $||T - U|| = ||U|T| - U|| = ||U(|T| - 1)|| \le ||U|| ||T| - 1|| < 2\epsilon/3$. Note that $T \simeq T_z^{(n)} + K$, where K is compact. Thus $|T|^2 - 1 = T^*T - 1 \simeq (T_z^{(n)} + K)^*(T_z^{(n)} + K) - 1$, and $|T|^2 = 1 + K_1$ and $|T| = 1 + K_2$ for some $K_1, K_2 \in \mathcal{K}(\mathcal{H})$.

243

Since V is unitary and $U \simeq T_z^{(n)} \oplus V$, by Theorem 2.1 there is a unitary operator W such that

$$\|W^*UW - T_z^{(n)}\| < \epsilon/3, \tag{2.4}$$

$$K_3 := W^* U W - T_z^{(n)} \text{ is compact.}$$

$$(2.5)$$

Thus $W^*TW - T_z^{(n)} = W^*(T - U)W + W^*UW - T_z^{(n)} = W^*[U(|T| - 1)]W + K_3 = W^*(UK_2)W + K_3$. It is compact, and

$$||W^*TW - T_z^{(n)}|| \le ||W^*(T - U)W|| + ||K_3|| \le ||T - U|| + \frac{\epsilon}{3} < \epsilon.$$

Proposition 2.2. Let $T \in \mathcal{A}(D, n)$ admit a lower triangular matrix representation $T = \begin{bmatrix} F & 0 \\ X & S \end{bmatrix} \mathcal{H}_1$, where, F is a diagonal operator on a finite dimensional Hilbert space \mathcal{H}_1 , $S \in \mathcal{A}(D, n)$ and $\|S^*S - 1\| < \delta < 1/10$. Then there exists $Q \in (U + K)(T)^-$ satisfying dist $(Q, \mathcal{U}(T_z^{(n)})) < 4\delta$ and $Q - W^*(T_z^{(n)})W \in \mathcal{K}(\mathcal{H})$, for some unitary operator W.

Proof. Case 1. Assume that $\sigma(F) \subset \{\lambda : |\lambda| < 1/(1+3\delta)\}$. We will proceed by induction on the dimension m of \mathcal{H}_1 to prove that there exists $Q \in (\mathcal{U} + \mathcal{K})(T)$ such that $\operatorname{dist}(Q, \mathcal{U}(T_z^{(n)})) < \delta$ and $Q - W^*T_z^{(n)}W$ is compact for some unitary W.

dist $(Q, \mathcal{U}(T_z^{(n)})) < \delta$ and $Q - W^* T_z^{(n)} W$ is compact for some unitary W. When $m = 1, T = \begin{bmatrix} \lambda & 0 \\ x \otimes e & S \end{bmatrix} \bigvee \{e\} = \mathcal{H}_1$, where $x \in \mathcal{H}_2$ and $x \neq 0$ (x = 0 is contradictory to $T \in \mathcal{A}(D, n)$). If $x \in \operatorname{ran}(S - \lambda)$, computation shows that $T \sim \lambda \oplus S$. This is also contradictory to $T \in \mathcal{A}(D, n)$. Thus $x \notin \operatorname{ran}(S - \lambda)$. For $z \otimes e \in \mathcal{L}(\mathcal{H}_1, \mathcal{H}_2)$,

$$T \sim_{\mathcal{U}+\mathcal{K}} \begin{bmatrix} 1 & 0 \\ z \otimes e & 1 \end{bmatrix} \begin{bmatrix} \lambda & 0 \\ x \otimes e & S \end{bmatrix} \begin{bmatrix} 1 & 0 \\ -z \otimes e & 1 \end{bmatrix} = \begin{bmatrix} \lambda & 0 \\ y \otimes e & S \end{bmatrix}$$

where $y = x + (\lambda - S)z$. Since $\lambda - S$ is a Fredholm operator, we always can choose z so that $y \in \ker(\lambda - S)^*$ and $y \neq 0$. For $\alpha \in \mathbb{C}$ $(\alpha \neq 0)$ and $\omega \in \mathcal{H}_2$, we have

