Gorenstein-Projective Modules over $\boldsymbol{T}_{m, n}(A)^{*}$

Xiuhua LUO $^{1} \quad \mathrm{Pu} \mathrm{ZHANG}^{2}$

Abstract

A new class of Gorenstein algebras $T_{m, n}(A)$ is introduced, their module categories are described, and all the Gorenstein-projective $T_{m, n}(A)$-modules are explicitly determined.

Keywords Gorenstein algebra, Gorenstein-projective module 2000 MR Subject Classification 17B40, 17B50

1 Introduction

Throughout all algebras A are Artinian, and all modules are finitely generated. Let A-mod be the category of left A-modules. An A-module M is Gorenstein-projective, if there is an exact sequence $\cdots \longrightarrow P_{-1} \longrightarrow P_{0} \xrightarrow{d_{0}} P_{1} \longrightarrow \cdots$ of projective modules, which stays exact under $\operatorname{Hom}_{A}(-, A)$, and such that $M \cong \operatorname{Ker} d_{0}$. This kind of modules is an important ingredient in the Gorenstein homological algebras and in the representation theory of algebras (see, e.g., [1, $5,7-9]$); it plays a central role in the Tate cohomology of algebras (see e.g. [3]), and is widely used such as in derived categories and singularity theory (see e.g. [4, 6, 7]).

Gorenstein-projective modules are especially important to the Gorenstein algebras (see e.g. [5]). An algebra A is Gorenstein if inj. $\operatorname{dim}{ }_{A} A<\infty$ and inj.dim $A_{A}<\infty$. Many important classes of algebras, such as group algebras of finite groups, finite-dimensional Hopf algebras, selfinjective algebras, algebras of finite global dimension, the cluster tilted algebras, are Gorenstein. It is then fundamental to construct all the Gorenstein-projective modules of a given algebra (see e.g. $[10,11])$. In this note, we introduce a new class of Gorenstein algebras $T_{m, n}(A)$, describe the category $T_{m, n}(A)$-mod, and explicitly determine all the Gorenstein-projective $T_{m, n}(A)$ modules.

Many constructions are inductive. Here we use the upper triangular matrix extensions of algebras via bimodules, i.e., the algebra $\Lambda=\left(\begin{array}{cc}A & M \\ 0 & B\end{array}\right)$ with multiplication given by the one of matrices, where M is an A - B-bimodule. An advantage of such an extension is that a Λ-module is identified with a tripe $\binom{X}{Y}_{\phi}$, or $\binom{X}{Y}$ if ϕ is clear, where $X \in A$-mod, $Y \in B$-mod, and

[^0]$\phi: M \otimes_{B} Y \longrightarrow X$ is an A-map, and that a Λ-map $\binom{X}{Y}_{\phi} \longrightarrow\binom{X^{\prime}}{Y^{\prime}}_{\phi^{\prime}}$ is identified with a pair $\binom{f}{g}$, where $f \in \operatorname{Hom}_{A}\left(X, X^{\prime}\right), g \in \operatorname{Hom}_{B}\left(Y, Y^{\prime}\right)$, such that $\phi^{\prime}(\operatorname{Id} \otimes g)=f \phi($ see $[3$, p. 73] $)$.

