THE $(\mathcal{U}+\mathcal{K})$-ORBIT OF ESSENTIALLY NORMAL OPERATORS AND COMPACT PERTURBATIONS OF STRONGLY IRREDUCIBLE OPERATORS

JI Youqing* JIANG Chunlan** WANG Zongyao***

Abstract

Let \mathcal{H} be a complex, separable, infinite dimensional Hilbert space, $T \in \mathcal{L}(\mathcal{H}) .(\mathcal{U}+\mathcal{K})(T)$ denotes the $(\mathcal{U}+\mathcal{K})$-orbit of T, i.e., $(\mathcal{U}+\mathcal{K})(T)=\left\{R^{-1} T R: \quad R\right.$ is invertible and of the form unitary plus compact $\}$. Let Ω be an analytic and simply connected Cauchy domain in \mathbb{C} and $n \in \mathbb{N}$. $\mathcal{A}(\Omega, n)$ denotes the class of operators, each of which satisfies (i) T is essentially normal; (ii) $\sigma(T)=\bar{\Omega}, \rho_{F}(T) \cap \sigma(T)=\Omega$; (iii) ind $(\lambda-T)=-n$, nul $(\lambda-T)=0(\lambda \in \Omega)$.

It is proved that given $T_{1}, T_{2} \in \mathcal{A}(\Omega, n)$ and $\epsilon>0$, there exists a compact operator K with $\|K\|<\epsilon$ such that $T_{1}+K \in(\mathcal{U}+\mathcal{K})\left(T_{2}\right)$. This result generalizes a result of P. S. Guinand and L. Marcoux ${ }^{[6,15]}$. Furthermore, the authors give a character of the norm closure of $(\mathcal{U}+\mathcal{K})(T)$, and prove that for each $T \in \mathcal{A}(\Omega, n)$, there exists a compact (SI) perturbation of T whose norm can be arbitrarily small.

Keywords Essentially normal, $(\mathcal{U}+\mathcal{K})$-orbit, Compact perturbation, Spectrum, Strongly irreducible operator
1991 MR Subject Classification 47A55, 47B, 47C
Chinese Library Classification O177.1 Document Code A
Article ID 0252-9599(2000)02-0237-12

§1. Introduction

Let \mathcal{H} be a complex, separable, infinite dimensional Hilbert space. Let $\mathcal{L}(\mathcal{H})$ and $\mathcal{K}(\mathcal{H})$ denote the algebra of bounded linear operators and, respectively, the ideal of compact operators acting on \mathcal{H}. We will call $(\mathcal{U}+\mathcal{K})(T)=\left\{R^{-1} T R: R \in(\mathcal{U}+\mathcal{K})(\mathcal{H})\right\}$ the $(\mathcal{U}+\mathcal{K})$-orbit of T, where

$$
(\mathcal{U}+\mathcal{K})(\mathcal{H})=\left\{R \in \mathcal{L}(\mathcal{H}): \begin{array}{l}
R \text { is invertible and of the form unitary } \\
\text { operator plus compact operator }
\end{array}\right\}
$$

$A \sim_{\mathcal{U}+\mathcal{K}} T$ and $T \rightarrow_{\mathcal{U}+\mathcal{K}} B$ imply $A \in(\mathcal{U}+\mathcal{K})(T)$ and, respectively, $B \in(\mathcal{U}+\mathcal{K})(T)^{-}$, the norm closure of $(\mathcal{U}+\mathcal{K})(T)$. While $\sim_{\mathcal{U}+\mathcal{K}}$ defines an equivalence relation, $\rightarrow \mathcal{U}+\mathcal{K}$ does not. An operator is strongly irreducible, or briefly, $T \in(S I)$, if it does not commute with any nontrivial idempotent. An operator is essentially normal if $\left[T, T^{*}\right]:=T^{*} T-T T^{*} \in \mathcal{K}(\mathcal{H})$. An operator T is said to be shift-like if T is essentially normal with $\sigma(T)=\bar{D}=\{z \in \mathbb{C}$:

[^0]$|z| \leq 1\}$ and $\sigma_{e}(T)=\partial D$ with $\operatorname{ind}(\lambda-T)=-1$ and $\operatorname{nul}(\lambda-T)=0$ for all $\lambda \in D$. P. S. Guinand and L. Marcoux ${ }^{[6,15]}$ proved the following

Theorem G-M. Let T_{1}, T_{2} be shift-like and let ϵ be a positive number. Then there exists a compact operator K with $\|K\|<\epsilon$ such that $T_{1}+K \sim_{\mathcal{U}+\mathcal{K}} T_{2}$.

In this paper we will strengthen the above theorem.
Let Ω be an analytic and simply connected Cauchy domain in \mathbb{C} and $n \in \mathbb{N}$. Then $\mathcal{A}(\Omega, n)$ will denote the class of operators, each of which satisfies
(i) T is essentially normal; (ii) $\sigma(T)=\bar{\Omega}, \rho_{F}(T) \cap \sigma(T)=\Omega$;
(iii) ind $(\lambda-T)=-n$, $\operatorname{nul}(\lambda-T)=0$ for all $\lambda \in \Omega$.

The next three results are our main results.
Theorem 1.1. Given $T_{1}, T_{2} \in \mathcal{A}(\Omega, n)$ and $\epsilon>0$, there exists a compact operator K with $\|K\|<\epsilon$ such that $T_{1}+K \sim_{\mathcal{U}+\mathcal{K}} T_{2}$.

Theorem 1.2. Let T be in $\mathcal{A}(\Omega, n)$. Then $(\mathcal{U}+\mathcal{K})(T)^{-}$consists of all operators A satisfying
(i) A is essentially normal; (ii) $\sigma(A)=\bar{\Omega}, \rho_{F}(A) \cap \sigma(A)=\Omega$;
(iii) ind $(\lambda-A)=-n$ for all $\lambda \in \Omega$.

Theorem 1.3. Let $T \in \mathcal{A}(\Omega, n)$ and $\epsilon>0$. Then there exists a compact operator K with $\|K\|<\epsilon$ such that $T+K \in(S I)$.

Theorem 1.3 partially answers an interesting question posed by D. A. Herrero: Given an essentially normal operator T with connected spectrum and $\epsilon>0$, is there a $K \in \mathcal{K}(\mathcal{H})$ with $\|K\|<\epsilon$, such that $T+K \in(S I)$?

§2. Proof of the Main Theorems

It follows from the Riemann mapping theorem that there is an analytic function ϕ satisfying
(i) $\phi(0)=z_{0}$, where z_{0} is a fixed point in Ω; (ii) ϕ is injective; (iii) $\phi(D)=\Omega$.

By Schwarz reflection principle ϕ has an analytic continuation on \bar{D} such that $\phi(\partial D)=$ $\partial \Omega$. Let T_{ϕ} be the Toeplitz operator with symbol ϕ. Then $T_{\phi}^{*} \in \mathcal{B}_{1}\left(\Omega^{*}\right)$ and $\sigma\left(T_{\phi}^{*}\right)=\bar{\Omega}^{*}$, where $\mathcal{B}_{n}(\Omega)$ denotes the set of Cowen-Douglas operators of index n, i.e., $\mathcal{B}_{n}(\Omega)$ consists of operators B satisfying
(i) $\sigma(B) \supset \Omega ; \quad$ (ii) $\operatorname{ran}(\lambda-B)=\mathcal{H}$ for all $\lambda \in \Omega$;
(iii) $\operatorname{nul}(\lambda-B)=n$ for all $\lambda \in \Omega$; (iv) $\bigvee\{\operatorname{ker}(\lambda-B): \lambda \in \Omega\}=\mathcal{H}$.
(iv) can be replaced by (iv) ${ }^{\prime}$.
(iv) $\bigvee\left\{\operatorname{ker}\left(\lambda_{0}-B\right)^{k}: k=1,2, \cdots\right\}=\mathcal{H}$ for a fixed $\lambda_{0} \in \Omega$ (see [3]).

In order to prove Theorems 1.1 and 1.2, we need several lemmas.
Lemma 2.1. Let $\mathcal{M}=\left(\operatorname{ker}\left(T_{\phi}-\lambda\right)^{*}\right)^{\perp}$. Then $\left.T_{\phi}\right|_{\mathcal{M}}$ is unitarily equivalent to T_{ϕ}, where $\lambda \in \Omega$.

Proof. Since \mathcal{M} is a hyperinvariant subspace of T_{ϕ}, \mathcal{M} is an invariant subspace of T_{z}. By Beurling theorem, $\mathcal{M}=T_{g} H^{2}$, where g is an inner function and H^{2} is the Hardy space. Since $T_{\phi}^{*} \in \mathcal{B}_{1}\left(\Omega^{*}\right), g=(z-a) /\left(1-a^{*} z\right),(0 \leq|a|<1)$. Thus T_{g} can be considered as a unitary operator from H^{2} to \mathcal{M} and $T_{g}^{*}\left(\left.T_{g}\right|_{\mathcal{M}}\right) T_{g} f=T_{\phi} f$ for $f \in H^{2}$, i.e., $T_{g}^{*}\left(T_{\phi} \mid \mathcal{M}\right) T_{g}=T_{\phi}$.

Lemma 2.2. Let $\mathcal{H}=\mathbb{C} \oplus H^{2}$ and $\lambda \in \Omega$ and let $T=\left[\begin{array}{cc}\lambda & 0 \\ E & T_{\phi}\end{array}\right] \in \mathcal{L}(\mathcal{H})$, where $E=\alpha e_{0} \otimes 1, e_{0} \in \operatorname{ker}\left(\lambda-T_{\phi}\right)^{*}$ and $\left\|e_{0}\right\|=1, \alpha \in \mathbb{C}$ and $\alpha \neq 0$. Then $T \sim_{\mathcal{U}+\mathcal{K}} T_{\phi}$.

