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Abstract The aim of this paper is to study the continuity of weak solutions for quasilinear
degenerate parabolic equations of the form

Ut — A¢(U) = 07

where ¢ € C*(R') is a strictly monotone increasing function. Clearly, the above equation
has strong degeneracy, i.e., the set of zero points of ¢'( - ) is permitted to have zero measure.
This is an answer to an open problem in [13, p. 288].
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1 Introduction

In this paper we study the continuity of weak solutions for quasilinear degenerate parabolic

equations

ou
o~ Ad(u) =0, (1.1)

where ¢ satisfies the following conditions (H1)—(H2):

(H1) ¢ is a strictly monotone increasing function, i.e.,
(15(81) > ¢(52) <~ S1 > S9,

and ¢(0) = 0.
(H2) ¢ is locally Lipshitz continuous, i.e., for any a € (0, +00), there exists a positive number

A = A(a) such that
|6(s1) — B(s2)| < Als1 — s
for all s1 € [—a,a] and all s2 € [—a,al.

Clearly, the equation (1.1) has strong degeneracy, i.e., the set of zero points of ¢'(-) is

permitted to have zero measure.
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The equation (1.1) has been suggested as a mathematical model for a variety of physical
problems. We shall not recall them here but refer to [1], where a very extensive literature about
the porous medium equation and some of its generalizations have been summarized.

For the regularity of solutions of the quasilinear degenerate parabolic equations, results are
obtained in one-dimensional case by a number of authors, for example, D. G. Aronson [2-4], D.
G. Aronson and J. L. Vazquez [5].

In multi-dimensional case, the Holder continuity of solutions of the porous medium equation

ou met1
E—A(|u| u)=0, m>1

is obtained first by L. A. Caffarelli and A. Friedman [6] by means of the inequality

8u> ku o 1

ot =t m—l—%

estiblished by D. G. Aronson and P. Benilan in [7]. The work in [6] is highly important for
the nonlinear degenerate parabolic equations. In addition, such results for general nonlinear
degenerate parabolic equations have been obtained by a number of authors, for example, L. A.
Caffarelli, J. L. Vazquez and N. I. Wolanski [8], L. A. Caffarelli and N. I. Wolanski [9], Chen
Yazhe [10], E. DiBenedetto [11] and E. DiBenedetto and A. Friedman [12].

But, the continuity of solutions for the equation (1.1) is still an open problem (for example,
see [13, p. 288]). For this problem, we shall give an answer as follows.

Let us consider the Cauchy problem of (1.1) with the following initial condition
u(z,0) = ug(z) for all z € RV, (1.2)

where uy € L°(RY) N BV(RY) and Q7 = RY x (0,T) with T > 0.
The definition of weak solutions of (1.1)—(1.2) is given by

Definition 1.1 A function v € L>®(Qr) is said to be a solution of (1.1)—(1.2) in Qr, if u
satisfies following conditions (i) and (ii):
(i) We have
w€ C(0,T; LA(Q)),  |Vo| € L¥(0, T L (RY)),

where v = ¢(u).

(ii) For any & € C%(0,T; C3(RY)) with &(x,T) =0 for x € RN, we have
// [u& — V(u)VE]dzdt —|—/ uo(x)é(x,0)dr = 0.
T RN

Our main result is the following theorem.

Theorem 1.1 Assume that u is a solution of (1.1)—(1.2), and ug satisfies
A¢(ug) 20 (or Ag(ug) <0) (1.3)

in the sense of distributions. Then we have v € C(Qr).
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Our proof of the main theorem is very interesting, which is based on some new ideas.

The proof of Theorem 1.1 is completed in Section 6. In the proving process of these theorems,
we need some results in Sections 2-5.

Without loss of generality, we assume that N > 3 in this paper.

2 Some Known Lemmas
In order to discuss our main result, we need following lemmas.

Lemma 2.1 Lety, (n=0,1,2,---) be a sequence of real numbers satisfying the following
inequalities 0 < yp 11 < byt forn =0,1,2,---, where ¢ >0, 0 > 0 and b > 1. Then

Un < c[(l-‘ra)"—1]/ab[(1+z7)"—1—na]/z72y(()1+0)n fO’I" n = 07 1, 27 e

In particular, we have the following conclusions:

(i) The following inequality holds:

Tim yl/ O+ < opl/oty,;

n—-+4oo

(i) If yo < ¢ Y/7b=1/" then
lim gy, =0.

n—-+4oo

The proof can be found in [15].

Lemma 2.2 Assume thatp > 1, 0 > 1, u € Wol’p(Q), and  is a bounded and smooth

domain in RN . Then we have
(i) If p< N, then
lull Lo/ v =) < C1l|VullLo),

where Cy is a positive constant depending only on p and N.

(i) If p > N, then
lull 2o (@) < Coll Vull Sy lull=Gy  for v > o,

where Ca = max {25721+ 8502)°, and

The proof can be found in [15].

Lemma 2.3 Assume that A is a smooth bounded domain in RN and
ue L®(Ax (0,T)), veL0,T;Wy?(A)).

Then we have

2/q, 2 2/a 2
u v*dxdt < C(N)( sup u(a:,t)dx) |Vo|“dxdt,
Ar 0<t<T J A Ar
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where ¢ > N for N > 3;q> 2 for N=2; and ¢ > 2 for N = 1.

The proof can be found in [16].

Lemma 2.4 Assume that u € WH(Br(X)) with X € RN and I,k € R with | > k. Then

N+1
(L= k)| Aty CR -
|B R| A \Af R

where A}, = {x € Br(X) : u(z) >k}, and C is a positive constant depending only on N.
kR

The proof can be found in [15] or [16].