2 Module Category of $T_{m, n}(A)$

This section is to describe the category $T_{m, n}(A)$-mod.
Let A be an algebra. For an integer $m \geq 1$, denote by $T_{m}(A)$ the upper triangular matrix algebra $\left(\begin{array}{cccc}A & A & \cdots & A \\ 0 & A & \cdots & A \\ \vdots & \vdots & & \vdots \\ 0 & 0 & \cdots & A\end{array}\right)_{m \times m}$. For integers m and n with $1 \leq m \leq n$, let $T_{m, n}(A)$ be the algebra given by the block matrix $\left(\begin{array}{cc}T_{m}(A) & N \\ 0 & A E\end{array}\right)$, where $N=\left(\begin{array}{ccc}A & \cdots & A \\ A & \cdots & A \\ \vdots & & \vdots \\ A & \cdots & A\end{array}\right)_{m \times(n-m)}$ and $A E=$ $\left(\begin{array}{cccc}A & 0 & \cdots & 0 \\ 0 & A & \cdots & 0 \\ \vdots & \vdots & & \vdots \\ 0 & 0 & \cdots & A\end{array}\right)_{(n-m) \times(n-m)} . \quad$ Then $T_{m, n}(A)=\left(\begin{array}{ccccccc}A & A & \cdots & A & A & \cdots & A \\ 0 & A & \cdots & A & A & \cdots & A \\ \vdots & \vdots & & \vdots & \vdots & & \vdots \\ 0 & 0 & \cdots & A & A & \cdots & A \\ 0 & 0 & \cdots & 0 & A & \cdots & 0 \\ \vdots & \vdots & & \vdots & \vdots & & \vdots \\ 0 & 0 & \cdots & 0 & 0 & \cdots & A\end{array}\right)_{n \times n} \quad$ and $T_{m, m}(A)=T_{m}(A)$.

In order to describe $T_{m, n}(A)$-mod, we first recall a description of $T_{m}(A)$-mod from [11]. Define a category $T_{m}(A)$-rep as follows. An object is $\left(\begin{array}{c}X_{m} \\ \vdots \\ \dot{X}_{1}\end{array}\right)_{\left(\phi_{i}\right)}$, where $X_{i} \in A$-mod for all i and $\phi_{i}: X_{i} \longrightarrow X_{i+1}$ are A-maps for $1 \leq i \leq m-1$. A morphism $\left(\begin{array}{c}X_{m} \\ \vdots \\ X_{1}\end{array}\right)_{\left(\phi_{i}\right)} \longrightarrow\left(\begin{array}{c}Y_{m} \\ \vdots \\ \dot{Y}_{1}\end{array}\right)_{\left(\theta_{i}\right)}$ is $\left(\begin{array}{c}f_{m} \\ \vdots \\ f_{1}\end{array}\right)$, where $f_{i}: X_{i} \longrightarrow Y_{i}$ are A-maps for all i, such that the following diagram commutes

Lemma 2.1 (see [11]) (i) $T_{m}(A)$ is Gorenstein if and only if A is Gorenstein.
(ii) There is an equivalence of categories $T_{m}(A)-\bmod \cong T_{m}(A)$-rep.
(iii) If A is Gorenstein, then $\left(\begin{array}{c}X_{m} \\ \vdots \\ \dot{X}_{1}\end{array}\right)_{\left(\phi_{i}\right)}$ is a Gorenstein-projective $T_{m}(A)$-module if and only if X_{i} are Gorenstin-projective A-modules for all $i, \phi_{i}: X_{i} \longrightarrow X_{i+1}$ are monomorphisms and Coker ϕ_{i} are Gorenstin-projective A-modules for $1 \leq i \leq m-1$.
(iv) Let A and B be algebras, M an A - B-bimodule with proj. $\operatorname{dim}{ }_{A} M<\infty$. Then $\Lambda=$ $\left(\begin{array}{ll}A & M \\ 0 & B\end{array}\right)$ is Gorenstein if and only if A and B are Gorenstein and proj. $\operatorname{dim} M_{B}<\infty$.

Now we define a category $T_{m, n}(A)$-rep as follows. An object is $\left(\begin{array}{c}X_{n} \\ \vdots \\ X_{n-m+1} \\ \vdots \\ \dot{X}_{1}\end{array}\right)_{\left(\phi_{i}\right)}$, where
$X_{i} \in A-\bmod$ for all $i, \quad \phi_{i}: X_{i} \longrightarrow X_{n-m+1} \quad(1 \leq i \leq n-m)$, and $\phi_{j}: X_{j} \longrightarrow X_{j+1}$ $(n-m+1 \leq j \leq n-1)$ are A-maps. A morphism $\left(\begin{array}{c}X_{n} \\ \vdots \\ X_{n-m+1} \\ \vdots \\ \dot{X}_{1}\end{array}\right) \xrightarrow[\left(\phi_{i}\right)]{\longrightarrow}\left(\begin{array}{c}Y_{n} \\ \vdots \\ Y_{n-m+1} \\ \vdots \\ \dot{Y}_{1}\end{array}\right)$
is $\left(\begin{array}{c}f_{n} \\ \vdots \\ f_{n-m+1} \\ \vdots \\ f_{1}\end{array}\right)$, where $f_{i}: X_{i} \longrightarrow Y_{i}$ are A-maps for all i, such that the following diagram commutes for $1 \leq i \leq n-m$