Proof. Note that $e_{0} \in \operatorname{ran}\left(T_{\phi}-\lambda\right)^{\perp}$. By Lemma 2.1,

$$
T_{\phi}=\left[\begin{array}{cc}
\lambda & 0 \\
g_{1} & \left.T_{\phi}\right|_{\mathcal{M}}
\end{array}\right] \begin{aligned}
& e_{0} \\
& \mathcal{M}=\left[\operatorname{ker}\left(T_{\phi}-\lambda\right)^{*}\right]^{\perp} \simeq\left[\begin{array}{cc}
\lambda & 0 \\
g_{2} & T_{\phi}
\end{array}\right] \begin{array}{l}
\mathbb{C} \\
H^{2}
\end{array}, ., ~
\end{aligned}
$$

where g_{1}, g_{2} are rank-1 operators and we assume that $g_{2}=f \otimes 1, f \in H^{2}$. Since $e_{0} \in$ $\operatorname{ran}\left(T_{\phi}-\lambda\right)^{\perp}, f=\beta e_{0}+g_{3}$, where $\beta \in \mathbb{C}$ and $g_{3} \in \operatorname{ran}\left(T_{\phi}-\lambda\right)$. If $\beta=0$, let $g_{3}=\left(T_{\phi}-\lambda\right) x$, then computation shows that

$$
\left[\begin{array}{cc}
1 & 0 \\
x \otimes 1 & 1
\end{array}\right]\left[\begin{array}{cc}
\lambda & 0 \\
g_{2} & T_{\phi}
\end{array}\right]\left[\begin{array}{cc}
1 & 0 \\
-x \otimes 1 & 1
\end{array}\right]=\left[\begin{array}{cc}
\lambda & 0 \\
0 & T_{\phi}
\end{array}\right]
$$

This is contradictory to $T_{\phi} \in(S I)$. Thus $\beta \neq 0$, and $X\left[\begin{array}{cc}\lambda & 0 \\ g_{2} & T_{\phi}\end{array}\right] X^{-1}=\left[\begin{array}{cc}\lambda & 0 \\ \beta e_{0} \otimes 1 & T_{\phi}\end{array}\right]$, where $X=\left[\begin{array}{cc}1 & 0 \\ x \otimes 1 & 1\end{array}\right] \in(\mathcal{U}+\mathcal{K})(\mathcal{H})$. Since $\left[\begin{array}{cc}\lambda & 0 \\ \beta e_{0} \otimes 1 & T_{\phi}\end{array}\right] \sim_{\mathcal{U}+\mathcal{K}}\left[\begin{array}{cc}\lambda & 0 \\ E & T_{\phi}\end{array}\right]$, the proof of Lemma 2.2 is complete.

By the same argument of Lemma 2.2, we can prove
Lemma 2.3. Let $\mathcal{H}=\mathbb{C} \oplus H^{2}, g \notin \operatorname{ran}\left(T_{\phi}-\lambda\right), \lambda \in \Omega$ and let $T=\left[\begin{array}{cc}\lambda & 0 \\ g \otimes 1 & T_{\phi}\end{array}\right] \in \mathcal{L}(\mathcal{H})$. Then $T \sim \mathcal{U}+\mathcal{K} T_{\phi}$.

Lemma 2.4. Let $T \in \mathcal{L}\left(\mathbb{C}^{n} \oplus H^{2}\right)$ and $T=\left[\begin{array}{cc}F & 0 \\ C_{n} & T_{\phi}\end{array}\right] \begin{aligned} & \mathbb{C}^{n} \\ & H^{2}\end{aligned}$, where $F \in \mathcal{L}\left(\mathbb{C}^{n}\right)$ with $\sigma(F) \subset \Omega, C_{n} \in \mathcal{L}\left(\mathbb{C}^{n}, H^{2}\right)$ is a nonzero operator. Then for each $\epsilon>0$, there exists a compact operator $K,\|K\|<\epsilon$, such that $T+K \sim_{\mathcal{U}+\mathcal{K}} T_{\phi}$.

Proof. We will prove the lemma by induction on n.
If $n=1, T=\left[\begin{array}{cc}\lambda & 0 \\ C_{1} & T_{\phi}\end{array}\right]$, where $C_{1}=f \otimes 1$ is a rank- 1 operator. Choose $g \in H^{2},\|g\|<\epsilon$, such that $f+g \notin \operatorname{ran}\left(T_{\phi}-\lambda\right)$. Set $K=\left[\begin{array}{cc}0 & 0 \\ g \otimes 1 & 0\end{array}\right]$. Then $\|K\|<\epsilon$ and by Lemma 2.3, $T+K \sim_{\mathcal{U}+\mathcal{K}} T_{\phi}$.

Assume that the conclusion of the lemma is true when $n \leq k-1$, and let $n=k$. It is obvious that there is a unitary operator U such that

$$
U T U^{*}=\left[\begin{array}{ccc}
\lambda & 0 & 0 \\
* & F_{n-1} & 0 \\
* & C_{n-1} & T_{\phi}
\end{array}\right] \begin{aligned}
& \mathbb{C} \\
& \mathbb{C}^{n-1} \\
& H^{2}
\end{aligned}
$$

where $F_{n-1} \in \mathcal{L}\left(\mathbb{C}^{n-1}\right), \lambda \in \sigma(F)$. By the inductive assumption, we can find a compact operator K_{1} with $\left\|K_{1}\right\|<\epsilon / 2$ and $X_{1} \in(\mathcal{U}+\mathcal{K})(\mathcal{H})$ such that

$$
X_{1}\left(U T U^{*}+K_{1}\right) X_{1}^{-1}=\left[\begin{array}{cc}
\lambda & 0 \\
C_{1} & T_{\phi}
\end{array}\right]
$$

By the assumption again, we can find a compact operator K_{2} such that $\left\|K_{2}\right\|<\frac{\epsilon}{\left(2\left\|X_{1}\right\|\left\|X_{1}^{-1}\right\|\right)}$ and $X_{2}\left(\left[\begin{array}{cc}\lambda & 0 \\ C_{1} & T_{\phi}\end{array}\right]+K_{2}\right) X_{2}^{-1}=T_{\phi} \quad$ for some $X_{2} \in(\mathcal{U}+\mathcal{K})(\mathcal{H})$. Thus $K=U^{*} K_{1} U+$ $U^{*} X_{1}^{-1} K_{2} X_{1} U$ satisfies the requirement of the lemma.

Lemma 2.5. Given $A, B \in \mathcal{L}(\mathcal{H})$, let $\tau_{A B}$ denote the Rosenblum operator given by $\tau_{A B}(X)=A X-X B, X \in \mathcal{L}(\mathcal{H})$. Let $\tau=\left.\tau_{A B}\right|_{\mathcal{K}(\mathcal{H})}$. Then $\tau^{*}=-\left.\tau_{B A}\right|_{\mathcal{C}^{1}(\mathcal{H})}$ and $\left(\tau^{*}\right)^{*}=$ $\tau_{A B}$, where τ^{*} is the dual of τ and $\mathcal{C}^{1}(\mathcal{H})$ is the set of trace class operators.

Proof. Recall that $C^{1}(\mathcal{H})$ is isometrically isomorphic to the dual $\mathcal{K}(\mathcal{H})^{*}$ of $\mathcal{K}(\mathcal{H})$. This isomorphism is defined by $C^{1}(\mathcal{H}) \ni K \leftrightarrow \phi_{K} \in \mathcal{K}(\mathcal{H})^{*}$, where $\phi_{K}(X)=\operatorname{tr}(K X), X \in \mathcal{K}(\mathcal{H})$.

Thus

$$
\begin{aligned}
\phi_{\tau^{*}(K)}(X) & =\phi_{K}(\tau(X))=\operatorname{tr}[K(A X-X B)]=\operatorname{tr}(K A X)-\operatorname{tr}(K X B) \\
& =\operatorname{tr}(K A X)-\operatorname{tr}(B K X)=\operatorname{tr}\left(-\tau_{B A}(K) X\right)=\phi_{-\tau_{B A}(K)}(X) .
\end{aligned}
$$

Therefore $\tau^{*}=-\left.\tau_{B A}\right|_{C^{1}(\mathcal{H})}$.
Since $\mathcal{L}(\mathcal{H})$ is isometrically isomorphic to the dual $C^{1}(\mathcal{H})^{*}$ of $C^{1}(\mathcal{H})$, by the similar arguments we can prove that $\left(\tau^{*}\right)^{*}=\tau_{A B}$.

Lemma 2.6. Given $T \in \mathcal{A}(\Omega, n)$ and $\epsilon>0$, then there exists a compact operator K with $\|K\|<\epsilon$ such that $T+K \sim_{\mathcal{U}+\mathcal{K}} T_{\phi}^{(n)}$.