$$T \sim_{\mathcal{U}+\mathcal{K}} \begin{bmatrix} 1 & 0\\ \omega \otimes e & 1 \end{bmatrix} \begin{bmatrix} \alpha^{-1} & 0\\ 0 & 1 \end{bmatrix} \begin{bmatrix} \lambda & 0\\ y \otimes e & S \end{bmatrix} \begin{bmatrix} \alpha & 0\\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0\\ -\omega \otimes e & 1 \end{bmatrix} = \begin{bmatrix} \lambda & 0\\ v \otimes e & S \end{bmatrix},$$

where $v = \alpha y + (\lambda - S)\omega$.

Set $Q_1 = \begin{bmatrix} \lambda & 0 \\ v \otimes e & S \end{bmatrix}$. We will choose adequate α and ω so that $||Q_1^*Q_1 - 1|| < \delta$. Note that

$$Q_1^*Q_1 = \begin{bmatrix} |\lambda|^2 + (e \otimes v)(v \otimes e) & e \otimes (S^*v) \\ (S^*v) \otimes e & S^*S \end{bmatrix}.$$

We intend to choose α and ω so that

$$|\lambda|^{2} + ||v||^{2} - 1 = 0 \quad \text{or} \quad ||v|| = \sqrt{1 - |\lambda|^{2}}, \tag{2.6}$$
$$S^{*}v = 0 \tag{2.7}$$

and $\alpha \neq 0$.

Since S^* is a Fredholm operator and nul S = 0, S^*S is invertible. Set $S^*S = A$. Thus

$$S^*v = S^*[\alpha y + (\lambda - S)\omega] = \alpha S^*y + (\lambda S^* - A)\omega = \alpha S^*y + A(\lambda A^{-1}S^* - 1)\omega.$$

Since A > 0, $\sigma(A) \subset (1-\delta, 1+\delta)$. Therefore $||A^{-1}|| < 1/(1-\delta)$. It follows from $||S^*|| \le 1+\delta$ that

$$||A^{-1}S^*|| \le ||A^{-1}|| ||S^*|| < (1+\delta)/(1-\delta) < 1+3\delta.$$

By assumption, $\|\lambda A^{-1}S^*\| < 1$. Thus $(\lambda A^{-1}S^* - 1)$ and $(\lambda S^* - A)$ are invertible. Choose $\omega = (-\alpha\lambda^*)(\lambda S^* - A)^{-1}y$, we have

$$S^*v = \alpha S^*y + (\lambda S^* - A)(-\alpha\lambda^*)(\lambda S^* - A)^{-1}y = \alpha\lambda^*y - \alpha\lambda^*y = 0.$$

Since

$$||v|| = ||\alpha y + (\lambda - S)\omega|| = [||\alpha y||^2 + ||(\lambda - S)(-\alpha\lambda^*)(\lambda S^* - A)^{-1}y||^2]^{1/2}$$

= $|\alpha|[||y||^2 + ||\lambda^*(\lambda - S)(\lambda S^* - A)^{-1}y||^2]^{1/2}$

and since λ and y are fixed, we can choose $\alpha \neq 0$ so that $||v|| = (1 - |\lambda|^2)^{1/2}$. Thus for the chosen v, $Q_1^*Q_1 = \begin{bmatrix} 1 & 0 \\ 0 & S^*S \end{bmatrix}$ and $||Q_1^*Q_1 - 1|| < \delta$. Since $Q_1 \in (\mathcal{U} + \mathcal{K})(T)$, $Q_1 \in \mathcal{A}(D, n)$. By Lemma 2.11 dist $(Q_1, \mathcal{U}(T_z^{(n)})) < \delta$ and $Q_1 - W^*T_z^{(n)}W$ is compact for some unitary operator W.

To complete the induction step, we now assume that the result is true when F is an $(m-1) \times (m-1)$ diagonal matrix.