The main result of this section is as follows.
Theorem 2.1 (i) $T_{m, n}(A)$ is a Gorenstein algebra if and only if A is a Gorenstein algebra.
(ii) There is an equivalence of categories $T_{m, n}(A)-\bmod \cong T_{m, n}(A)$-rep.

Proof (i) Use induction on n. If $n=m$, then the assertion follows from Lemma 2.1(i). Assume that the assertion is true for $n=m+t$ with $t \geq 0$. We prove that the assertion is true for $n=m+t+1$. Put $P=\left(\begin{array}{c}A \\ \vdots \\ A \\ 0 \\ \vdots \\ \dot{0}\end{array}\right)$. Then P has a natural $T_{m, n-1}(A)-A$-bimodule structure such that $T_{m, n}(A)=\left(\begin{array}{cc}T_{m, n-1}(A) & P \\ 0\end{array}\right)$. Since P is projective as a left $T_{m, n-1}(A)$-module and as a right A-module, the assertion follows directly from Lemma 2.1(iv) and the inductive hypothesis.
(ii) Use induction on n. The assertion for $n=m$ follows from Lemma 2.1(ii). Assume that the assertion holds for $n=m+t$ with $t \geq 0$. We prove that the assertion holds for $n=m+t+1$.

Let $T_{m, n}(A)=\left(\begin{array}{c}T_{m, n-1}(A) \\ 0 \\ 0\end{array}\right)$. Then a $T_{m, n}(A)$-module X is identified with $\binom{X^{\prime}}{X_{1}}_{\phi}$, where $X^{\prime} \in T_{m, n-1}$-mod, $X_{1} \in A$-mod, and $\phi: P \otimes_{A} X_{1} \longrightarrow X^{\prime}$ is a $T_{m, n-1}(A)$-map. Using the inductive hypothesis on $T_{m, n-1}$-mod, we have $X^{\prime}=\left(\begin{array}{c}X_{n} \\ \vdots \\ X_{n-m+1} \\ \vdots \\ \dot{X}_{2}\end{array}\right)_{\left(\phi_{i}, i \geq 2\right)}$, where $\phi_{i}: X_{i} \longrightarrow$ $X_{n-m+1}(i=2, \cdots, n-m)$ and $\phi_{j}: X_{j} \longrightarrow X_{j+1} \quad(j=n-m+1, \cdots, n-1)$ are A-maps. Since P is a projective $T_{m, n-1}(A)$-module, all A-maps attached to P between A are identities. It follows that all maps attached to $P \otimes_{A} X_{1}=\left(\begin{array}{c}X_{1} \\ \vdots \\ X_{1} \\ 0 \\ \vdots \\ 0\end{array}\right)$ between X_{1} are also identities. Thus
$\phi=\left(\begin{array}{c}h_{n} \\ \vdots \\ h_{n-m+1} \\ 0 \\ \vdots \\ 0\end{array}\right)$, where $h_{i}: X_{1} \longrightarrow X_{i}$ are A-maps for $n-m+1 \leq i \leq n$, such that the following diagram

commutes. Put $\phi_{1}=h_{n-m+1}$. Then we get

$$
\begin{equation*}
h_{n-m+1}=\phi_{1}, \quad h_{n-m+2}=\phi_{n-m+1} \phi_{1}, \quad \cdots, \quad h_{n}=\phi_{n-1} \cdots \phi_{n-m+1} \phi_{1} \tag{2.1}
\end{equation*}
$$

Thus ϕ is uniquely determined by $\phi_{i}(1 \leq i \leq n-1)$. And hence all $h_{i} \quad(n-m+2 \leq i \leq n)$ can be omitted. So X is expressed as $\left(\begin{array}{c}X_{n} \\ \vdots \\ X_{n-m+1} \\ \vdots \\ X_{1}\end{array}\right)_{\left(\phi_{i}\right)}$. This completes the proof.