Proof. Note that T_{ϕ} admits a lower triangular matrix representation with respect to the $O N B\left\{e^{i k \theta}\right\}_{k=0}^{\infty}$ of H^{2}. Set $\mathcal{M}_{k}=\bigvee\left\{e^{i j \theta}: j=0,1, \cdots, k\right\}$ and denote by P_{k} the orthogonal projection onto $\bigoplus_{k=1}^{n} \mathcal{M}_{k}$. By Brown-Douglas-Fillmore theorem $U T U^{*}=T_{\phi}^{(n)}+K$, where U is a unitary operator and K is compact. Set $K_{1}=P_{m} K P_{m}-K$, and m will be determined later. By Lemma 2.1, we can find a unitary operator U_{1} such that

$$
U_{1}\left(U T U^{*}+K_{1}\right) U_{1}^{*}=\left[\begin{array}{cccc}
F & 0 & \ldots & 0 \\
C_{1} & T_{\phi} & & 0 \\
\vdots & & \ddots & \\
C_{n} & & 0 & \\
T_{\phi}
\end{array}\right]
$$

where $F \in \mathcal{L}\left(\mathbb{C}^{n m}\right), C_{k}$ is a finite rank operator $(k=1, \cdots, n)$. Fix m so that $\left\|K_{1}\right\|<\epsilon / 8$ and $\sigma(F) \subset \Omega_{\epsilon / 8}$. Thus we can find an operator $C \in \mathcal{L}\left(\mathbb{C}^{n m}\right)$ such that $\|C\|<\epsilon / 4$ and $\sigma\left(F^{\prime}\right) \subset \Omega$, where $F^{\prime}=F+C$. Therefore there exists a compact operator K_{2} with $\left\|K_{2}\right\|<\epsilon / 4$ such that

$$
U_{1}\left(U T U^{*}+K_{1}\right) U_{1}^{*}+K_{2}=\left[\begin{array}{cccc}
F^{\prime} & 0 & \ldots & 0 \\
C_{1} & T_{\phi} & & 0 \\
\vdots & & \ddots & \\
C_{n} & 0 & & T_{\phi}
\end{array}\right]=A_{1}
$$

By Lemma 2.4, there is an $X_{1}^{\prime} \in(\mathcal{U}+\mathcal{K})\left(\mathbb{C}^{n m} \oplus H^{2}\right)$ such that $X_{1}^{\prime}\left[\begin{array}{cc}F^{\prime} & 0 \\ C_{1} & T_{\phi}\end{array}\right] X_{1}^{\prime-1}=T_{\phi}$. Thus we can find $X_{1} \in(\mathcal{U}+\mathcal{K})\left(\mathbb{C}^{n m} \oplus\left(H^{2}\right)^{(n)}\right)$ such that

$$
X_{1} A_{1} X_{1}^{-1}=\left[\begin{array}{cccc}
T_{\phi} & 0 & \ldots & 0 \\
C_{1}^{\prime} & T_{\phi} & & 0 \\
\vdots & & \ddots & \\
C_{n-1}^{\prime} & 0 & & T_{\phi}
\end{array}\right]=A_{2}
$$

where $C_{k}^{\prime}(k=1,2, \cdots, n-1)$ is a finite rank operator. Since $\mathcal{A}^{\prime}\left(T_{\phi}\right)$ does not contain any compact operators, $\left.\operatorname{ker} \tau_{T_{\phi} T_{\phi}}\right|_{\mathcal{K}\left(H^{2}\right)}=\{0\}$. By Lemma $2.5\left[\left.\operatorname{ran} \tau_{T_{\phi} T_{\phi}}\right|_{C^{1}\left(H^{2}\right)}\right]^{-}=C^{1}\left(H^{2}\right)$. Thus for each $k(1 \leq k \leq n-1)$ we can find compact operators D_{k} and E_{k} satisfying $T_{\phi} E_{k}-E_{k} T_{\phi}=-C_{k}^{\prime}-D_{k}$ and $\left\|D_{k}\right\|<\epsilon /\left(\left\|X_{1}\right\|\left\|X_{1}^{-1}\right\| 8^{k}\right)$.

Set

$$
K_{3}=\left[\begin{array}{cccc}
0 & 0 & \ldots & 0 \\
D_{1} & 0 & \ldots & 0 \\
\vdots & & \ddots & \vdots \\
D_{n-1} & 0 & \ldots & 0
\end{array}\right], \quad X_{2}=\left[\begin{array}{cccc}
1 & 0 & \ldots & 0 \\
E_{1} & 1 & \ldots & 0 \\
\vdots & & \ddots & \vdots \\
E_{n-1} & 0 & \ldots & 1
\end{array}\right]
$$

Then K_{3} is compact, $\left\|K_{3}\right\|<\epsilon /\left(8\left\|X_{1}\right\|\left\|X_{1}^{-1}\right\|\right)$ and $X_{2} \in(\mathcal{U}+\mathcal{K})\left(\left(H^{2}\right)^{(n)}\right)$. Calculation indicates that $X_{2}\left(A_{2}+K_{3}\right) X_{2}^{-1}=T_{\phi}^{(n)}$. Thus, $X(T+K) X^{-1}=T_{\phi}^{(n)}$, where $K=U^{*} K_{1} U+$ $U^{*} U_{1}^{*} K_{2} U_{1} U+X_{1}^{-1} K_{3} X_{1}$ is a compact operator with $\|K\|<\epsilon, X=X_{2} X_{1} U_{1} U$ is invertible and of the form unitary plus compact.

Lemma 2.6 implies that $\mathcal{A}(\Omega, n) \subset(\mathcal{U}+\mathcal{K})\left(T_{\phi}^{(n)}\right)^{-}$.
Lemma 2.7. Let $A, B \in \mathcal{L}(\mathcal{H})$. Assume that $\mathcal{H}=\bigvee\left\{\operatorname{ker}(\lambda-B)^{k}: \lambda \in \Gamma, k \geq 1\right\}$ for a certain subset Γ of the point spectrum $\sigma_{p}(B)$ of B, and $\sigma_{p}(A) \cap \Gamma=\varnothing$; then $\tau_{A B}$ is injective.

Proof. Let p be a monic polynomial with zeros in Γ and let $x \in \mathcal{H}$ be any vector such that $p(B) x=0$; then $A X=X B$ implies $p(A) X x=X p(B) x=0$.

Since $p(A)$ is injective, we infer $X x=0$. It readily follows that $\operatorname{ker} X \supset \bigvee\left\{\operatorname{ker}(\lambda-B)^{k}\right.$: $\lambda \in \Gamma, k \geq 1\}=\mathcal{H}$. Hence, $X=0$.

Lemma 2.8. ${ }^{[1, \text { Theorem 4.15] }}$ Suppose that $T \in \mathcal{L}(\mathcal{H})$ is essentially normal and $\sigma(T)=$ $\sigma_{e}(T) \cup \sigma_{0}(T)$. Assume, moreover, that $C(\sigma(T))=\operatorname{Rat}(\sigma(T))^{-}$. Then $T \rightarrow_{\mathcal{U}+\mathcal{K}} N$, where N is a normal operator such that $\sigma(N)=\sigma(T), \sigma_{0}(T)=\sigma_{0}(N)$, and nul $(\lambda-N)=\operatorname{dim} \mathcal{H}(\lambda ; T)$ for all $\lambda \in \sigma_{0}(N)$, $\operatorname{Rat}(\sigma(T))^{-}$is the uniform closure of rational functions with poles outside $\sigma(T)$.

An operator is almost normal if it has the form of normal + compact.
Lemma 2.9. Suppose $T \in \mathcal{L}(\mathcal{H})$ is almost normal, $\sigma(T)$ is a perfect set with Lebesgue measure $0, N$ is normal with $\sigma(N)=\sigma(T)$; then for each $\epsilon>0$, there exists $X \in(\mathcal{U}+\mathcal{K})(\mathcal{H})$ such that
(i) $X T X^{-1}-N \in \mathcal{K}(\mathcal{H}) ; \quad$ (ii) $\left\|X T X^{-1}-N\right\|<\epsilon$.

Proof. Since $m(\sigma(T))=0$, it follows from [8] that $\operatorname{Rat}(\sigma(T))^{-}=C(\sigma(T))$. By Lemma 2.8 , for each $\delta>0$ there is an $X_{1} \in(\mathcal{U}+\mathcal{K})(\mathcal{H})$ such that $\left\|X_{1} T X_{1}^{-1}-N\right\|<\delta$. Since T is almost normal, $X_{1} T X_{1}^{-1}$ is also almost normal. Therefore there are normal operator M and compact operator K such that $X_{1} T X_{1}^{-1}=M+K$. Since $\|M+K-N\|<\delta$, $\left\|\left[(M+K)^{*},(M+K)\right]\right\|<4\|N\| \delta+2 \delta^{2}$. I. D. Berg and K. R. Davidson ${ }^{[2]}$ asserts that there exists a positive valued continuous function f on $[0, \infty), f(0)=0$, such that for each almost normal operator Q, there is a compact operator $K(Q)$ with $\|K(Q)\| \leq f\left(\left\|Q^{*} Q-Q Q^{*}\right\|^{1 / 2}\right)$ and $Q+K(Q)$ is normal. According to this theorem, we can find a δ and a compact operator K_{1} such that
(i) $\left\|K_{1}\right\| \leq \epsilon / 4 ; \quad$ (ii) $X_{1} T X_{1}^{-1}+K_{1}=M+K+K_{1}$ is normal;
(iii) $\sigma\left(M+K+K_{1}\right) \subset \sigma(T)_{\epsilon / 4}$.