3 Some Properties of Weak Solutions

Let us consider the regularized equations

Uet — Adpoe(ue) =0 (3.1)
in Q7 with initial data
ue(x,0) = upe(x) for all z € RY, (3.2)
where
boc(s) = (e * ¢o)(s) + €5 (3.3)
for all € € (0,1) and all s € R!, and
uoe(2) = ¢y, ((Je * (¢0(uo)))()) (3.4)

for all e € (0,1) and all z € RN, ¢ € C(RY), je(s) = 1j(2) and Jc(z) = ¢ j() are defined
as follows:
8—|—¢5(B0+1)—Bo—1, s> By +1,

do(s) = ¢(s), |s| < By +1, (3.5)
s+¢(—By—1)+Bo+1, s<—By—1,

with
By = sup |ug(x)] < +oo, (3.6)
RN
and
0<jeCF®Y),  j(=s)=4j(s), suppjC (~1,1), / Jj(s)ds = 1; (3.7)
R1
0<JeCERY), J(—2)=J(x), suppJ C B;1(0), J(x)dx = 1. (3.8)
RN

Clearly, the Cauchy problem (3.1)—(3.2) has a unique classical solution u, € L= (Q7)NC?(Q7).
Applying some proofs in [13, pp. 348-349], we can find a subsequence {e,} of {e} and a
function w € L*°(Qr) such that

Ue, — U, a.e. in Qr, (3.9)

n

Ve, — U, a.e. in Qr, (3.10)

n

Vv, — Vo, in L} (Qr), (3.11)
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as €, — 07, where
Ue(xvt) = ¢06(U6(£E,t)), 'U(:E,t) = ¢(u(xat)) (312)

In addition, we conclude that the function w is the unique weak solution u of the Cauchy
problem (1.1)—(1.2).

Lemma 3.1 If
A¢(uo) >0 (3.13)

in the sense of distributions, then we have
Uet = A¢Oe(ue) > 0 n QT
for all e € (0,1).

Proof By (3.1), we have
(uet)t - A[¢Oe(ue)]t = Oa

which implies
wi — ¢ (ue) Aw — 2V ¢y (ue ) Vw — [Ad(, (ue)]w = 0, (3.14)

where w = u¢. On the other hand, by (3.1) and (3.4) with (3.13), we compute
w(z,0) = uet(x,0) = Adoc(upe())
0)

= Ao (P (e * (¢0(u0)))(@)))
= A((Je * (¢o(u0)))(2)) = 0. (3.15)

Applying the comparison principle and using (3.15)—(3.16), we conclude that
Uet(x,t) = w(z,t) >0 forall (z,t) € Qr.

Thus the proof is completed.

Lemma 3.2 If

in the sense of distributions, then we have
Uet = Adoe(ue) <0 in Qr
for all e € (0,1).
The proof is similar to the proof of Lemma 3.2, so the details are omitted here.

Lemma 3.3 If (3.13) holds then we have
|V (ve(x,t) — k)T Pdr < 16/ IVEP[(ve(z, t) — k)T da, (3.16)
RN RN
[ Vo)~ 071 Pde <36 [ VEPI(weart) - K (3.17)
RN RN

for allt € (0,T), and all k € R and all £ € C°(RY) such taht 0 < &(x) < 1.
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Proof For ¢ € C5°(RY) with 0 < ¢ < 1, we multiply (3.1) by &2(z)(ve(z,t) — k)T and

integrate over RY to obtain
/R e €20l 1) ~ K+ Voo, V(€ (wel, 1) — Bz =0 (3.18)
for t € (0,7). Applying the Young’s inequality, we compute
Vo V(% (ve(z,t) — k) T)dx

RN

= £2|V(Ue($,t) - k)+|2dx + /

26 (ve(z,t) — k)T Ve (2, 1) Véda
RN RN

1
>5[ €IVt~ k) Pdo =8 [ (VEPI(weant) - b P (3.19)
RN RN
Combining (3.18)—(3.19) and applying Lemma 3.1, we get
|V (ve(z,t) — k)* [Pda < 16/ IVEP[(ve(,t) — k)T]?da.
RN

RN

Therefore, (3.16) is proved.
In addition, by (3.16), we obtain

[ Vletocant) = by
= [0 t) = R VE + €V vl t) = byl
<2 [ VPl - b Pdo 42 [ EV(ulet) - B Pl
RN RN
< 36 /RN IVEP[(ve(z, t) — k) T)da,

which implies that (3.17). Thus the proof is completed.

Lemma 3.4 For any e € (0,1), we have

€ < dpe(s) <O, (¢&_1)/(8) > for all s € R

Ql=

Proof By (3.3), we compute

doe(s + hlz — ¢oc(s) _ /]Rl i(2) do(s+h+ ez}z — do(s+e€z)

dz+e¢ forall h € (0,1).

Applying (H2), we have

< Poc(s + h})L — Poc(s) <C forall he(0,1).

Letting h — 0T, we get

€< gp(s) < Ag+1, VseR' Vee(0,1).
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Therefore, we get
1

1
- S [60(5)] > ] for all € € (0,1).

(é0c )'(5)
Thus the proof is completed.
Lemma 3.5 For any € € (0,1), ¢oc € C=(R') and ¢y, € C=(R!) satisfy
[boc(s)] < A+2[s], o, ()] < A+]s| for all s € R,
where A = |p(Bo + 1)| + |¢(—Bo — 1)| + By + 2.
Proof By (3.3) and (3.5), we compute

boc(s) = /}R1 je(s — x)po(x)dx + es
= l/le(S _x)%(x)dx—i—es

€ €

/]Rl J(—=2)bo(s + €z)dz + €s
= /le(z)[s—l—ez—kgb(Bo +1)— By —1]dz + es
=(1+¢€s+¢(By+1)—By—1
for all s > By + 2. Similarly, we also have
Poe(s) =(1+e€)s+¢(—Bp—1)+By+1 forall s <—By—2.