3 Gorenstein-Projective $T_{m, n}(A)$-Modules

In this section, we explicitly describe Gorenstein-projective $T_{m, n}(A)$-modules.
Lemma 3.1 (see [11]) Let $\Lambda=\left(\begin{array}{cc}A & M \\ 0 & B\end{array}\right)$ be a Gorenstein algebra. If ${ }_{A} M$ and M_{B} are projective, then $\binom{X}{Y}_{\phi}$ is a Gorenstein-projective Λ-module if and only if $\phi: M \otimes_{B} Y \longrightarrow X$ is a monomorphism, X and Coker ϕ are Gorenstein-projective A-modules, and ${ }_{B} Y$ is a Gorensteinprojective B-module.

In what follows, we identify a $T_{m, n}(A)$-module with an object in $T_{m, n}(A)$-rep. So, a $T_{m, n}(A)$ module is written as $\left(\begin{array}{c}X_{n} \\ \vdots \\ X_{n-m+1} \\ \vdots \\ \dot{X}_{1}\end{array}\right)_{\left(\phi_{i}\right)}$, where $\phi_{i}: X_{i} \longrightarrow X_{n-m+1}(1 \leq i \leq n-m)$ and $\phi_{j}: X_{j} \longrightarrow X_{j+1}(n-m+1 \leq j \leq n-1)$ are A-maps. The main result of this section is as follows.

Theorem 3.1 Let A be a Gorenstein algebra. Then $X=\left(\begin{array}{c}X_{n} \\ \vdots \\ X_{n-m+1} \\ \vdots \\ X_{1}\end{array}\right)_{\left(\phi_{i}\right)}$ is a Gorensteinprojective $T_{m, n}(A)$-module if and only if the following conditions are satisfied:
(1) All $\phi_{i}(1 \leq i \leq n-1)$ are monomorphisms;
(2) All $X_{i}(1 \leq i \leq n)$ and all Coker $\phi_{i}(1 \leq i \leq n-1)$ are Gorenstein-projective A-modules;
(3) For $1 \leq k \leq n-m$, we have $\operatorname{Im} \phi_{k}+\cdots+\operatorname{Im} \phi_{n-m}=\operatorname{Im} \phi_{k} \oplus \cdots \oplus \operatorname{Im} \phi_{n-m}$, and $X_{n-m+1} /\left(\operatorname{Im} \phi_{k}+\cdots+\operatorname{Im} \phi_{n-m}\right)$ are Gorenstein-projective A-modules.

Proof Use induction on n. If $n=m$, then $T_{m, n}(A)=T_{m}(A)$ and the assertion follows from Lemma 2.1(iii) (in this case condition (3) vanishes). Assume that the assertion holds for $n=m+t$ with $t \geq 0$. We will prove that the assertion holds for $n=m+t+1$.

Write $T_{m, n}(A)$ as $T_{m, n}(A)=\binom{T_{m, n-1}(A)}{0}$, where P is given as in the proof of Theorem 2.1(i). Then P is a projective right A-module and projective left $T_{m, n-1}(A)$-module. In order to apply Lemma 3.1, we write $X=\binom{X^{\prime}}{X_{1}}_{\phi}$, where $X^{\prime}=\left(\begin{array}{c}X_{n} \\ \vdots \\ X_{n-m+1} \\ \vdots \\ \dot{X}_{2}\end{array}\right)_{\left(\phi_{i}, i \geq 2\right)} \in T_{m, n-1}(A)$-mod, and $\phi=\left(\begin{array}{c}h_{n} \\ \vdots \\ h_{n-m+1} \\ 0 \\ \vdots \\ 0\end{array}\right): P \otimes_{A} X_{1}=\left(\begin{array}{c}X_{1} \\ \vdots \\ X_{1} \\ 0 \\ \vdots \\ 0\end{array}\right) \longrightarrow\left(\begin{array}{c}X_{n} \\ \vdots \\ X_{n}-m+1 \\ X_{n-m} \\ \vdots \\ X_{2}\end{array}\right)_{\left(\phi_{i}, i \geq 2\right)} \quad$ is a $T_{m, n-1}(A)$-map given by (2.1).