Since T is almost normal and $\sigma(T)$ is a perfect set with $m(\sigma(T))=0, \sigma(T)=\sigma_{e}(T)$. Thus $\sigma(M)=\sigma(T) \cup \sigma_{0}(M)$. Since $M+K+K_{1}$ is normal, $\sigma\left(M+K+K_{1}\right)=\sigma(T) \cup \sigma_{0}\left(M+K+K_{1}\right)$. Thus we can find a compact operator $K_{2},\left\|K_{2}\right\|<\epsilon / 2$, such that $\sigma\left(M+K+K_{1}+K_{2}\right)=$ $\sigma(T)=\sigma(N)$ and $M+K+K_{1}+K_{2}$ is normal. It follows from Voiculescu theorem that there is a unitary operator U and a compact operator K_{3} with $\left\|K_{3}\right\|<\epsilon / 2$ such that

$$
U\left(X_{1} T X_{1}^{-1}+K_{1}+K_{2}\right) U^{*}=U\left(M+K+K_{1}+K_{2}\right) U^{*}=N+K_{3}
$$

Thus $U X_{1} T X_{1}^{-1} U^{*}-N \in \mathcal{K}(\mathcal{H}),\left\|U X_{1} T X_{1}^{-1} U^{*}-N\right\|<\epsilon$, and $X:=U X_{1}$ satisfies the requirements of the lemma.

Let $T \in \mathcal{L}(\mathcal{H}) . \lambda$ is an approximate normal eigenvalue of T if for each $\epsilon>0$, there is a unit vector e_{ϵ} such that $\left\|(\lambda-T) e_{\epsilon}\right\|<\epsilon$ and $\left\|(\lambda-T)^{*} e_{\epsilon}\right\|<\epsilon$. If $\lambda \in \sigma_{\text {lre }}(T) \subset \sigma_{l e}(T)$, by Apostol-Foiaş-Voiculescu Theorem ${ }^{[9]}$, there exist a compact operator K and an infinite
dimensional subspace \mathcal{H}_{1} such that $T=\left[\begin{array}{cc}\lambda & E \\ 0 & A\end{array}\right] \begin{gathered}\mathcal{H}_{1}^{\perp} \\ \mathcal{H}_{1}^{\perp}\end{gathered}+K$. Let $\left\{e_{n}\right\}_{n=1}^{\infty}$ be an $O N B$ of \mathcal{H}_{1}. Since $e_{n} \rightarrow 0$ weakly, $\left\|K e_{n}\right\| \rightarrow 0(n \rightarrow \infty)$, i.e. $\left\|(\lambda-T) e_{n}\right\| \rightarrow 0$. If T is a hyponormal operator, then $\left\|(\lambda-T) e_{n}\right\|^{2}-\left\|(\lambda-T)^{*} e_{n}\right\|^{2} \rightarrow 0(n \rightarrow \infty)$. Thus λ is an approximate normal eigenvalue. Thus we get the following proposition.

Proposition 2.1. Assume that T is essentially normal. Then $\sigma_{l r e}(T)$ is contained in the set of approximate normal eigenvalues of T.

Using Propostion 2.1, we get
Theorem 2.1. Given $T, N \in \mathcal{L}(\mathcal{H})$, such that $\sigma_{\text {lre }}(T)$ is contained in the set of approximate normal eigenvalues of T, N is a normal operator with $\sigma(N)=\sigma_{e}(N)=\Gamma, \Gamma \subset \sigma_{\text {lre }}(T)$ and given $\epsilon>0$, there exists a compact operator K with $\|K\|<\epsilon$ such that

$$
T-K \simeq\left[\begin{array}{cc}
N & 0 \\
0 & T
\end{array}\right]
$$

Proof. Let $\left\{\lambda_{n}\right\}_{n=1}^{\infty}$ be a sequence of complex numbers such that $\left\{\lambda_{n}\right\}^{-}=\Gamma$ and $\operatorname{card}\left\{m: \lambda_{m}=\lambda_{n}\right\}=\infty$ for each $n=1,2, \cdots$. By the definition of approximate normal eigenvalue, there exists a unit vector e_{1} such that $\left\|\left(\lambda_{1}-T\right) e_{1}\right\|<\epsilon / 16$ and $\left\|\left(\lambda_{1}-T\right)^{*} e_{1}\right\|<$ $\epsilon / 16$. Thus, we have

$$
\left\|P_{e_{1}}\left(\lambda_{1}-T\right) P_{e_{1}}\right\|<\epsilon / 16, \quad\left\|P_{e_{1}}\left(\lambda_{1}-T\right) P_{e_{1}^{\perp}}\right\|=\left\|P_{e_{1}^{\perp}}\left(\lambda_{1}-T\right)^{*} P_{e_{1}}\right\|<\epsilon / 16
$$

and $\left\|P_{e_{1}^{\perp}}\left(\lambda_{1}-T\right) P_{e_{1}}\right\|<\epsilon / 16$, where $P_{e_{1}}$ and $P_{e_{1}^{\perp}}$ denote the orthogonal projections onto $\bigvee\left\{e_{1}\right\}$ and, respectively, $\left[\bigvee\left\{e_{1}\right\}\right]^{\perp}$. Under the decomposition $\mathcal{H}=\bigvee\left\{e_{1}\right\} \oplus\left[\bigvee\left\{e_{1}\right\}\right]^{\perp}, T$ admits the representation $T=\left[\begin{array}{cc}\lambda_{1}+t_{11} & T_{12} \\ T_{21} & T_{1}\end{array}\right]$. Set $K_{1}=\left[\begin{array}{cc}t_{11} & T_{12} \\ T_{21} & 0\end{array}\right]$; then $K_{1} \in \mathcal{K}(\mathcal{H})$, $\left\|K_{1}\right\|<\epsilon / 8$ and $T-K_{1}=\left[\begin{array}{cc}\lambda_{1} & 0 \\ 0 & T_{1}\end{array}\right]$. Clearly, $\sigma_{\text {lre }}\left(T_{1}\right)=\sigma_{\text {lre }}(T)$. Repeat the argument, we can get $K_{2} \in \mathcal{K}(\mathcal{H}),\left\|K_{2}\right\|<\epsilon / 2^{4}$ such that

$$
T-K_{1}-K_{2}=\left[\begin{array}{ccc}
\lambda_{1} & 0 & 0 \\
0 & \lambda_{2} & 0 \\
0 & 0 & T_{2}
\end{array}\right] \begin{aligned}
& \bigvee\left\{e_{1}\right\} \\
& \bigvee\left\{e_{2}\right\} \\
& {\left[\bigvee\left\{e_{1}, e_{2}\right\}\right]^{\perp}}
\end{aligned}
$$

By induction, we can find an orthonormal sequence $e_{1}, e_{2}, \cdots, e_{n}, \cdots$ in \mathcal{H} and a sequence $K_{1}, K_{2}, \cdots, K_{n}, \cdots$ in $\mathcal{K}(\mathcal{H})$ such that $\left\|K_{n}\right\|<\epsilon / 2^{n+2}(n=1,2, \cdots)$ and

$$
T-\sum_{n=1}^{m} K_{n}=\left[\begin{array}{cc}
\sum_{n=1}^{m} \lambda_{n} e_{n} \otimes e_{n} & 0 \\
0 & T_{m+1}
\end{array}\right] \begin{aligned}
& \bigvee\left\{e_{1}, \cdots, e_{m}\right\} \\
& {\left[\bigvee\left\{e_{1}, \cdots, e_{m}\right\}\right]^{\perp}}
\end{aligned} \quad m=1,2, \cdots
$$

Set $C_{1}=\sum_{n=1}^{\infty} K_{n}, N_{1}=\sum_{n=1}^{\infty} \lambda_{n} e_{n} \otimes e_{n}$; then $T-C_{1}=\left[\begin{array}{cc}N_{1} & 0 \\ 0 & T_{\infty}\end{array}\right]$ with respect to the decomposition $\mathcal{H}=\bigvee\left\{e_{n}: 1 \leq n<\infty\right\} \bigoplus\left[\bigvee\left\{e_{n}\right\}\right]^{\perp}$, and $C_{1} \in \mathcal{K}(\mathcal{H}),\left\|C_{1}\right\|<\epsilon / 4$. Applying Voiculescu's non-commutative Weyl-von Neumann Theorem to N_{1}, we can find compact operator $C_{2}^{\prime},\left\|C_{2}^{\prime}\right\|<\epsilon / 8$, such that $N_{1}+C_{2}^{\prime} \simeq N \oplus N_{1}$. Therefore,

$$
T-C_{1}-C_{2} \simeq\left[\begin{array}{ccc}
N & 0 & 0 \\
0 & N_{1} & 0 \\
0 & 0 & T_{\infty}
\end{array}\right]
$$

where C_{2} is compact and $\left\|C_{2}\right\|<\epsilon / 8$. Finally, we can find a compact operator C_{3} with
$\left\|C_{3}\right\|<\epsilon / 4$, such that $T-C_{1}-C_{2}-C_{3} \simeq\left[\begin{array}{cc}N & 0 \\ 0 & T\end{array}\right]$. Set $K=C_{1}+C_{2}+C_{3}$. Then K satisfies all requirements of the theorem.

Lemma 2.10. Let $T \in \mathcal{A}(D, n), \epsilon>0$. Then there exist an operator $T^{\prime} \in \mathcal{A}(D, n)$ and a compact operator K such that $\|K\|<\epsilon, T^{\prime}$ admits a lower triangular matrix representation with respect to some $O N B$ of \mathcal{H} and $T^{\prime}+K \sim_{\mathcal{U}+\mathcal{K}} T$.