Let
$$T = \begin{bmatrix} F & 0 \\ x & S \end{bmatrix}$$
 satisfy the condition of the lemma, where F is an $m \times m$ matrix. Then
$$\begin{bmatrix} F' & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} F' & 0 \end{bmatrix}$$

$$T \simeq \begin{bmatrix} F & 0 & 0 \\ 0 & \lambda & 0 \\ X_1 & x_2 & S \end{bmatrix} = \begin{bmatrix} F' & 0 \\ X'_1 & T_1 \end{bmatrix}$$

where F' is an $(m-1) \times (m-1)$ diagonal matrix, $X'_1 = \begin{bmatrix} 0 \\ X_1 \end{bmatrix}$ and $T_1 = \begin{bmatrix} \lambda & 0 \\ x_2 & S \end{bmatrix}$. But T_1 is precisely of the form handled when m = 1, and so we can find $R \in (\mathcal{U} + \mathcal{K})(\mathcal{H}'_2)$ such that if $R^{-1}T_1R := Q_1$, then $Q_1 \in \mathcal{A}(D, n)$, $\|Q_1^*Q_1 - 1\| < \delta$, $\|R^{-1}T_1R - T_z^{(n)}\| < \delta$ and $R^{-1}T_1R - T_z^{(n)}$ is compact, where T_1 is acting on \mathcal{H}'_2 . Then

$$T \sim_{\mathcal{U}+\mathcal{K}} \begin{bmatrix} 1 & 0 \\ 0 & R^{-1} \end{bmatrix} \begin{bmatrix} F' & 0 \\ X'_1 & T_1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & R \end{bmatrix} = \begin{bmatrix} F' & 0 \\ R^{-1}X'_1 & R^{-1}T_1R \end{bmatrix} := T'.$$

Thus $T' \in (\mathcal{U} + \mathcal{K})(T)$ and therefore $T' \in \mathcal{A}(D, n)$ and satisfies the same condition as T does. By the inductive assumption, we can find $Q \in (\mathcal{U} + \mathcal{K})(T') = (\mathcal{U} + \mathcal{K})(T)$ such that dist $(Q, u(T_z^{(n)})) < \delta$ and $Q - W^*T_z^{(n)}W \in \mathcal{K}(\mathcal{H})$ for some unitary operator W. This completes the proof of Case 1. Note that our distance estimate is actually δ as opposed to 4δ in this case.

Case 2. $\sigma(F) \cap \{\lambda : |\lambda| \ge 1/(1+3\delta)\} \neq \emptyset$.

By an appropriate choice of basis, we can assume that the eigenvalues $\{\lambda_1, \dots, \lambda_m\}$ of F are listed in nonincreasing order of absolute value. Thus

where $|\lambda_i| \in [1/(1+3\delta), 1)$ if and only if $1 \leq i \leq r, G = (x_1, \cdots, x_r) \in \mathcal{L}(\mathcal{H}'_1, \mathcal{H}'_2)$,