Note that if $n=m+1$ then X_{2}, \cdots, X_{n-m} vanish. However, the following proof also works in this case. Thus Coker $\phi=\left(\begin{array}{c}\text { Coker } h_{n} \\ \vdots \\ \text { Coker } h_{n-m+1} \\ X_{n-m} \\ \vdots \\ X_{2}\end{array}\right)_{\left(f_{i}, i \geq 2\right)}$, where $f_{i}: X_{i} \longrightarrow$ Coker h_{n-m+1} is the composition of $\phi_{i}: X_{i} \longrightarrow X_{n-m+1}$ and the canonical A-map $\pi: X_{n-m+1} \longrightarrow$ Coker ϕ_{1} for each $2 \leq i \leq n-m, f_{j}: \operatorname{Coker} h_{j} \longrightarrow$ Coker h_{j+1} are A-maps induced by the following commutative diagrams for $n-m+1 \leq j \leq n-1$

$$
\begin{align*}
& X_{1} \xrightarrow{=} X_{1} \tag{*}\\
& \downarrow_{h_{j}}^{h_{j}} \downarrow_{h_{j+1}} \\
& X_{j} \xrightarrow{\phi_{j}} X_{j+1}
\end{align*}
$$

By Lemma 3.1, X is a Gorenstein-projective $T_{m, n}(A)$-module if and only if ϕ is a $T_{m, n-1}(A)$ monomorphism, X_{1} is a Gorenstein-projective A-module, X^{\prime} and Coker ϕ are Gorensteinprojective $T_{m, n-1}(A)$-modules. Thus by the inductive hypothesis on X^{\prime} we know that X is a Gorenstein-projective $T_{m, n}(A)$-module if and only if the following conditions are satisfied:
(i) ϕ is a $T_{m, n-1}(A)$-monomorphism;
(ii) All ϕ_{i} 's are monomorphisms for $i \geq 2$;
(iii) All X_{i} 's are Gorenstein-projective A-modules;
(iv) All Coker ϕ_{i} 's are Gorenstein-projective A-modules for $i \geq 2$;
(v) For $2 \leq k \leq n-m$, we have $\operatorname{Im} \phi_{k}+\cdots+\operatorname{Im} \phi_{n-m}=\operatorname{Im} \phi_{k} \oplus \cdots \oplus \operatorname{Im} \phi_{n-m}$, and $X_{n-m+1} /\left(\operatorname{Im} \phi_{k}+\cdots+\operatorname{Im} \phi_{n-m}\right)$ are Gorenstein-projective A-modules;
(vi) Coker ϕ is a Gorenstein-projective $T_{m, n-1}(A)$-module.

So, what we need to do now is to prove that the conditions (i)-(vi) are equivalent to the conditions (1)-(3).