Proof. By Apostol's triangular representation theorem $T=\left[\begin{array}{cc}T_{0} & B \\ 0 & T_{l}\end{array}\right] \begin{aligned} & \mathcal{H}_{0}(T) \\ & \mathcal{H}_{l}(T)\end{aligned}$ and
\mathcal{H}_{0} is a hyperinvariant subspace of T,
T_{l} admits a lower triangular matrix representation,

$$
\begin{equation*}
\rho_{s-F}(T) \subset \rho\left(T_{0}\right) \tag{2.2}
\end{equation*}
$$

By Brown-Douglas-Fillmore theorem $T \simeq T_{z}^{(n)}+K, K$ is compact, and $\pi(T)$ is a unitary element in the Calkin algebra $\mathcal{A}(\mathcal{H})=\mathcal{L}(\mathcal{H}) / \mathcal{K}(\mathcal{H})$, i.e., $\pi\left(T^{*}\right) \pi(T)-\pi(1)=0$. Thus

$$
\left[\begin{array}{cc}
\pi\left(T_{0}^{*} T_{0}\right)-\pi(1) & \pi\left(T_{0}^{*} B\right) \\
\pi\left(B^{*} T_{0}\right) & \pi\left(B^{*} B+T_{l}^{*} T_{l}\right)-\pi(1)
\end{array}\right]=\left[\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right] .
$$

Since $D \subset \rho\left(T_{0}\right) \subset \rho\left(\pi\left(T_{0}\right)\right), \pi\left(T_{0}\right)$ is invertible and $\pi\left(T_{0}\right)^{-1}=\pi\left(T_{0}\right)^{*}$. Thus $\pi\left(T_{0}\right)$ is a unitary element in $\mathcal{A}\left(\mathcal{H}_{0}(T)\right)$. Since T_{0} is invertible, by Brown-Douglas-Fillmore theorem $T_{0} \simeq U_{0}+K_{0}$, where U_{0} is unitary and K_{0} is compact. By (2.3) $\sigma\left(U_{0}+K_{0}\right) \subset \partial D$. Since $\pi(T)$ is a unitary element in $\mathcal{A}(\mathcal{H}), T T^{*}-1 \in \mathcal{K}(\mathcal{H})$, i.e., $\left[\begin{array}{cc}T_{0} T_{0}^{*}+B B^{*}-1 & B T_{l}^{*} \\ T_{l} B^{*} & T_{l} T_{l}^{*}-1\end{array}\right]$ is compact. Since $\pi\left(T_{0}\right)$ is a unitary element, $T_{0} T_{0}^{*}-1$ is compact, thus $B B^{*}$ and B are compact. Since $T_{l}^{*} \in \mathcal{B}_{n}(D)$ and $D \cap \sigma\left(T_{0}^{*}\right)=\varnothing$, by Proposition 2.1 ker $\tau_{T_{0}^{*} T_{l}^{*}}=\{0\}$ and therefore $\operatorname{ker} \tau_{T_{l} T_{0}}=\{0\}$. By Lemma 2.5, $\operatorname{ran} \tau_{T_{0} T_{l}}$ is dense in $\mathcal{K}\left(\mathcal{H}_{l}, \mathcal{H}_{0}\right)$. Thus for $\delta>0$, there exist compact operators $E, G \in \mathcal{L}\left(\mathcal{H}_{l}(T), \mathcal{H}_{0}(T)\right)$ such that $T_{0} G-G T_{l}=B+E$ and $\|E\|<\delta$.

Set $X_{1}=\left[\begin{array}{cc}1 & -G \\ 0 & 1\end{array}\right] \begin{aligned} & \mathcal{H}_{0}(T) \\ & \mathcal{H}_{l}(T)\end{aligned}$ and $\quad K_{1}=\left[\begin{array}{cc}0 & -E \\ 0 & 0\end{array}\right] \begin{aligned} & \mathcal{H}_{0}(T) \\ & \mathcal{H}_{l}(T)\end{aligned}$. Then $X_{1}\left(\left(T_{0} \oplus T_{l}\right)+K_{1}\right) X_{1}^{-1}$ $=T$, where $X_{1} \in(\mathcal{U}+\mathcal{K})(\mathcal{H}), K_{1}$ is compact and $\left\|K_{1}\right\|<\delta / 2$. Since $\sigma\left(T_{0}\right) \subset \partial D$, Lemma 2.9 indicates that there are compact operator K_{2} and $X_{2} \in(\mathcal{U}+\mathcal{K})(\mathcal{H})$ such that $\left\|K_{2}\right\|<\delta$ and $X_{2}\left(\left(N_{0} \oplus T_{l}\right)+K_{2}\right) X_{2}^{-1}=T_{0} \oplus T_{l}$, where N_{0} is a diagonal normal operator with $\sigma\left(N_{0}\right)=\sigma\left(T_{0}\right)$. By Theorem 2.1 we can find a compact operator K_{3} and a unitary operator U such that $\left\|K_{3}\right\|<\delta$ and $U\left(\left(N_{0} \oplus T_{l}\right)+K_{3}\right) U^{*}=T_{l}$, i.e., $U^{*}\left(T_{l}-U K_{3} U^{*}\right) U=N_{0} \oplus T_{l}$. Thus let $\delta=\epsilon /\left(4\left\|X_{2}\right\|\left\|X_{2}^{-1}\right\|\right), \quad K=U K_{2} U^{*}-U^{2} K_{3} U^{* 2}+U X_{2}^{-1} K_{1} X_{2} U^{*}, T^{\prime}=T_{l}$ satisfy the requirement of the lemma.

Lemma 2.11. Let $T \in \mathcal{A}(D, n), 0<\epsilon<1 / 10$ and $\left\|T^{*} T-1\right\|<\epsilon$. Then there exists a unitary operator W such that $W^{*} T W-T_{z}^{(n)}$ is compact and $\left\|W^{*} T W-T_{z}^{(n)}\right\|<\epsilon$.

Proof. Consider the polar decomposition $T=U|T|$ of T, where U is a partial isometry, $\operatorname{ran} U=\operatorname{ran} T$. By the Wold decomposition theorem (see [17]), $U \simeq T_{z}^{(n)} \oplus V$, where V is a unitary operator. By the assumption $\left\||T|^{2}-1\right\|<\epsilon,\left|z^{2}-1\right|<\epsilon$ for all $z \in$ $\sigma(|T|)$. Since $\epsilon<1 / 10, z>1 / 2$ and $\epsilon>\left|z^{2}-1\right|=|z+1||z-1|>3|z-1| / 2$. Thus $\sigma(|T|) \subset\{x \in \mathbb{R}:|x-1|<2 \epsilon / 3\}$. Since $|T|$ is self-adjoint, $\||T|-1\|<2 \epsilon / 3$ and therefore $\|T-U\|=\|U|T|-U\|=\|U(|T|-1)\| \leq\|U\|\| \||T|-1 \|<2 \epsilon / 3$. Note that $T \simeq T_{z}^{(n)}+K$, where K is compact. Thus $|T|^{2}-1=T^{*} T-1 \simeq\left(T_{z}^{(n)}+K\right)^{*}\left(T_{z}^{(n)}+K\right)-1$, and $|T|^{2}=1+K_{1}$ and $|T|=1+K_{2}$ for some $K_{1}, K_{2} \in \mathcal{K}(\mathcal{H})$.

Since V is unitary and $U \simeq T_{z}^{(n)} \oplus V$, by Theorem 2.1 there is a unitary operator W such that

$$
\begin{align*}
& \left\|W^{*} U W-T_{z}^{(n)}\right\|<\epsilon / 3 \tag{2.4}\\
& K_{3}:=W^{*} U W-T_{z}^{(n)} \text { is compact. } \tag{2.5}
\end{align*}
$$

Thus $W^{*} T W-T_{z}^{(n)}=W^{*}(T-U) W+W^{*} U W-T_{z}^{(n)}=W^{*}[U(|T|-1)] W+K_{3}=$ $W^{*}\left(U K_{2}\right) W+K_{3}$. It is compact, and

$$
\left\|W^{*} T W-T_{z}^{(n)}\right\| \leq\left\|W^{*}(T-U) W\right\|+\left\|K_{3}\right\| \leq\|T-U\|+\frac{\epsilon}{3}<\epsilon
$$

Proposition 2.2. Let $T \in \mathcal{A}(D, n)$ admit a lower triangular matrix representation $T=\left[\begin{array}{cc}F & 0 \\ X & S\end{array}\right] \mathcal{H}_{\mathcal{H}_{2}}$, where, F is a diagonal operator on a finite dimensional Hilbert space \mathcal{H}_{1}, $S \in \mathcal{A}(D, n)$ and $\left\|S^{*} S-1\right\|<\delta<1 / 10$. Then there exists $Q \in(U+K)(T)^{-}$satisfying $\operatorname{dist}\left(Q, \mathcal{U}\left(T_{z}^{(n)}\right)\right)<4 \delta$ and $Q-W^{*}\left(T_{z}^{(n)}\right) W \in \mathcal{K}(\mathcal{H})$, for some unitary operator W.

Proof. Case 1. Assume that $\sigma(F) \subset\{\lambda:|\lambda|<1 /(1+3 \delta)\}$. We will proceed by induction on the dimension m of \mathcal{H}_{1} to prove that there exists $Q \in(\mathcal{U}+\mathcal{K})(T)$ such that $\operatorname{dist}\left(Q, \mathcal{U}\left(T_{z}^{(n)}\right)\right)<\delta$ and $Q-W^{*} T_{z}^{(n)} W$ is compact for some unitary W.