In addition, we have

|boc(s)] = ‘/Rl je(s — x)po(x)dx + €s
< E/le(szx)%(x)dx‘ + €3]

< / J(=2)|do(s + €z)|dz + €[s]
]Rl

< max{|¢p(=Bo — 1)| + 1,[¢(Bo + 1)| + 1} + €[s]

for all s € (—By — 2, By + 2). By the above computation, we have
|poe(s)] < A+ 2|s].
We now prove
|poc (s)] < A+1s| forall s € R
In fact, we compute

—¢p(Bo+1)+By+1
bt DIt l i) > B+ 2,

lboe (s)] § < Bo+2, if |¢ot (s)| < Bo + 2,
_|s=¢(=By—1) — By — 1]
o 1+e ’

if ¢pt(s) < —By — 2.
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Thus the proof is completed.

Theorem 3.1 For any (xo,t0) € Qr, we have

sup / GR(H® (u — k)* )€ (2)da
Br(xo)

to—p1<t<to+p2

to+p2
< / / GUH*, (u— k), 0)|VEPdedt
t Br(zo)

0—pP1
+ / V2(H=, (u(z,to — p1) — k)&, )& (x)da
Br(zo)
for all k € [=A,A], all 0 < tg— p1 < to+ p2, and all £ € C°(Br(xo)) such that 0 < &(z) <1
for x € Br(xo) and &(z,t) = 0 for x € OBgr(xo), where H* € (0,A], and for (u — k)P™ < H,
H*
H* — (u—k)* —|—V}’

and o 18 a positive constant depending only on N and A.

G(HE, (u— k)E,v) zlrﬁ{ v < min{H*, 1},

Proof For simplicity, we let
w(Hiv (ue - k)iv V) = d}((ue - k)i)

For ¢ € C*°(Bpg(z0)) such taht 0 < &(z) < 1 for € Bgr(z¢) and &(z,t) = 0 for € dBr(xo),
we multiply (3.1) by &€2[(¥?)'((ue — k)*)] and integrate over Br(xg) x (to — p1,5) to obtain

/t /B ) (e — Ao (u))dadt = 0 (3.20)

for all s € (tg — p1,to + p2)- meg the Young’s inequality, we compute

/to o /B (z0) (=€ (¥?) ((ue = k) ") Apoc (ue)dw

:/f_ /B( VIEWY (e = BV goc(uc)de
_ s 2 24" (u " — 20,
S A R (N (T

1o / | / €' B, () VEVuedc
to—p1 J Br(xo)

S 2 AV - ) N
> /topl /BR(%)ﬁ (14 ) ()2 dh. (ue) |V ((ue — k)7 |*d

4 / | / D(ue — k) (ue) | VEdx
to—p1 J Br(xo)

—C/ / P((ue — k)T)|VEPda. (3.21)
to—p1 J Br(zo)
Combining (3.20) with (3.21), we obtain

to+p2
/ 242 (ue(x,s) — k)" )de < C / (e — B)H)|VEPddt
Br(zo) Br(xo)

to—p1

4 / 202 (uclz,to — p1) — k))da
Br(xo)
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for all s € (to — p1,to + p2), where C is a positive constant depending only on A. Letting

e =€, — 07 and using (3.9), we conclude that
to+p2

to—p1

/ €242 ((u(z, 5) — k)*)dz < C / O(u — k)| VE[dadt
Br(zo) Br(xo)

+ / 62 (ula,to — p1) — K)V)da
Br(xo)

for s € (to — p1,to + p2). Similarly, we also have

to+p2

/ €42 (u(z,5) — k) )dx < C / b((u — k)")|VE[Rdadt
Br(zo) Br(zo)

to—p1

4 / 24 ((ule, to — p1) — k)" )dar
Br(zo)

for s € (to — p1,to + p2). Thus the proof is completed.

Theorem 3.2 For any (xo,t0) € Qr, we have

sup / [(v(z, s) — k)F)2dz + // |V[€(ve — k)F]|2dadt
e(to—p1,to+p2) J Br(zo) QZ’?(R)

<72 // )E)? Ve dxdt—i—// |&¢|dxdt
”2(1%) QP2 (R)N{(v—k)*=>0}

/ §*(x,t0 — Pl)dﬂ?}
Br(zo)N{z:(v(z,to—p1)—k)* >0}

for all k € [=A,A], all Q02(R) C Qr and all § € C(QL2(R)) such that 0 < &(z,t) < 1 for
(z,t) € QL(R) and &(x,t) = 0 for (z,t) € OBr(w0) X (to — p1,to + p2), where QM2(R) =

P1
Br(zo) x (to — p1,to + p2), and 72 is a positive constant depending only on A and N.