$$T_{0} = \begin{bmatrix} \lambda_{r+1} & 0 \\ \ddots & 0 \\ 0 & \lambda_{m} \\ x_{r+1} & \dots & x_{m} & S \end{bmatrix} \in \mathcal{L}(\mathcal{H}'_{2}).$$
Set $Y_{k} = \begin{bmatrix} k & 0 \\ 0 & 1 \end{bmatrix} \mathcal{H}'_{1} \in (\mathcal{U} + \mathcal{K})(\mathcal{H}).$ Then $Y_{k}TY_{k}^{-1} = \begin{bmatrix} \prod_{1}^{r} \lambda_{i} & 0 \\ \frac{1}{k}G & T_{0} \end{bmatrix} \rightarrow \begin{pmatrix} \prod_{i=1}^{r} \lambda_{i} \end{pmatrix} \oplus T_{0}$
 $(k \to \infty), \text{ i.e., } T \to_{\mathcal{U}+\mathcal{K}} \begin{pmatrix} \prod_{i=1}^{r} \lambda_{i} \end{pmatrix} \oplus T_{0}.$ Moreover, it is not difficult to check that T_{0} satisfies all the conditions of Case 1. Because of this, we can conclude that $\begin{pmatrix} \prod_{i=1}^{r} \lambda_{i} \end{pmatrix} \oplus T_{0} \sim_{\mathcal{U}+\mathcal{K}} \begin{pmatrix} \prod_{i=1}^{r} \lambda_{i} \end{pmatrix} \oplus T_{0} = \langle (\prod_{i=1}^{r} \lambda_{i}) \oplus \mathcal{Q}_{1}, \text{ where } Q_{1} \in (\mathcal{U} + \mathcal{K})(T_{0}), \|Q_{1} - T_{z}^{(n)}\| < \delta \text{ and } Q_{1} - T_{z}^{(n)} \text{ is compact. Let}$
 $Q = \begin{pmatrix} \prod_{i=1}^{r} \lambda_{i} \end{pmatrix} \oplus Q_{1}, \text{ thus } Q \in (\mathcal{U} + \mathcal{K})(T)^{-}.$ Since $\|\lambda_{i}\| - 1\| < \|1/(1 + 3\delta) - 1\| < 3\delta$
 $(1 \le i \le r), \text{ we may easily find } \lambda'_{i} \in \partial D \text{ such that } |\lambda_{i} - \lambda'_{i}\| < 3\delta \ (1 \le i \le r).$ Since $T_{z}^{(n)}$ is essentially normal and $\partial D \subset \sigma_{e}(T_{z}^{(n)}), \text{ by the arguments of Proposition 2.1 we have the set of the set$

unitary operator. Thus

$$\begin{aligned} \|Q - W^* T_z^{(n)} W\| &= \left\| \left(\bigoplus_{i=1}^r \lambda_i \right) \bigoplus Q_1 - \left(\bigoplus_{i=1}^r \lambda_i' \right) \bigoplus T_z^{(n)} - W^* K W \right\| \\ &\leq \left\| \left(\bigoplus_{i=1}^r (\lambda_i - \lambda_i') \right) \bigoplus (Q_1 - T_z^{(n)}) \right\| + \|K\| \le 3\delta + \delta = 4\delta. \end{aligned}$$

Moreover, $Q - W^*T_z^{(n)}W$ is compact, since $Q_1 - T_z^{(n)}$ is compact. **Proposition 2.3.** Suppose that $T \in \mathcal{A}(D,n)$. Then given δ , $0 < \delta < 1/10$, we can find a compact operator K with $||K|| < \delta$ such that $T_z^{(n)} + K \sim_{\mathcal{U}+\mathcal{K}} T$. In particular, $T_z^{(n)} \in (\mathcal{U} + \mathcal{K})(T)^-$, and so $(\mathcal{U} + \mathcal{K})(T_z^{(n)})^- = (\mathcal{U} + \mathcal{K})(T)^-$. **Proof.** By Lemma 2.10, $T \to_{\mathcal{U} + \mathcal{K}} T'$, where $T' \in \mathcal{A}(D, n)$ and is a lower triangular. Thus

 $T'^* \in \mathcal{B}_n(D)$. From the definition of $\mathcal{B}_n(D)$ operators we may assume that the diagonal entries $\{\lambda_k\}_{k=1}^{\infty}$ of T' are pairwise distinct and form a dense subset of D. Thus, for each $k \geq 1$, we have

$$T' = \begin{bmatrix} \lambda_1 & & 0 \\ & \ddots & & \vdots \\ & & \lambda_k & 0 \\ Z_{11} & \dots & Z_{1k} & T'_k \end{bmatrix} := \begin{bmatrix} G_k & 0 \\ Z_k & T'_k \end{bmatrix}.$$