First, we prove that conditions (i)-(vi) imply conditions (1)-(3). By (2.1) we see that (i) and (ii) imply (1). Since Coker ϕ is a Gorenstein-projective $T_{m, n-1}(A)$-module, it follows from the inductive hypothesis on Coker ϕ that Coker ϕ_{1} is a Gorenstein-projective A-module, and hence (2) holds by (iii) and (iv). It remains to prove (3). Since Coker ϕ is a Gorenstein-projective $T_{m, n-1}(A)$-module, by the inductive hypothesis on Coker ϕ we know that f_{i} are monic for $2 \leq i \leq n-m$, and $\operatorname{Im} f_{2}+\cdots+\operatorname{Im} f_{n-m}=\operatorname{Im} f_{2} \oplus \cdots \oplus \operatorname{Im} f_{n-m}$. By construction the fact that f_{i} is monic means $\operatorname{Im} \phi_{i} \cap \operatorname{Im} \phi_{1}=0$; while $\operatorname{Im} f_{2}+\cdots+\operatorname{Im} f_{n-m}=\operatorname{Im} f_{2} \oplus \cdots \oplus \operatorname{Im} f_{n-m}$ means that if $x_{2}+\cdots+x_{n-m} \in \operatorname{Im} \phi_{1}$ with $x_{i} \in \operatorname{Im} \phi_{i}(2 \leq i \leq n-m)$, then $x_{i} \in \operatorname{Im} \phi_{1}(2 \leq i \leq n-m)$. Now assume that $x_{1}+x_{2}+\cdots+x_{n-m}=0$ with $x_{i} \in \operatorname{Im} \phi_{i}(1 \leq i \leq n-m)$. This means $x_{2}+\cdots+x_{n-m} \in \operatorname{Im} \phi_{1}$. Then by the above argument we have $x_{i} \in \operatorname{Im} \phi_{1}(2 \leq i \leq n-m)$. Thus $x_{i} \in \operatorname{Im} \phi_{i} \cap \operatorname{Im} \phi_{1}=0(2 \leq i \leq n-m)$. This proves $\operatorname{Im} \phi_{1}+\cdots+\operatorname{Im} \phi_{n-m}=\operatorname{Im} \phi_{1} \oplus$ $\cdots \oplus \operatorname{Im} \phi_{n-m}$. Since Coker ϕ is a Gorenstein-projective $T_{m, n-1}(A)$-module, it follows from the inductive hypothesis on Coker ϕ that

$$
\begin{aligned}
\text { Coker } h_{n-m+1} /\left(\operatorname{Im} f_{2}+\cdots+\operatorname{Im} f_{n-m}\right) & =\operatorname{Coker} \phi_{1} /\left(\operatorname{Im} f_{2}+\cdots+\operatorname{Im} f_{n-m}\right) \\
& =\left(X_{n-m+1} / \operatorname{Im} \phi_{1}\right) /\left(\left(\operatorname{Im} \phi_{1}+\cdots+\operatorname{Im} \phi_{n-m}\right) / \operatorname{Im} \phi_{1}\right) \\
& \cong X_{n-m+1} /\left(\operatorname{Im} \phi_{1}+\cdots+\operatorname{Im} \phi_{n-m}\right)
\end{aligned}
$$

is a Gorenstein-projective A-module. Now (3) follows from (v).
Conversely, we need to prove that conditions (1)-(3) imply conditions (i)-(vi). From (2.1) we see that (i) and (ii) follow from (1), and (iii)-(v) directly follow from (2) and (3). It remains to prove (vi). By (3) we have $\operatorname{Im} \phi_{i} \cap \operatorname{Im} \phi_{1}=0$ for $2 \leq i \leq n-m$. Since ϕ_{i} is monic for $2 \leq i \leq n-m$, it follows from the construction that all f_{i} are monic for $2 \leq i \leq n-m$. From (*) we get the following commutative diagram for $n-m+1 \leq j \leq n-1$

Hence by the Snake's Lemma we get an exact sequence

$$
0 \longrightarrow \text { Coker } h_{j} \xrightarrow{f_{j}} \text { Coker } h_{j+1} \longrightarrow \text { Coker } \phi_{j} \longrightarrow 0
$$

So f_{j} is monic for $n-m+1 \leq j \leq n-1$. Since $h_{n-m+1}=\phi_{1}$, it follows from the exact sequence above and the Gorensteinness of Coker ϕ_{j} that all Coker h_{j} and Coker f_{j} are Gorenstein-projective modules for $n-m+1 \leq j \leq n-1$. On the other hand, for $2 \leq i \leq n-m$, we have

$$
\text { Coker } \begin{aligned}
f_{i} & =\text { Coker } h_{n-m+1} / \operatorname{Im} f_{i}=\operatorname{Coker} \phi_{1} / \operatorname{Im} f_{i} \\
& =\left(X_{n-m+1} / \operatorname{Im} \phi_{1}\right) /\left(\left(\operatorname{Im} \phi_{i}+\operatorname{Im} \phi_{1}\right) / \operatorname{Im} \phi_{1}\right) \\
& =X_{n-m+1} /\left(\operatorname{Im} \phi_{i}+\operatorname{Im} \phi_{1}\right)
\end{aligned}
$$

and the exact sequence

$$
0 \longrightarrow\left(\bigoplus_{1 \leq j \leq n-m} \operatorname{Im} \phi_{j}\right) /\left(\operatorname{Im} \phi_{i}+\operatorname{Im} \phi_{1}\right) \longrightarrow \operatorname{Coker} f_{i} \longrightarrow X_{n-m+1} /\left(\bigoplus_{1 \leq j \leq n-m} \operatorname{Im} \phi_{j}\right) \longrightarrow 0
$$