When $m=1, T=\left[\begin{array}{cc}\lambda & 0 \\ x \otimes e & S\end{array}\right] \bigvee\{e\}=\mathcal{H}_{1}$, , where $x \in \mathcal{H}_{2}$ and $x \neq 0(x=0$ is contradictory to $T \in \mathcal{A}(D, n))$. If $x \in \operatorname{ran}(S-\lambda)$, computation shows that $T \sim \lambda \oplus S$. This is also contradictory to $T \in \mathcal{A}(D, n)$. Thus $x \notin \operatorname{ran}(S-\lambda)$. For $z \otimes e \in \mathcal{L}\left(\mathcal{H}_{1}, \mathcal{H}_{2}\right)$,

$$
T \sim_{\mathcal{U}+\mathcal{K}}\left[\begin{array}{cc}
1 & 0 \\
z \otimes e & 1
\end{array}\right]\left[\begin{array}{cc}
\lambda & 0 \\
x \otimes e & S
\end{array}\right]\left[\begin{array}{cc}
1 & 0 \\
-z \otimes e & 1
\end{array}\right]=\left[\begin{array}{cc}
\lambda & 0 \\
y \otimes e & S
\end{array}\right]
$$

where $y=x+(\lambda-S) z$. Since $\lambda-S$ is a Fredholm operator, we always can choose z so that $y \in \operatorname{ker}(\lambda-S)^{*}$ and $y \neq 0$. For $\alpha \in \mathbb{C}(\alpha \neq 0)$ and $\omega \in \mathcal{H}_{2}$, we have

$$
T \sim \mathcal{U}+\mathcal{K}\left[\begin{array}{cc}
1 & 0 \\
\omega \otimes e & 1
\end{array}\right]\left[\begin{array}{cc}
\alpha^{-1} & 0 \\
0 & 1
\end{array}\right]\left[\begin{array}{cc}
\lambda & 0 \\
y \otimes e & S
\end{array}\right]\left[\begin{array}{cc}
\alpha & 0 \\
0 & 1
\end{array}\right]\left[\begin{array}{cc}
1 & 0 \\
-\omega \otimes e & 1
\end{array}\right]=\left[\begin{array}{cc}
\lambda & 0 \\
v \otimes e & S
\end{array}\right]
$$

where $v=\alpha y+(\lambda-S) \omega$.
Set $Q_{1}=\left[\begin{array}{cc}\lambda & 0 \\ v \otimes e & S\end{array}\right]$. We will choose adequate α and ω so that $\left\|Q_{1}^{*} Q_{1}-1\right\|<\delta$. Note that

$$
Q_{1}^{*} Q_{1}=\left[\begin{array}{cc}
|\lambda|^{2}+(e \otimes v)(v \otimes e) & e \otimes\left(S^{*} v\right) \\
\left(S^{*} v\right) \otimes e & S^{*} S
\end{array}\right]
$$

We intend to choose α and ω so that

$$
\begin{align*}
|\lambda|^{2}+\|v\|^{2}-1 & =0 \quad \text { or } \quad\|v\|=\sqrt{1-|\lambda|^{2}} \tag{2.6}\\
S^{*} v & =0 \tag{2.7}
\end{align*}
$$

and $\alpha \neq 0$.
Since S^{*} is a Fredholm operator and nul $S=0, S^{*} S$ is invertible. Set $S^{*} S=A$. Thus

$$
S^{*} v=S^{*}[\alpha y+(\lambda-S) \omega]=\alpha S^{*} y+\left(\lambda S^{*}-A\right) \omega=\alpha S^{*} y+A\left(\lambda A^{-1} S^{*}-1\right) \omega
$$

Since $A>0, \sigma(A) \subset(1-\delta, 1+\delta)$. Therefore $\left\|A^{-1}\right\|<1 /(1-\delta)$. It follows from $\left\|S^{*}\right\| \leq 1+\delta$ that

$$
\left\|A^{-1} S^{*}\right\| \leq\left\|A^{-1}\right\|\left\|S^{*}\right\|<(1+\delta) /(1-\delta)<1+3 \delta
$$

By assumption, $\left\|\lambda A^{-1} S^{*}\right\|<1$. Thus $\left(\lambda A^{-1} S^{*}-1\right)$ and $\left(\lambda S^{*}-A\right)$ are invertible. Choose $\omega=\left(-\alpha \lambda^{*}\right)\left(\lambda S^{*}-A\right)^{-1} y$, we have

$$
S^{*} v=\alpha S^{*} y+\left(\lambda S^{*}-A\right)\left(-\alpha \lambda^{*}\right)\left(\lambda S^{*}-A\right)^{-1} y=\alpha \lambda^{*} y-\alpha \lambda^{*} y=0
$$

Since

$$
\begin{aligned}
\|v\| & =\|\alpha y+(\lambda-S) \omega\|=\left[\|\alpha y\|^{2}+\left\|(\lambda-S)\left(-\alpha \lambda^{*}\right)\left(\lambda S^{*}-A\right)^{-1} y\right\|^{2}\right]^{1 / 2} \\
& =|\alpha|\left[\|y\|^{2}+\left\|\lambda^{*}(\lambda-S)\left(\lambda S^{*}-A\right)^{-1} y\right\|^{2}\right]^{1 / 2}
\end{aligned}
$$

and since λ and y are fixed, we can choose $\alpha \neq 0$ so that $\|v\|=\left(1-|\lambda|^{2}\right)^{1 / 2}$. Thus for the chosen $v, Q_{1}^{*} Q_{1}=\left[\begin{array}{cc}1 & 0 \\ 0 & S^{*} S\end{array}\right]$ and $\left\|Q_{1}^{*} Q_{1}-1\right\|<\delta$. Since $Q_{1} \in(\mathcal{U}+\mathcal{K})(T)$, $Q_{1} \in \mathcal{A}(D, n)$. By Lemma $2.11 \operatorname{dist}\left(Q_{1}, \mathcal{U}\left(T_{z}^{(n)}\right)\right)<\delta$ and $Q_{1}-W^{*} T_{z}^{(n)} W$ is compact for some unitary operator W.

To complete the induction step, we now assume that the result is true when F is an $(m-1) \times(m-1)$ diagonal matrix.

Let $T=\left[\begin{array}{ll}F & 0 \\ x & S\end{array}\right]$ satisfy the condition of the lemma, where F is an $m \times m$ matrix. Then

$$
T \simeq\left[\begin{array}{ccc}
F^{\prime} & 0 & 0 \\
0 & \lambda & 0 \\
X_{1} & x_{2} & S
\end{array}\right]=\left[\begin{array}{cc}
F^{\prime} & 0 \\
X_{1}^{\prime} & T_{1}
\end{array}\right]
$$

where F^{\prime} is an $(m-1) \times(m-1)$ diagonal matrix, $X_{1}^{\prime}=\left[\begin{array}{c}0 \\ X_{1}\end{array}\right]$ and $T_{1}=\left[\begin{array}{cc}\lambda & 0 \\ x_{2} & S\end{array}\right]$. But T_{1} is precisely of the form handled when $m=1$, and so we can find $R \in(\mathcal{U}+\mathcal{K})\left(\mathcal{H}_{2}^{\prime}\right)$ such that if $R^{-1} T_{1} R:=Q_{1}$, then $Q_{1} \in \mathcal{A}(D, n),\left\|Q_{1}^{*} Q_{1}-1\right\|<\delta,\left\|R^{-1} T_{1} R-T_{z}^{(n)}\right\|<\delta$ and $R^{-1} T_{1} R-T_{z}^{(n)}$ is compact, where T_{1} is acting on \mathcal{H}_{2}^{\prime}. Then

$$
T \sim_{\mathcal{U}+\mathcal{K}}\left[\begin{array}{cc}
1 & 0 \\
0 & R^{-1}
\end{array}\right]\left[\begin{array}{cc}
F^{\prime} & 0 \\
X_{1}^{\prime} & T_{1}
\end{array}\right]\left[\begin{array}{cc}
1 & 0 \\
0 & R
\end{array}\right]=\left[\begin{array}{cc}
F^{\prime} & 0 \\
R^{-1} X_{1}^{\prime} & R^{-1} T_{1} R
\end{array}\right]:=T^{\prime}
$$

Thus $T^{\prime} \in(\mathcal{U}+\mathcal{K})(T)$ and therefore $T^{\prime} \in \mathcal{A}(D, n)$ and satisfies the same condition as T does. By the inductive assumption, we can find $Q \in(\mathcal{U}+\mathcal{K})\left(T^{\prime}\right)=(\mathcal{U}+\mathcal{K})(T)$ such that $\operatorname{dist}\left(Q, u\left(T_{z}^{(n)}\right)\right)<\delta$ and $Q-W^{*} T_{z}^{(n)} W \in \mathcal{K}(\mathcal{H})$ for some unitary operator W. This completes the proof of Case 1. Note that our distance estimate is actually δ as opposed to 4δ in this case.