=: $K \in \mathcal{K}(\mathcal{H})$, we obtain

Since $T'^{*}T' - 1 =$

$$=: K \in \mathcal{K}(\mathcal{H}), \text{ we obtain} \\ \begin{bmatrix} G_k^* G_k + Z_k^* Z_k & Z_k^* T_k' \\ T_k' Z_k & T_k'^* T_k' \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} + \begin{bmatrix} K_{1k} & K_{2k} \\ K_{3k} & K_{4k} \end{bmatrix}$$

with respect to these decompositions of the spaces. Since K is compact, we can choose N large enough so that if $k \geq N$, $||K_{4k}|| < \delta/4$. Let $S = T'_N$. Then $S \in \mathcal{A}(D, n)$ and $||S^*S - 1|| < \delta/4$. By Lemma 2.11, $d(S, \mathcal{U}(T_z^{(n)})) < \delta/4$. Since the eigenvalues of G_N are

all distinct, we can find an invertible matrix R such that $F = R^{-1}G_NR$ is diagonal. Let $X = Z_N R$. Then

$$T' \sim_{\mathcal{U}+\mathcal{K}} \begin{bmatrix} R^{-1} & 0\\ 0 & 1 \end{bmatrix} \begin{bmatrix} G_N & 0\\ Z_N & S \end{bmatrix} \begin{bmatrix} R & 0\\ 0 & 1 \end{bmatrix} = \begin{bmatrix} F & 0\\ X & S \end{bmatrix} = T_0.$$

By Proposition 2.2 we can find an operator $Q \in (\mathcal{U} + \mathcal{K})(T_0)^- = (\mathcal{U} + \mathcal{K})(T)^-$ and a unitary operator W such that

(i) $Q - W^* T_z^{(n)} W$ is compact,

(ii) $||Q - W^* T_z^{(n)} W|| < \delta.$

Thus, setting $K = WQW^* - T_z^{(n)}$, we have $||K|| < \delta$ and $T_z^{(n)} + K \sim_{\mathcal{U}+\mathcal{K}} T$. Therefore $T_z^{(n)} \in (\mathcal{U}+\mathcal{K})(T)^-$. By Lemma 2.6, $(\mathcal{U}+\mathcal{K})(T_z^{(n)})^- = (\mathcal{U}+\mathcal{K})(T)^-$.

Now we are in a position to prove Theorems 1.1, 1.2 and 1.3.

Proof of Theorem 1.1. By Lemma 2.6, there are a compact operator K_1 with $||K_1|| < \epsilon/2$ and an operator $Y \in (\mathcal{U} + \mathcal{K})(\mathcal{H})$ such that $T_1 + K_1 = YT_{\phi}^{(n)}Y^{-1}$. Let ϕ be the analytic function in Lemmas 2.2–2.3. Then ϕ is analytic in \overline{D} and $\phi^{-1} = \psi$ is analytic in $\overline{\Omega}$. We can find $\delta_1, \delta_2 > 0$ such that $\psi(\Omega_{\delta_1}) \supset D_{\delta_2}$. Set $A = \psi(T_2) \in \mathcal{A}(D, n), B = T_z^{(n)}$. Let $m_1 = \max\{|\phi(z)| : |z| = 1 + \delta_2\}$ and $m_2 = \max\{|(z - B)^{-1}|| : |z| = 1 + \delta_2\}$. By Proposition 2.2, there are a compact operator K_2 and an operator $X \in (\mathcal{U} + \mathcal{K})(\mathcal{H})$ such that $X(B + K_2)X^{-1} = A$, and $||K_2|| < \min\{1/[(m + 1)m_2], \delta_2\}$, where $m \in \mathbb{N}$ satisfies $[m_1m_2(1 + \delta_2)]/m < \epsilon/(2||Y|| ||Y^{-1}||)$. This implies that $\sigma(B + K_1) = \overline{D}$. Therefore

$$\phi(X(B+K_1)X^{-1}) = X \phi(B+K_1)X^{-1} = \phi(A) = \phi \circ \psi(T) = T_2.$$