By (3) we know that $X_{n-m+1} /\left(\underset{1 \leq j \leq n-m}{\bigoplus} \operatorname{Im} \phi_{j}\right)$ is a Gorenstein-projective A-module. While

$$
\left(\bigoplus_{1 \leq j \leq n-m} \operatorname{Im} \phi_{j}\right) /\left(\operatorname{Im} \phi_{i}+\operatorname{Im} \phi_{1}\right)=\left(\bigoplus_{1 \leq j \leq n-m} \operatorname{Im} \phi_{j}\right) /\left(\operatorname{Im} \phi_{i} \oplus \operatorname{Im} \phi_{1}\right)=\bigoplus_{2 \leq t \leq n-m, t \neq i} \operatorname{Im} \phi_{t}
$$

is a Gorenstein-projective A-module, so is Coker f_{i} for $2 \leq i \leq n-m$.
For $2 \leq k \leq n-m$, we still need to prove that $\operatorname{Im} f_{k}+\cdots+\operatorname{Im} f_{n-m}=\operatorname{Im} f_{k} \oplus \cdots \oplus$ $\operatorname{Im} f_{n-m}$, and that Coker $\phi_{1} /\left(\operatorname{Im} f_{k}+\cdots+\operatorname{Im} f_{n-m}\right)$ is a Gorenstein-projective A-module. Since $\operatorname{Im} f_{k}=\left(\operatorname{Im} \phi_{k}+\operatorname{Im} \phi_{1}\right) / \operatorname{Im} \phi_{1}(2 \leq k \leq n-m)$, it follows from the direct sum $\operatorname{Im} \phi_{1}+\cdots+$ $\operatorname{Im} \phi_{n-m}=\operatorname{Im} \phi_{1} \oplus \cdots \oplus \operatorname{Im} \phi_{n-m}$ in (3) that $\operatorname{Im} f_{k}+\cdots+\operatorname{Im} f_{n-m}=\operatorname{Im} f_{k} \oplus \cdots \oplus \operatorname{Im} f_{n-m}$ for $2 \leq k \leq n-m$. Note that Coker $\phi_{1} /\left(\operatorname{Im} f_{k}+\cdots+\operatorname{Im} f_{n-m}\right)=X_{n-m+1} /\left(\operatorname{Im} \phi_{1} \oplus\right.$ $\left.\bigoplus_{k \leq i \leq n-m} \operatorname{Im} \phi_{i}\right)$. Since $\left(\bigoplus_{1 \leq i \leq n-m} \operatorname{Im} \phi_{i}\right) /\left(\operatorname{Im} \phi_{1} \oplus \bigoplus_{k \leq i \leq n-m} \operatorname{Im} \phi_{i}\right)=\operatorname{Im} \phi_{2} \oplus \cdots \oplus \operatorname{Im} \phi_{k-1}$ and $X_{n-m+1} /\left(\bigoplus_{1 \leq i \leq n-m} \operatorname{Im} \phi_{i}\right)$ are Gorenstein-projective A-modules, it follows from the exact sequence

$$
\begin{aligned}
0 & \longrightarrow\left(\bigoplus_{1 \leq i \leq n-m} \operatorname{Im} \phi_{i}\right) /\left(\operatorname{Im} \phi_{1} \oplus \bigoplus_{k \leq i \leq n-m} \operatorname{Im} \phi_{i}\right) \longrightarrow X_{n-m+1} /\left(\operatorname{Im} \phi_{1} \oplus \bigoplus_{k \leq i \leq n-m} \operatorname{Im} \phi_{i}\right) \\
& \longrightarrow X_{n-m+1} /\left(\bigoplus_{1 \leq i \leq n-m} \operatorname{Im} \phi_{i}\right) \longrightarrow 0
\end{aligned}
$$