Case 2. $\sigma(F) \cap\{\lambda:|\lambda| \geq 1 /(1+3 \delta)\} \neq \varnothing$.
By an appropriate choice of basis, we can assume that the eigenvalues $\left\{\lambda_{1}, \cdots, \lambda_{m}\right\}$ of F are listed in nonincreasing order of absolute value. Thus

$$
T \simeq\left[\begin{array}{ccccccc}
\lambda_{1} & & & & & & \\
& \ddots & & & 0 & & \\
& & \lambda_{r} & & & & 0 \\
& & & \lambda_{r+1} & & & \\
& 0 & & & \ddots & & \\
& & & & & \lambda_{m} & \\
x_{1} & \ldots & x_{r} & x_{r+1} & \ldots & x_{m} & S
\end{array}\right]=\left[\begin{array}{cc}
\bigoplus_{1}^{r} \lambda_{i} & 0 \\
G & T_{0}
\end{array}\right] \begin{gathered}
\mathcal{H}_{1}^{\prime} \\
\mathcal{H}_{2}^{\prime}
\end{gathered}
$$

where $\left|\lambda_{i}\right| \in[1 /(1+3 \delta), 1)$ if and only if $1 \leq i \leq r, G=\left(x_{1}, \cdots, x_{r}\right) \in \mathcal{L}\left(\mathcal{H}_{1}^{\prime}, \mathcal{H}_{2}^{\prime}\right)$,

$$
T_{0}=\left[\begin{array}{cccc}
\lambda_{r+1} & & 0 & \\
& \ddots & & 0 \\
0 & & \lambda_{m} & \\
x_{r+1} & \ldots & x_{m} & S
\end{array}\right] \in \mathcal{L}\left(\mathcal{H}_{2}^{\prime}\right)
$$

Set $Y_{k}=\left[\begin{array}{cc}k & 0 \\ 0 & 1\end{array}\right] \underset{\mathcal{H}_{2}^{\prime}}{\mathcal{H}_{1}^{\prime}} \in(\mathcal{U}+\mathcal{K})(\mathcal{H})$. Then $Y_{k} T Y_{k}^{-1}=\left[\begin{array}{cc}\underset{1}{r} \lambda_{i} & 0 \\ \frac{1}{k} G & T_{0}\end{array}\right] \rightarrow\left(\underset{i=1}{\oplus} \lambda_{i}\right) \bigoplus T_{0}$ $(k \rightarrow \infty)$, i.e., $T \rightarrow \mathcal{U}+\mathcal{K}\left(\underset{i=1}{\bigoplus_{i}} \lambda_{i}\right) \bigoplus T_{0}$. Moreover, it is not difficult to check that T_{0} satisfies all the conditions of Case 1. Because of this, we can conclude that $\left(\bigoplus_{i=1}^{r} \lambda_{i}\right) \bigoplus T_{0} \sim \mathcal{U}+\mathcal{K}$ $\left(\bigoplus_{i=1}^{r} \lambda_{i}\right) \bigoplus Q_{1}$, where $Q_{1} \in(\mathcal{U}+\mathcal{K})\left(T_{0}\right),\left\|Q_{1}-T_{z}^{(n)}\right\|<\delta$ and $Q_{1}-T_{z}^{(n)}$ is compact. Let $Q=\left(\bigoplus_{i=1}^{r} \lambda_{i}\right) \bigoplus Q_{1}$, thus $Q \in(\mathcal{U}+\mathcal{K})(T)^{-}$. Since $\left|\left|\lambda_{i}\right|-1\right|<|1 /(1+3 \delta)-1|<3 \delta$ $(1 \leq i \leq r)$, we may easily find $\lambda_{i}^{\prime} \in \partial D$ such that $\left|\lambda_{i}-\lambda_{i}^{\prime}\right|<3 \delta(1 \leq i \leq r)$. Since $T_{z}^{(n)}$ is essentially normal and $\partial D \subset \sigma_{e}\left(T_{z}^{(n)}\right)$, by the arguments of Proposition 2.1 we have $T_{z}^{(n)}=W\left[\left(\bigoplus_{i=1}^{r} \lambda_{i}^{\prime}\right) \bigoplus T_{z}^{(n)}\right] W^{*}+K$, where K is a compact operator with $\|K\|<\delta, W$ is a unitary operator. Thus

$$
\begin{aligned}
\left\|Q-W^{*} T_{z}^{(n)} W\right\| & =\left\|\left(\bigoplus_{i=1}^{r} \lambda_{i}\right) \bigoplus Q_{1}-\left(\bigoplus_{i=1}^{r} \lambda_{i}^{\prime}\right) \bigoplus T_{z}^{(n)}-W^{*} K W\right\| \\
& \leq\left\|\left(\bigoplus_{i=1}^{r}\left(\lambda_{i}-\lambda_{i}^{\prime}\right)\right) \bigoplus\left(Q_{1}-T_{z}^{(n)}\right)\right\|+\|K\| \leq 3 \delta+\delta=4 \delta
\end{aligned}
$$

Moreover, $Q-W^{*} T_{z}^{(n)} W$ is compact, since $Q_{1}-T_{z}^{(n)}$ is compact.
Proposition 2.3. Suppose that $T \in \mathcal{A}(D, n)$. Then given $\delta, 0<\delta<1 / 10$, we can find a compact operator K with $\|K\|<\delta$ such that $T_{z}^{(n)}+K \sim_{\mathcal{U}+\mathcal{K}} T$. In particular, $T_{z}^{(n)} \in(\mathcal{U}+\mathcal{K})(T)^{-}$, and so $(\mathcal{U}+\mathcal{K})\left(T_{z}^{(n)}\right)^{-}=(\mathcal{U}+\mathcal{K})(T)^{-}$.

Proof. By Lemma 2.10, $T \rightarrow \mathcal{U}+\mathcal{K} T^{\prime}$, where $T^{\prime} \in \mathcal{A}(D, n)$ and is a lower triangular. Thus $T^{\prime *} \in \mathcal{B}_{n}(D)$. From the definition of $\mathcal{B}_{n}(D)$ operators we may assume that the diagonal entries $\left\{\lambda_{k}\right\}_{k=1}^{\infty}$ of T^{\prime} are pairwise distinct and form a dense subset of D. Thus, for each $k \geq 1$, we have

$$
T^{\prime}=\left[\begin{array}{cccc}
\lambda_{1} & & & 0 \\
& \ddots & & \vdots \\
& * & & \lambda_{k} \\
Z_{11} & \ldots & Z_{1 k} & T_{k}^{\prime}
\end{array}\right]:=\left[\begin{array}{cc}
G_{k} & 0 \\
Z_{k} & T_{k}^{\prime}
\end{array}\right]
$$

Since $T^{*} T^{\prime}-1=: K \in \mathcal{K}(\mathcal{H})$, we obtain

$$
\left[\begin{array}{cc}
G_{k}^{*} G_{k}+Z_{k}^{*} Z_{k} & Z_{k}^{*} T_{k}^{\prime} \\
T_{k}^{\prime} Z_{k} & T_{k}^{*} T_{k}^{\prime}
\end{array}\right]=\left[\begin{array}{cc}
1 & 0 \\
0 & 1
\end{array}\right]+\left[\begin{array}{cc}
K_{1 k} & K_{2 k} \\
K_{3 k} & K_{4 k}
\end{array}\right]
$$

with respect to these decompositions of the spaces. Since K is compact, we can choose N large enough so that if $k \geq N,\left\|K_{4 k}\right\|<\delta / 4$. Let $S=T_{N}^{\prime}$. Then $S \in \mathcal{A}(D, n)$ and $\left\|S^{*} S-1\right\|<\delta / 4$. By Lemma 2.11, $d\left(S, \mathcal{U}\left(T_{z}^{(n)}\right)\right)<\delta / 4$. Since the eigenvalues of G_{N} are
all distinct, we can find an invertible matrix R such that $F=R^{-1} G_{N} R$ is diagonal. Let $X=Z_{N} R$. Then

$$
T^{\prime} \sim \mathcal{U}+\mathcal{K}\left[\begin{array}{cc}
R^{-1} & 0 \\
0 & 1
\end{array}\right]\left[\begin{array}{ll}
G_{N} & 0 \\
Z_{N} & S
\end{array}\right]\left[\begin{array}{cc}
R & 0 \\
0 & 1
\end{array}\right]=\left[\begin{array}{cc}
F & 0 \\
X & S
\end{array}\right]=T_{0}
$$

By Proposition 2.2 we can find an operator $Q \in(\mathcal{U}+\mathcal{K})\left(T_{0}\right)^{-}=(\mathcal{U}+\mathcal{K})(T)^{-}$and a unitary operator W such that
(i) $Q-W^{*} T_{z}^{(n)} W$ is compact,
(ii) $\left\|Q-W^{*} T_{z}^{(n)} W\right\|<\delta$.

Thus, setting $K=W Q W^{*}-T_{z}^{(n)}$, we have $\|K\|<\delta$ and $T_{z}^{(n)}+K \sim_{\mathcal{U}+\mathcal{K}} T$. Therefore $T_{z}^{(n)} \in(\mathcal{U}+\mathcal{K})(T)^{-}$. By Lemma 2.6, $(\mathcal{U}+\mathcal{K})\left(T_{z}^{(n)}\right)^{-}=(\mathcal{U}+\mathcal{K})(T)^{-}$.

Now we are in a position to prove Theorems 1.1, 1.2 and 1.3.
Proof of Theorem 1.1. By Lemma 2.6, there are a compact operator K_{1} with $\left\|K_{1}\right\|<$ $\epsilon / 2$ and an operator $Y \in(\mathcal{U}+\mathcal{K})(\mathcal{H})$ such that $T_{1}+K_{1}=Y T_{\phi}^{(n)} Y^{-1}$. Let ϕ be the analytic function in Lemmas 2.2-2.3. Then ϕ is analytic in \bar{D} and $\phi^{-1}=\psi$ is analytic in $\bar{\Omega}$. We can find $\delta_{1}, \delta_{2}>0$ such that $\psi\left(\Omega_{\delta_{1}}\right) \supset D_{\delta_{2}}$. Set $A=\psi\left(T_{2}\right) \in \mathcal{A}(D, n), B=T_{z}^{(n)}$. Let $m_{1}=\max \left\{|\phi(z)|:|z|=1+\delta_{2}\right\}$ and $m_{2}=\max \left\{\left\|(z-B)^{-1}\right\|:|z|=1+\delta_{2}\right\}$. By Proposition 2.2, there are a compact operator K_{2} and an operator $X \in(\mathcal{U}+\mathcal{K})(\mathcal{H})$ such that $X\left(B+K_{2}\right) X^{-1}=A$, and $\left\|K_{2}\right\|<\min \left\{1 /\left[(m+1) m_{2}\right], \delta_{2}\right\}$, where $m \in \mathbb{N}$ satisfies $\left[m_{1} m_{2}\left(1+\delta_{2}\right)\right] / m<\epsilon /\left(2\|Y\|\left\|Y^{-1}\right\|\right)$. This implies that $\sigma\left(B+K_{1}\right)=\bar{D}$. Therefore

$$
\phi\left(X\left(B+K_{1}\right) X^{-1}\right)=X \phi\left(B+K_{1}\right) X^{-1}=\phi(A)=\phi \circ \psi(T)=T_{2}
$$