 Set

$$K_{3} = \phi(B + K_{2}) - T_{\phi}^{(n)} = \phi(B + K_{2}) - \phi(B)$$

= $\frac{1}{2\pi i} \int_{|z|=1+\delta_{2}} \phi(z) \left[(z - B - K_{2})^{-1} - (z - B)^{-1} \right] dz$
= $\frac{1}{2\pi i} \int_{|z|=1+\delta_{2}} \phi(z) (z - B)^{-1} \sum_{n=1}^{\infty} \left[(z - B)^{-1} K_{2} \right]^{n} dz.$

Thus

$$\|K_3\| \le \frac{2\pi m_1 (1+\delta_2)m_2}{2\pi} \sum_{n=1}^{\infty} \|(z-B)^{-1}\|^n \|K_2\|^n$$

$$< m_1 m_2 (1+\delta_2) \sum_{n=1}^{\infty} \frac{1}{(m+1)^n} = \frac{m_1 m_2 (1+\delta_2)}{m} < \frac{\epsilon}{2\|Y\| \|Y^{-1}\|}.$$

Since K_2 is compact, K_3 is compact. Thus $T_{\phi}^{(n)} + K_3 \sim_{\mathcal{U}+\mathcal{K}} T_2$, i.e., there is a $Z \in (\mathcal{U}+\mathcal{K})(\mathcal{H})$ such that $T_{\phi}^{(n)} + K_2 = ZT_2Z^{-1}$. Thus

$$T_1 + K_1 + YK_3Y^{-1} = Y(T_{\phi}^{(n)} + K_3)Y^{-1} = YZT_2Z^{-1},$$

and $K = K_1 + Y K_3 Y^{-1}$ satisfies the requirements of the theorem.

Proof of Theorem 1.2. If A satisfies (i), (ii) and (iii), then for each $\epsilon > 0$ by [9, Theorem 3.48], there exists a compact operator K, $||K|| < \epsilon$, such that $A + K \in \mathcal{A}(\Omega, n)$. By Theorem 1.1, $A + K \in (\mathcal{U} + \mathcal{K})(T)^-$. Thus $A \in (\mathcal{U} + \mathcal{K})(T)^-$. If $A \in (\mathcal{U} + \mathcal{K})(T)^-$, then $X_n T X_n^{-1} \to A$ $(n \to \infty)$ for a sequence of invertible operators $\{X_n\} \subset (\mathcal{U} + \mathcal{K})(\mathcal{H})$. Since $\pi(X_n) \pi(T) \pi(X_n^{-1}) \to \pi(A)$ $(n \to \infty)$ and since each $\pi(X_n)$ is a unitary element, $\sigma_e(T) = \sigma_e(A) = \partial \Omega$ and $\operatorname{nul}(\lambda - T) = \operatorname{nul}(\lambda - A)$ for all $\lambda \in [\sigma(T) \cup \sigma(A)] \setminus \sigma_e(T)$. Thus A is essentially normal, $\overline{\Omega} \subset \sigma(A)$ and for $\lambda \in \Omega$, $\operatorname{ind}(\lambda - A) = -n$. Conversely, assume that $\lambda \in \sigma(A) \cap \rho(A)$ but $\lambda \notin \overline{\Omega}$. Since $\lambda \in \rho(X_n T X_n^{-1})$, $\operatorname{ind}(\lambda - A) = 0 = \operatorname{nul}(\lambda - A)$. Thus $\lambda \in \rho(A)$, a contradiction. Thus $\sigma(A) = \overline{\Omega}$.

Proof of Theorem 1.3. By Theorem 1.1, it suffices to prove that there exists a compact operator K, $||K|| < \epsilon$, such that $T_{\phi}^{(n)} + K \in (SI)$, or $(T_{\phi}^*)^{(n)} + K \in (SI)$, where ϕ is an analytic homeomorphism from D onto Ω . Since $T_{\phi}^* \in \mathcal{B}_1(\Omega)$, by [12, Lemma 2.3], we can find compact operators K_1, K_2, \dots, K_n such that $||K_i|| < \epsilon/2$, $A_i := T_{\phi}^* + K_i \in \mathcal{B}_1(\Omega)$ $(i = 1, 2, \dots, n)$ and ker $\tau_{A_iA_j} = \{0\}$ $(i \neq j)$. Since $\sigma_r(A_1) \cap \sigma_l(A_i) \neq \emptyset$ $(i = 2, 3, \dots, n)$, by [9, Theorem 3.53] there are compact operators C_2, C_3, \dots, C_n such that $C_i \notin \operatorname{ran} \tau_{A_1A_i}$ and $||C_i|| < \epsilon/2^i$ $(i = 2, 3, \dots, n)$.