Proof For { € C*(Qh2(R)) such taht 0 < {(w,t) < 1 for (z,t) € Q2(R) and {(z,t) =0

P1
for (z,t) € OBRr(x0) % (to — p1,to + p2), we multiply (3.1) by &£?(v. — k)T and integrate over

Br(zo) x (to — p1, ) to obtain
/ | / (€2 (v — k) s — E2(ve — k)T Av.ldzdt = 0 (3.22)
to—p1 ¥ Br(xo)

for all s € (tg — p1,to + p2). Using the Young’s inequality, we compute

/ / [—&%(ve — k)" Av ] dadt
to—p1 7 Br(zo)
= / / V(€% (ve — k)T Voedadt
to—p1 7/ Br(zo)
—[ [ N m P [ [ 2w k) VeVudod
to=p1 / Br (o) to—p1 J/ Br(wo)

1 S S
> —/ / 2|V (ve — k)T |Pdadt — c/ / [(ve — k)TI?|VE|Pdzdt,  (3.23)
2 to—p1 ¥ Br(xo) to—p1 Y Br(zo)
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/ / — k)T ugdwdt
to—p1 BR(IO)
/ ‘ / ~ (65 (v vedadt
to—p1 BR(TO)
s (ve (z,8)—k) T
/ / / r(oat) (r + k)dT}dxdt
to—p1 R(Io)
<ve<m,s>—k>+
/ & / (651 (7 + k)dr bz
BR(.TO) 0

(ve(@,to—p1)—k) T
—/ §2{/ (6 (r + kydr bz
Br(zo) 0

s (ve(z,t)—k)T
- / / 25&{ / Togl) (r + k)dT}dxdt. (3.24)
to—p1 J Br(zo) 0
Using Lemma 3.4, we have
(ve(z,8)—k)" (ve(z,5)=k)"
€2 / (o) (7 + k)dr pda > / €2 / —dr pdx
/BR(ID) { 0 0 } Br(wo) { 0 C }
1
=— E(ve(w,s) — k) 2dx.  (3.25)
2C Br(zo)
We have
|ve(z, )| = [Poe(ue(z, 1)) < C (3.26)
for all € € (0,¢0) and (z,t) € Qr. Applying Lemma 3.5 and using (3.26), we have
(ve(z,s)—k)*
/ T(pol) (7 + k)dr
0
) (ve(z,8)—k)* )
= (ve(,5) — k)" (95c ) ((ve(,5) — k)T) —/O boe (T + k)dr
< (ve(w,8) = k)" (3o ) (ve(w, 8) — k)F) = (ve(, 8) — k)T g (k)
< (ve(, 8) = k) T[(A + [ (ve(z, 8) — k) 7)) + (A + |K])]
<C (3.27)
for k € [-A, A], where C is a positive constant depending only on A. Combining (3.24)—(3.25)
with (3.27), we obtain
/ / — k)t ugdzdt > —/ [(ve(z,8) — k) T]?dx
to—p1 BR(TO) BR(TO)
-C (x,tg — p1)da
Br(xo)N{z:(ve(z,to—p1)—k)T>0}
to+p2
_c / €, dadt,  (3.28)
to—p1 J Br(zo){z:(ve(x,t)—k)t >0}
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where C'is a positive constant depending only on A. Using (3.22), (3.23) and (3.28), we get

S
L E(ve(z,8) — k)T ?de + L / / 2|V (ve — k)t Pdadt
2C Br(xo) 2 to—p1 J Br(zo)
< C/ / [(ve — k)T)?|VEPdadt + C & (x,to — p1)da
to—p1 Y Br(zo) Br(zo){z:(ve(z,to—p1)—k)T >0}
to+p2
+C / |&¢|ddt
to—p1 “ Br(zo)N{z:(ve(z,t)—k)t >0}

for all s € (to — p1,to + p2). This implies that

sup / [(ve(z, s) dx—i—// £2|V — k)t Pdadt
s€(to—p1,to+p2) J Br(zo) QL2
to—p1
<c[" [ - mvePdat +0 (2,10 — pr)da
to—p1 7 Br(zo) Br(zo)N{z:(ve(x,to—p1)—k)T>0}

to+p2

+C | |dwdt. (3.29)

to—p1 /BR(mo)ﬁ{fi(Ue(m7t)—k)+>0}

In addition, we compute

// IV[¢(ve — k)T dxdt<2// 2|V (ve — k)T |Pdadt
QR (R) QU3 (R)

+2// IVEP[(ve — k) T]2dxdt. (3.30)
Qi (R)
From (3.29) and (3.30), it follows that
sup / [(ve(z, s) dx—|—// — k)" ?dxdt
s€(to—p1,to+p2) / Br(zo) Qp?
<c[ [ fe-nTvepda - o (a0 — pr)do
to—p1 Y Br(zo) Br(zo){z:(ve(z,to—p1)—k)T >0}

to+p2
—c €| dadt. (3.31)

to—p1 ~/BR(m0)ﬁ{m:(v‘(m,t)—k)+ >0}

Similarly, we also have

sup / E[(ve(z, s) dx—l—// —k)7]|*dxdt
s€(to—p1,to+p2) J/ Br(zo) Qp?
<c[ [ iw-nPIvePdsa +0 ety — p)da
to—p1 J Br(zo) Br(zo){z:(ve(xz,to—p1)—k)~ >0}
to+p2
+C / |&¢|dadt.
to—p1 J Br(zo)N{z:(ve(x,to—p1)—k)— >0}

Applying (3.9)—(3.10) and using (3.31), we get the conclusion of Theorem 3.2. Thus the proof

is completed.
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4 Some Estimates on Lower Bound
Let the point (xg,tg) € Qr be fixed throughout, and consider the cylinder
Q(R) = Br(wo) x (to — (2R)*,to + (2R)*) C Qr
for some R > 0. In addition, we take
QF = Br(o) x (1 — R*,7),

where 7 =ty — R?. Clearly, we have
Qr C Q(R).

Denote

w=w(R)=M—-m, M =esssupu, m=ess inf u,

Q(R) Q(R)
wy =wy(R) =M, —m,, M,=esssupv, m=ess inf v,
Q(R) Q(R)
O(r)= inf +7r)— , ¥(r)= inf +7r)—
()= jof [s+r)=o(s), dr) = inf  [p(s+7) = (s)]

for all r € (0,A), where p(s) = ¢~1(s) for all s € RL.