Set

$$
\begin{aligned}
K_{3} & =\phi\left(B+K_{2}\right)-T_{\phi}^{(n)}=\phi\left(B+K_{2}\right)-\phi(B) \\
& =\frac{1}{2 \pi i} \int_{|z|=1+\delta_{2}} \phi(z)\left[\left(z-B-K_{2}\right)^{-1}-(z-B)^{-1}\right] d z \\
& =\frac{1}{2 \pi i} \int_{|z|=1+\delta_{2}} \phi(z)(z-B)^{-1} \sum_{n=1}^{\infty}\left[(z-B)^{-1} K_{2}\right]^{n} d z
\end{aligned}
$$

Thus

$$
\begin{aligned}
\left\|K_{3}\right\| & \leq \frac{2 \pi m_{1}\left(1+\delta_{2}\right) m_{2}}{2 \pi} \sum_{n=1}^{\infty}\left\|(z-B)^{-1}\right\|^{n}\left\|K_{2}\right\|^{n} \\
& <m_{1} m_{2}\left(1+\delta_{2}\right) \sum_{n=1}^{\infty} \frac{1}{(m+1)^{n}}=\frac{m_{1} m_{2}\left(1+\delta_{2}\right)}{m}<\frac{\epsilon}{2\|Y\|\left\|Y^{-1}\right\|}
\end{aligned}
$$

Since K_{2} is compact, K_{3} is compact. Thus $T_{\phi}^{(n)}+K_{3} \sim \mathcal{U}+\mathcal{K} T_{2}$, i.e., there is a $Z \in(\mathcal{U}+\mathcal{K})(\mathcal{H})$ such that $T_{\phi}^{(n)}+K_{2}=Z T_{2} Z^{-1}$. Thus

$$
T_{1}+K_{1}+Y K_{3} Y^{-1}=Y\left(T_{\phi}^{(n)}+K_{3}\right) Y^{-1}=Y Z T_{2} Z^{-1}
$$

and $K=K_{1}+Y K_{3} Y^{-1}$ satisfies the requirements of the theorem.
Proof of Theorem 1.2. If A satisfies (i), (ii) and (iii), then for each $\epsilon>0$ by [9, Theorem 3.48], there exists a compact operator $K,\|K\|<\epsilon$, such that $A+K \in \mathcal{A}(\Omega, n)$. By Theorem 1.1, $A+K \in(\mathcal{U}+\mathcal{K})(T)^{-}$. Thus $A \in(\mathcal{U}+\mathcal{K})(T)^{-}$. If $A \in(\mathcal{U}+\mathcal{K})(T)^{-}$, then $X_{n} T X_{n}^{-1} \rightarrow A(n \rightarrow \infty)$ for a sequence of invertible operators $\left\{X_{n}\right\} \subset(\mathcal{U}+\mathcal{K})(\mathcal{H})$. Since $\pi\left(X_{n}\right) \pi(T) \pi\left(X_{n}^{-1}\right) \rightarrow \pi(A)(n \rightarrow \infty)$ and since each $\pi\left(X_{n}\right)$ is a unitary element,
$\sigma_{e}(T)=\sigma_{e}(A)=\partial \Omega$ and $\operatorname{nul}(\lambda-T)=\operatorname{nul}(\lambda-A)$ for all $\lambda \in[\sigma(T) \cup \sigma(A)] \backslash \sigma_{e}(T)$. Thus A is essentially normal, $\bar{\Omega} \subset \sigma(A)$ and for $\lambda \in \Omega$, ind $(\lambda-A)=-n$. Conversely, assume that $\lambda \in \sigma(A) \cap \rho(A)$ but $\lambda \notin \bar{\Omega}$. Since $\lambda \in \rho\left(X_{n} T X_{n}^{-1}\right)$, ind $(\lambda-A)=0=\operatorname{nul}(\lambda-A)$. Thus $\lambda \in \rho(A)$, a contradiction. Thus $\sigma(A)=\bar{\Omega}$.

Proof of Theorem 1.3. By Theorem 1.1, it suffices to prove that there exists a compact operator $K,\|K\|<\epsilon$, such that $T_{\phi}^{(n)}+K \in(S I)$, or $\left(T_{\phi}^{*}\right)^{(n)}+K \in(S I)$, where ϕ is an analytic homeomorphism from D onto Ω. Since $T_{\phi}^{*} \in \mathcal{B}_{1}(\Omega)$, by [12, Lemma 2.3], we can find compact operators $K_{1}, K_{2}, \cdots, K_{n}$ such that $\left\|K_{i}\right\|<\epsilon / 2, A_{i}:=T_{\phi}^{*}+K_{i} \in \mathcal{B}_{1}(\Omega)$ $(i=1,2, \cdots, n)$ and $\operatorname{ker} \tau_{A_{i} A_{j}}=\{0\}(i \neq j)$. Since $\sigma_{r}\left(A_{1}\right) \cap \sigma_{l}\left(A_{i}\right) \neq \varnothing(i=2,3, \cdots, n)$, by [9 , Theorem 3.53] there are compact operators $C_{2}, C_{3}, \cdots, C_{n}$ such that $C_{i} \notin \operatorname{ran} \tau_{A_{1} A_{i}}$ and $\left\|C_{i}\right\|<\epsilon / 2^{i}(i=2,3, \cdots, n)$.

Set

$$
K=\left[\begin{array}{cccc}
K_{1} & C_{2} & \ldots & C_{n} \\
& K_{2} & & \\
& & \ddots & \\
& 0 & & \\
K_{n}
\end{array}\right]
$$

Then K is compact and $\|K\|<\epsilon$. It is easily seen that $\left(T_{\phi}^{*}\right)^{(n)}+K \in(S I)$.

References

[1] Al-Musallan, An upper estimate for the distance to the essentially G_{1} operators [M], Dissertation, Arizona state university, 1989.
[2] Berg, I. D. \& Davidson, K. R., Almost commuting matrices and a quantitative version of Brown-Douglas-Fillmore theorem [J], Acta. Math., 166(1991), 121-161.
[3] Cowen, M. J. \& Douglas, R. G., Complex geometry and operator theory [J], Bull. Amer. Math. Soc., 83(1977), 131-133.
[4] Fialkow, L. A., A note on the range of the operator $X \mapsto A X-X B[J]$, Illinois J. Math., 25(1981), 112-124.
[5] Gilfeather, F., Strong reducibility of operators [J], Ind. Univ. Math. J., 22(1972), 393-397.
[6] Guinand, P. S. \& Marcoux, L., Between the unitary and similarity orbits of normal operators [J], Pacific J. Math., 159(1993), 299-335.
[7] Guinand, P. S. \& Marcoux, L., On the $(\mathcal{U}+\mathcal{K})$-orbits of certain weighted shifts [J], Integral Equations and Operator Theory, 17(1993), 516-543.
[8] Hartogs, H. \& Rosenthal, A., über fdgen analytischer funktionen [J], Math. Ann., 104(1931), 606-610.
[9] Herrero, D. A., Approximation of Hilbert space operators I 2ed ed. [M], Research Notes in Math., 224 (Longman, Harlow, Essex, 1990).
[10] Ji, Y. Q., Jiang, C. L. \& Wang, Z. Y., Strongly irreducible operators in Nest algebras [J], Integral Equations and Operator Theory, 28(1997), 28-44.
[11] Ji, Y. Q.., Jiang, C. L. \& Wang, Z. Y., Strongly irreducible operators in Nest algebras with well-ordered nest [J], Michigan Math. J., 44(1997), 85-98.
[12] Jiang, C. L., Sun, S. H. \& Wang, Z. Y., Essentially normal operator+compact operator = strongly irreducible operator [J], Trans. Amer. Math. Sco., 349(1997), 217-233.
[13] Jiang, C. L. \& Wang, Z. Y., The spectral picture and the closure of the similarity orbit of strongly irreducible operators [J], Integral Equations and Operator Theory, 24(1996), 81-105.
[14] Jiang, C. L. \& Wang, Z. Y., A class of strongly irreducible operators with nice property [J], J. Operator Theory, 36(1996), 3-19.
[15] Marcoux, L., The closure of the $(\mathcal{U}+\mathcal{K})$-orbit of shift-like operators [J], Indiana Univ. Math. J., 41(1992), 1211-1223.
[16] Rosenblum, M., On the operator equation $B X-X A=Q[J]$, Duke Math. J., 23(1956), 263-269.
[17] Shilds, A. L., Weighted shift operators and analytic function theory [J], Math. Surveys, 13. (Providence, Rhode Island: Amer. Math. Soc., 1974), 49-128.
[18] Voiculescu, D., A non-commutative Weyl-von Neumann theorem [J], Rev. Roum. Math. Pures et Appl., 21(1976), 97-113.

[^0]: Manuscript received September 4, 1998. Revised October 10, 1999.
 *Department of Mathematics, Jilin University, Changchun 130023, China.
 **Department of Mathematics, Jilin University, Changchun 130023, China.
 $* * *$ Department of Mathematics, East China University of Science and Technology, Shanghai 200237, China.