Set

$$K = \begin{bmatrix} K_1 & C_2 & \dots & C_n \\ & K_2 & & & \\ & & \ddots & & \\ & & & \ddots & \\ & 0 & & & K_n \end{bmatrix}.$$

Then K is compact and $||K|| < \epsilon$. It is easily seen that $(T^*_{\phi})^{(n)} + K \in (SI)$.

References

- [1] Al-Musallan, An upper estimate for the distance to the essentially G_1 operators [M], Dissertation, Arizona state university, 1989.
- [2] Berg, I. D. & Davidson, K. R., Almost commuting matrices and a quantitative version of Brown-Douglas-Fillmore theorem [J], Acta. Math., 166(1991), 121–161.
- [3] Cowen, M. J. & Douglas, R. G., Complex geometry and operator theory [J], Bull. Amer. Math. Soc., 83(1977), 131–133.
- [4] Fialkow, L. A., A note on the range of the operator $X \mapsto AX XB$ [J], Illinois J. Math., 25(1981), 112–124.
- [5] Gilfeather, F., Strong reducibility of operators [J], Ind. Univ. Math. J., 22(1972), 393-397.
- [6] Guinand, P. S. & Marcoux, L., Between the unitary and similarity orbits of normal operators [J], Pacific J. Math., 159(1993), 299–335.
- [7] Guinand, P. S. & Marcoux, L., On the (U + K)-orbits of certain weighted shifts [J], Integral Equations and Operator Theory, 17(1993), 516–543.
- [8] Hartogs, H. & Rosenthal, A., über fdgen analytischer funktionen [J], Math. Ann., 104(1931), 606–610.
- [9] Herrero, D. A., Approximation of Hilbert space operators I 2ed ed. [M], Research Notes in Math., 224 (Longman, Harlow, Essex, 1990).
- [10] Ji, Y. Q., Jiang, C. L. & Wang, Z. Y., Strongly irreducible operators in Nest algebras [J], Integral Equations and Operator Theory, 28(1997), 28–44.
- [11] Ji, Y. Q., Jiang, C. L. & Wang, Z. Y., Strongly irreducible operators in Nest algebras with well-ordered nest [J], Michigan Math. J., 44(1997), 85–98.
- [12] Jiang, C. L., Sun, S. H. & Wang, Z. Y., Essentially normal operator+compact operator = strongly irreducible operator [J], Trans. Amer. Math. Sco., 349(1997), 217–233.
- [13] Jiang, C. L. & Wang, Z. Y., The spectral picture and the closure of the similarity orbit of strongly irreducible operators [J], *Integral Equations and Operator Theory*, 24(1996), 81–105.
- [14] Jiang, C. L. & Wang, Z. Y., A class of strongly irreducible operators with nice property [J], J. Operator Theory, 36(1996), 3–19.
- [15] Marcoux, L., The closure of the (U + K)-orbit of shift-like operators [J], Indiana Univ. Math. J., 41(1992), 1211–1223.
- [16] Rosenblum, M., On the operator equation BX XA = Q [J], Duke Math. J., 23(1956), 263–269.
- [17] Shilds, A. L., Weighted shift operators and analytic function theory [J], Math. Surveys, 13. (Providence, Rhode Island: Amer. Math. Soc., 1974), 49–128.
- [18] Voiculescu, D., A non-commutative Weyl-von Neumann theorem [J], Rev. Roum. Math. Pures et Appl., 21(1976), 97–113.