In this section, we assume that
w=w(R)>\ VRe(0,Ro)
for some Ry > 0 and some A > 0 independent of R. Clearly, if (4.7) holds then
wy = G(M) — ¢(m) = (A) = Ao > 0.

Clearly, )\ is also some positive constant independent of R.

First, we have

H. J. Yuan

(4.7)

(4.8)

Lemma 4.1 Assume that (4.7) holds. There exists a positive number o € (0,1) depending

only on N, \g, 2 and A such that, if
H(x,t) € Qg :v(x,t) <my + %}‘ < a|Q%]
with 7 =ty — R?, we have

v(x,t) > my, + % for (z,t) € Qp)s-

Proof Denote

R R

Rn:§+2_n’ Q%n(xo):BRn(on)X(T—R?L,T), TL:].,2,"'
and &, € C*°(Q7%) such that
gn(xat) =1, ) ) € QTR,,,_H(:EO)v

Y (z,t
&n(x,t) =0, V(x,t) € dBg, (7)) x (T — R2,7),
En(x,7— R2) =0, V€ Bg,(z0),

V& < C2"R™Y, 0< & < C2"R™2, in QF, (o)

(4.9)
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and let
w?) w?)

kn:mu+_+

1 g =L

Using Theorem 3.2 and choosing k = k,, and £ = &,,, we get

sup /BRn(m)[(v — kn) P60 (x, t)da + // e V[ (v — k)~ Pdadt

T—R2<t<t

< 73{// [(v—kn)_]2|V§n|2dxdt+// (neldadt
Q%,, (xo) Q% (zo)N{v<kn}

Using Lemma 2.3, we obtain

// E,L(Io)[gn(v — kn)i]%‘dxdt < C{ // . (wo)[(v _ kn)7]2|vfn|2dxdt

12
+ / / |£m|dmdt} . (4.10)
Qp. (zo)N{v<kn}
We have

[v(z,t)] < As. (4.11)

On the other hand, by (4.8), we have
// ( ){[(v — kn) TP dadt > (kp — kng1)? Apgr = C272" Ay 14, (4.12)

R (%0

where A,, = [{(z,t) € Q%, (z0) : v(x,1) < k,}|, and C is a positive constant depending only on
Ao. Combining (4.10)—(4.11) with (4.12), we get

Api1 < CR™21QMm AL,

where C' is a positive constant depending only on N \g, 72 and A. Applying Lemma 2.1, we
obtain that, if

Ay < (CR™2m)~ Y/ (n=Dg=4u/(u=1)* (4.13)
then
lim A, = 0. (4.14)
n—-+oo
Choose a € (0,1) such that
a|Qnl =21 (CR*ZM)fl/(ufl)2*4/1/(/1*1)2. (4.15)

Therefore, by (4.13)—(4.15), we conclude that, if |A, r,| < a|QF],
Wy
v(x,t) > my, + 1 for (z,t) € Q%o

Thus the proof is completed.

Denote
l:gp<mv+—) — p(my) :ga<mv+—) —m. (4.16)
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‘We have
Ao
> — .
1_19(4)>o, (4.17)

v(a,t) > my, + % <~ u(x,t) >m+1. (4.18)

Lemma 4.2 Assume that (4.9) holds, and

_ _ l
H™ = |(u—(m+1)) HL”Q(BR/Q(JCO)x(tofRQ/Q,toJrRQ)) > bY (4.19)

Then for any ay € (0,1), there exists a positive integer g1 = q1 (1), such that

l
Ha: € Brya(xo) s u(w,t) < m+ 2?}’ < a1|BRrya(wo)]

forte (to — R;, to + RQ), where Cy 1s some positive constant depending only on ~s.

Proof Denote a nonnegative function £ € C§°(Bgr/2(w0)) such that
&(x) =1, V€ Bpu(zo); |VE(z)|<CR™', Va € Bpjs(zo).

From Theorem 3.1, it follows that

/BR/z(?I:O) &t (H_’ (u(z,t) = (m+1))", %)dw

<m{/tt°+R2 /BR/Z(%)|V£|21/J(H_,(u(x,t)—(m—i—l))_,%)dxdt

0—R2/2

+/ g2 (1, (u(w.to - R—Q) —(m+0) L)dx}. (4.20)
Brys(x0) ’ ’ 2 ' on
s2(zo
Using Lemma 4.1 and (4.18), we have
R2 - "
22 ( 17— BTN L _ -1 .
/B (T)fw(H ,(u(ﬂfato 2) (m+l)) '3 )daz 0 forn>1 (4.21)
Rr/2(T0
By (4.19), we get

w(Hi (u(z,t) = (m+1))", %)dx <nln2. (4.22)

We bound the integral on the left hand of (4.20) from below by extending the integration to
the small set

l
{x € Bprja(wo) : u(x,t) < m+ 2—n}

On such set, by (4.19), we have
- _ 1
w(H (u(z, t) — (m+ 1)) 27) > (n—2)In2. (4.23)
Combining (4.21)—(4.23) with (4.20), we conclude that

Hx € Bprya s u(z,t) <m+ 2%}‘ < (nginmﬂBRM(xoﬂ
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for t € (to - = to + RQ), where C' and Cj are some positive constants depending only on ;.
We have only to choose ¢ = n such that

Cn

)

and then obtain the conclusion of Lemma 4.2 for R € (0,a1Cy '27(2a+D) Thus the proof is

completed.

Denote l \
= _ q1 0
hig) = ¢(m+ e ) my, > 9(2 19( 1 )) (4.24)
Clearly, we have
l
v(x, t) <my + 4 (1) <= u(z,t) <m+ TR (4.25)

Lemma 4.3 Assume that (4.9) and (4.19) hold. Then we have

li(gq2)

v(x, t) > m, + 5

for (x,t) € Br/sg(wo) X (to — R;,to + RQ) and R € (0, Ry), where g2 and Ry are some positive

constants independent of R.