that Coker $\phi_{1} /\left(\operatorname{Im} f_{k}+\cdots+\operatorname{Im} f_{n-m}\right)$ is a Gorenstein-projective A-module for $2 \leq k \leq n-m$. Hence Coker ϕ is a Gorenstein-projective $T_{m, n-1}(A)$-module by the inductive hypothesis on Coker ϕ. This proves (vi) and the proof is completed.

Example 3.1 Let A be a Gorenstein algebra.
(i) By Theorem 3.1 a $T_{m, m+1}(A)$-module $X_{\left(\phi_{i}\right)}$ is Gorenstein-projective if and only if $\phi_{i}(1 \leq i \leq m)$ are monic, $X_{i}(1 \leq i \leq m+1)$ and Coker $\phi_{i}(1 \leq i \leq m)$ are Gorensteinprojective A-modules.
(ii) Note that $\left(\begin{array}{c}A \\ A \\ A \\ A\end{array}\right)_{\text {(Id) }}$ is not a Gorenstein-projective $T_{2,4}(A)$-module (in fact, $A+A \neq$ $A \oplus A)$. But $\left(\begin{array}{c}A \oplus A \\ A \oplus A \\ A \\ A\end{array}\right)_{\left(\binom{1}{0},\binom{0}{1}, \mathrm{Id}\right)}$ is a Gorenstein-projective $T_{2,4}(A)$-module.

References

[1] Auslander, M. and Bridger, M., Stable Module Theory, Mem. Amer. Math. Soc., Vol. 94, A. M. S., Providence, RI, 1969.
[2] Auslander, M., Reiten, I. and Smalø, S. O., Representation Theory of Artin Algebras, Cambridge Studies in Adv. Math., Vol. 36, Cambridge Univ. Press, Cambridge, 1995.
[3] Avramov, L. L. and Martsinkovsky, A. Absolute, relative, and tate cohomology of modules of finite gorenstein dimension, Proc. London Math. Soc., 85(3), 2002, 393-440.
[4] Buchweitz, R.-O., Greuel, G.-M. and Schreyer, F.-O., Cohen-Macaulay modules on hypersurface singularities II, Invent. Math., 88(1), 1987, 165-182.
[5] Enochs, E. E. and Jenda, O. M. G., Relative Homological Algebra, De Gruyter Exp. Math., Vol. 30, Walter de Gruyter Co., Berlin, 2000.
[6] Gao, N. and Zhang, P., Gorenstein derived categories, J. Algebra, 323, 2010, 2041-2057.
[7] Happel, D., On Gorenstein algebras, Representation Theory of Finite Groups and Finite-dimensional Algebras, Prog. Math., Vol. 95, Birkhüser, Basel, 1991, 389-404.
[8] Holm, H., Gorenstein homological dimensions, J. Pure Appl. Algebra, 189(1-3), 2004, 167-193.
[9] Li, Z. W. and Zhang, P., Gorenstein algebras of finite Cohen-Macaulay type, Adv. Math., 223, 2010, 728-734.
[10] Li, Z. W. and Zhang, P., A construction of Gorenstein-projective modules, J. Algebra, 323, 2010, 18021812.
[11] Xiong, B. L. and Zhang, P., Cohen-Macaulay modules over triangular matrix Artin algebras, preprint.

[^0]: Manuscript received March 2, 2010. Published online January 25, 2011.
 ${ }^{1}$ Department of Mathematics, Shanghai Jiaotong University, Shanghai 200240, China.
 E-mail: X.H.Luo@sjtu.edu.cn
 ${ }^{2}$ Corresponding author. Department of Mathematics, Shanghai Jiaotong University, Shanghai 200240, China. E-mail: pzhang@situ.edu.cn
 *Project supported by the National Natural Science Foundation of China (No. 10725104) and the Science and Technology Commission of Shanghai Municipality (No. 09XD1402500).