Proof Denote

R R hq) | h(q)
Rn = 35 PR kn = v Y
T T ety 2n
for n =1,2,---, and choose nonnegative functions &, € C§°(Bg, (x¢)) such that

&u(z) =1, Va€Bg,,,(v0); [|V&(z) <C2"R™!, Va € Bg, (o).

From Theorem 3.2, it follows that

sup / [( ) 52 $ t d:r,+// fn v—F ) ]|2dxdt
0—R?/2<t<to+R? J Bp, (z0)

<73 // v —kn) | VEn| dxdt+/ fi(x)dx},
Br,, (zo)N{z:(v(x,0)—k,)~ >0}

where @, = Br, (zo) X (to — RTQ, to + R?). Applying Lemma 2.3, we have

//Q (n v — k) Pdndt < // v — k)~ 2|V, [2dadt

o
/ 2adef,  (426)
Br,, (zo)N{z:(v(z,to—R?/2)—k, )~ >0}
where p =1+ % By Lemma 4.1, we have
/ &2 (x)dr = 0. (4.27)
Br,, (zo)N{z:(v(z,to—R?/2)—kyn)~ >0}

Combining (4.26) with (4.27), we compute

(kp — kni1)* Apyy < C22HR™2AF
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where A, = |{(z,t) € Q,, : v(z,t) < ky}|. Then for R € (0,11(q1)?), we have
Ap1 < C22HMR™21 AL (4.28)

forn=1,2,---, and C is a positive constant depending only on ~3. Applying Lemma 2.1 and
using (4.28), we have that, if

A < [CR*QM]*1/(H*1)2*2H/(H*1)27 (4.29)
then
1121 A, =0. (4.30)
Choose as such that
R? 2 -1 —2u1—1/(u—1)—2u/(u—1)2
o BR/4($())X (tO_T’t(H_R)‘:Z [CR 'l] F 27K . (431)

Clearly, s is a positive constant depending only on v, and N. Taking oy = o and g2 = g1 ()
and using Lemma 3.2 with (4.29)—(4.31), we conclude that (4.30) holds for

R € (0, min{asCy 127 Rt 1 (go)}).

Choosing
By min{2‘1a20512‘(2(’2+1)7 9(2%9(%))}

and using (4.24), we have

v(z,t) > m, + @

for (z,t) € Brys(wo) x (to - %Q,to + RQ) and R € (0, Rp). Thus the proof is completed.

Theorem 4.1 Assume that u is a solution of (1.1)—(1.2) in Q. If (4.9) holds then we
have
u(z,t) > m+ hw

for (x,t) € Brys(wo) x (to — R;,to + R?) and R € (0, Ry), where
61 =min{271, (2A1)719(2710(27)\))}. (4.32)
Proof If (4.19) holds then, by Lemma 3.3, we have

l
v(x,t) > m, + %

for (z,t) € Brys(zo) x (to — &= to + R?). By (4.6), (4.24) with (4.32), we get

ll(%)) > Sﬁ(mv + @) >m+ 19(2719(27112)\)) >m+ 5w (4.33)

2

u(z,t) > gp(mv +
for (z,t) € Brys(wo) % (to — R;, to+ R?) and R € (0, Ry). In addition, if (4.19) is not true then

v(x, t) > m+ (4.34)

DO | =~

for (x,t) € Bgrya(zo) x (to — R;,to + R?). Combining (4.33)—(4.34) with (4.17), we obtain the

conclusion of Theorem 4.1. Thus the proof is completed.



Continuity of Weak Solutions for Quasilinear Parabolic Equations

5 Some Estimates on Super Bound

It is well known that, if (4.9) is not true,
{@heQr:v@t <m+2 > alQnl
which implies that
{@ € Qriv@n > M~ S} < (1-a)|QRI

for 7 =ty — R?, where o € (0,1) is defined by Lemma 4.1.
Lemma 5.1 Assume that (5.1) holds. There exists a time

tt e (T—RQ,T—QTRQ)

such that

v 1-
{z € Br(wo) : vl@,t) > M, - 22} < 222 | Br(ao) .
2

Proof If (5.3) is not true then

Wy 11—«
b > =5 1Br(o)

2 1—2

Hx € Br(wo) : v(z,t) > M, —
2

fort e (r— R 71— “TRZ) It follows from (5.4) that

491

(5.1)

(5.4)

{(@.t) € QR o, t) > My - 22} > /TTQR2/2 { € Brlwo) s viat) > My — 5

2 —R2

> (1= a)|@Fl,

which contradicts (5.1). Thus the proof is completed.

Denote
Wy

L=M- SD(Mv -5 ), Q1 = Br(wo) x (to — 2R? to + R?).
Lemma 5.2 Assume that (5.1) holds and
+ + L
HY = (=M= L))" =@ > 3
Then there exists a positive integer py independent of R such that

{o € Bata) e,y = 21— V] < [1 - ()] Bateo))

fort € (to — R?,to + R?) and R € (0, R1), where Ry is a positive constant independent of R.

Proof We define a nonnegative function & € C§°(Br(zo)) such that

&) =1, Va € Br_or(zo); |V < C(UR)_l,
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where o € (0, 1) is arbitrary. From Theorem 3.1, it follows that

L
sup / p? (H*, (u(x,t) — (M — L))™, 2—n)§2dx
t*<t<to+R? J Br(zo)

t0+R2 L
gyl/ / ¢(H+,(u— (M—L))+,—n)|vg|2dxdt
¢ Br(xo) 2n
2+ + Ly
+ A (HY, (u(a.t) = (M - D)7, )X (a)da
Br(xo) 2
First, we have
+ + L
w(H (u(e,t) — (M — L)) 2—n) < nln2.
Applying Lemma 5.1 and using (5.5), we have

/BR(mo) 4 (H+’ (u(w,t) = (M = L)), %)fz(x)dx < n21n22(i — (Oj)|BR(x0)|.

Using (5.2), we get 0 < to + R? —t < 3R?. It follows from (5.8) that

t0+R2 L
/ / w(H+,(u— (M—L))+,—n)|V§|2dxdt < Co~%n|Bg(xo)|.
t Br(xo) 2
Using (5.10) and combining (5.7), (5.9), we have

L
s [ () - 01 - 1) o) o
t*<t<to+R? J Br(zo)

< {n21n22(i_—2) + 007274 |Br(zo)|-

2

We estimate the left hand side of (5.11) below by integrating over the smaller set
L

Br_or N {x € Br(xo) : u(x,t) > M — —}

Then on such a set, by (5.6), we obtain

¢(H+, (u(z,t) — (M — L))", 2£n) > m(i) =(n—2)n2.

Combining (5.12) with (5.11), we conclude that

L n \2/1—-«
. = < -2 -1
erBR,[,R.u(x,t) > M 2}\ < Kn—Q) (1_%) + Co~*n"] | Ba(ao)
for t € (t,to + R?).
On the other hand,
L L
HxEBR(xO).u(x,t)>M 2n}’7HxEBR,UR.u(x,t)>M 2"}’
+ [Br(z0) \ Br—oR|-

H. J. Yuan

(5.10)

(5.11)

(5.12)

(5.13)

(5.14)
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By (5.13) and (5.14), we obtain

Hx € Br(xo) : u(z,t) > M — 25}\ < [(n - 2)2(1 :;) +Co~?n~! + Co|Br(wo)| (5.15)

for t € (t,to + R?). Choose o so small that

and p; = n so large that

()< (- g crae

Then for such a choice of p; =n

Hx € Br(xo) : u(z,t) > M — 2%}‘ < [1 — (%)2} |Br(z0)|

for t € (t,to + R?) with t € (1 — R%, 7 — O‘TRQ) Thus the proof is completed.

It is well known that

L
u(z,t) > M — o v(x,t) > M, — Ly, (5.16)
where I
L :Mv—¢(M— 27) (5.17)

By (5.5) with (4.6) and (4.7), we have

bes( e () el %) 200

Using (4.6) and (5.18), we get

Ly > (M) — ¢(M - 2*?119(%)) > 9[2*?1#(%)] (5.19)

Lemma 5.3 Assume that (5.1) and (5.6) hold. For any 3 € (0,1), there erists a positive
integer p = p(B, N, a) depending only on N, o and 3 such that

Hx € Bgr(xo) : v(z,t) > M, — %H < B|Br(x0)|

fort € (to — R%,to + R?) and R € (0,27 PRy), where o is defined by Lemma 5.1.

Proof We choose a cut-off function £ € C5°(Bar(zo)) such that £ = 1 on Bgr(zo) with
0<E<1, |[VE < CR™!. Choosing

B Ly B Ly
l=M, on’ k=M, on—1
and using Lemma 2.4, we compute
Ll) CRNJrl
= J[ALr(1)] < / |Vo(x,t)|d, 5.20
& Ba(wo) \ Ae a0 Ja, wonan eo (520)



494 H. J. Yuan

where Ay r(t) = {z € Bgr(zo) : v(z,t) > k}. In addition, using Lemma 5.2 and (5.20), we

compute

(2) 14100 < ORIAk 0\ A ( [ Vote oftdr)

Ak, rR(D\AL R ()

gCR|Ak,R(t)\Al,R(t)|1/2(/B ( )|V[£(v(x,t)—k)*]|2dw)1/2
gCR|Ak,R(t)\Al,R(t)|1/2-{/B ( )[(v(sc,t)—/f)*]ZIVé‘IQd:v}l/2

L
< C(55)1Aer(®)\ Aur(t)]2|Br(wo)| /2
L
< C(55) 4n(®) \ Aur(®]'* Ba(ao)|
forn=1,2,---,p. This implies that
[ALr(t)] < ClAkr()\ ALr(D)/?| Br(xo)['/? (5.21)

foralln =1,2,--- ,pand all R € (0,27 PR;), where C is a positive constant depending only on
N, v4 and a.
Denote

A, (t) = {a: € Br(wo) : v(w,t) > M, — %}

forn=1,2,--- p. Then, by (5.21), we have
[An(®)* < C|Br(@0)|(|An-1(1)] = [An(®)]) (5.22)

for t € (tg — R?,tg + R?), where C is a positive constant depending only on N, a and 4. We
add (5.22) for n = 1,2,--- ,p. The right hand side can be majorized with a convergent series
and therefore we obtain

(p = DIA, (1) < C|Br(x0)|?

and

[4(8)] < CV2(p = 1)72[BR ()| (5.23)
for all R € (0,27PR;). We take p = p(/3) so large that C'/2(p — 1)~/ < 3. Thus, by (5.23),
the proof is completed.

Lemma 5.4 Assume that (5.1) and (5.6) hold. There exists a positive number By indepen-
dent of R and p such that, if

Ha: € Bgr(xo) : v(z,t) > M, — %H < Bo|Br(zo)|

fort € (to — R?,to + R?), we have

L,

’U(Z‘,t) S Mv - ﬁ

(5.24)

for (x,t) € Brja(wo) x (to — R? to + R?).
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Proof Let

Ry=7+

R R
5 2_n’ 'I’L—].,2,"'

and &, € C§°(Br,, (x0)) such that

én(z) =1, Vo€ Bg, (%),

0<&(x) <1, |Vé&(x)| < C2"R™Y, Va € Bg, (),

Ly Ly

kn = M, — op+1 - op+n’

n=1,2-.
From (3.9)—(3.11) with Lemma 3.3, it follows that
[ Nl k) e <36 [ (96 Pl - k)Pl
Br, (z0) Br,, (w0)
for t € (to — R?,tp + R?). Using the Sobolev imbedding inequality, we get

[en(vla,t) — k)1 de < €] /

Br,, (%0)

V& 2] (0(z, t) — kn)ﬂ%zx}" (5.25)

Br,, (w0)
for t € (to — R*,to + R?), where v = . Using (5.25), we compute

Ly
op+1

2v v 2un p—2v v

(knt1 = k)| Ania ()] < C[ (557 ) | 22 R 401",
where A, (t) = {z € Bg, (x0) : v(z,t) > k,}. This implies that
[Ans1 (t)] < C22" R | A (t)]”

for t € (to — R?,to + R?) and R € (0,27%’R;). Applying Lemma 2.1, we conclude that if

|41 (t)] < (CR™2v)~ Y/ (v=D)g=2v/(v=1)° (5.26)
then
lim _[A.(8)] = 0. (5.27)
Choose [y > 0 such that
Bo| Br(xo)| = 27+ (CR™2) =1/ (v=Dg=2/ (=17, (5.28)

Therefore, by (5.26)—(5.28), we have that, if |A;(t)] < Bo|Br(xo)|,

Ly

U(IE, t) S Mv — ﬁ

for (z,t) € Brya(z0) X (to — R?,to + R?). Thus the proof is completed.
Lemma 5.5 Assume that (5.1) and (5.6) hold. Then we have

Ly

’U(Z‘,t) S Mv - 2p0+1

Jor (x,t) € Brja(xo) % (to — R2,to + R?) and R € (0, Ry), where po = p(Bo, N, ) and Ry =
272p0R1.
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Proof For py = p(Bo, N, ) and Ry = 272P° Ry, by Lemma 5.3 and Lemma 5.4, we conclude

that
Ly

’U(Z‘,t) S Mv - W

for (z,t) € Brya(z0) X (to — R?,to + R?) and R € (0, Ry). Thus the proof is completed.

Theorem 5.1 Assume that u is a solution of (1.1)—(1.2) in Qr. If (5.1) holds then we
have
u(z,t) < M — dow (5.29)
for (z,t) € Brya(xo) % (to — R, to + R?), where

Ao

8, = min {(4/\)—119(7), (2A)‘119(2"’°‘19(2_p119(/\0)))}. (5.30)

Proof We consider only two cases:
Case 1 (5.6) is true.

By Lemma 4.5, we have

Ly
9po+1
for (z,t) € Bja(xo) x (to — R?,tg + R?) and R € (0, Rz). Using (4.6), (5.19) and (5.32), we

compute

v(z, t) < M, — (5.31)

u(z,t) <M —[p(M,) — o(M, — 2777 Ly)]
< M — [p(M,) — (M, — 2777 10(277 9(27 " \g)))]
<M — 9279271 9(27 1 \)))
<M —[(2A1) 7 9277927 P 9 (27 ) ]w (5.32)

for (x,t) S BR/Q(QT()) X (t() - RQ,tO + RQ)
Case 2 (5.6) is not true.

We have I
u(z,t) < M — 5
for (z,t) € Br(xo) X (tg — R?,to + R?). Using (4.6)—(4.8) and (5.5), we have

) < an () o

for (x,t) € Br(zo) x (to — R%,to + R?). Combining (5.32)—(5.33) with (5.30), we obtain the

conclusion of Theorem 5.1. Thus the proof is completed.

u(z,t) < M — 2_119(

6 Proof of Theorem 1.1

In this section, we shall prove Theorem 1.1.
In fact, if the conclusion of Theorem 1.1 is not true then there exist a point (z,%0) € Qr

and a positive number A such that

lim w(R) = A 6.1
Aim w(R) = A, (6.1)
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where

wR)=M-—m, M =esssupu, m=ess inf u,
Q(R) Q(R)

and Q(R) = Br(zo) x (to — (2R)?, 0 + (2R)?).
By (6.1), there exists a positive number R3 € (0,1) such that Q(R3) C Q(R3) C Qr and

w(R) > A (6.2)
for all R € (0, R3]. By Theorem 4.1, if (4.9) is true then
u(z,t) > m+ hw (6.3)

for (z,t) € Bprja(wo) % (to — R, to + R*) and R € (0, Ry), where §; and Ry are defined in
Theorem 3.1. In addition, if (4.9) is not true then (6.1) holds. By Theorem 5.1, we have

u(z,t) < M — dow (6.4)

for (z,t) € Bprja(wo) % (to — R?,to + R?) and R € (0, Rz), where 63 and Ry are defined in
Theorem 5.1. Combining (6.4) with (6.3), we get

R
— | <
w( 8) < w(R)
for all R € (0, Ry], where § = max{%,l — 61,1 — 82} € (0,1) and Ry = min{ Ry, R2, R3}.
Choosing R = 85—:‘1, we obtain
Ry Ry
i P i
w(sn) = 5”(871—1)
forn =1,2,---. Therefore, we conclude that

w(%) < 6"w(Ry) (6.5)

forn=1,2,---. By (6.5) and (6.1), we have
w(R4) >X0"
forn=1,2,---. Letting n — 400, we obtain

w(Ry) > lim A" = 400,

n—-+4oo

which contradicts u € L (Qr). Thus the proof is completed.
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