PERIODIC BOUNDARY VALUE PROBLEMS FOR IMPULSIVE INTEGRO-DIFFERENTIAL EQUATIONS OF MIXED TYPE IN BANACH SPACES***

LIU XINZHI* GUO DAJUN**

Abstract

This paper investigates periodic boundary value problem for first order nonlinear impulsive integro-differential equations of mixed type in a Banach space. By establishing a comparison result, criteria on the existence of maximal and minimal solutions are obtained.

Keywords Periodic boundary value problem, Impulsive integro-differential equation, Ordered Banach space, Maximal solution, Minimal solution

1991 MR Subject Classification 34G20, 45J05 **Chinese Library Classification** 0175.15, 0175.6

§1. Introduction

In this paper, we investigate the periodic boundary value problem (PBVP) for first order nonlinear impulsive integro-differential equations of mixed type in a Banach space E:

$$\begin{cases} x' = f(t, x, Tx, Sx), & \forall \ 0 \le t \le 2\pi, \quad t \ne t_k \quad (k = 1, 2, \cdots, m), \\ \triangle x|_{t=t_k} = I_k(x(t_k)) \quad (k = 1, 2, \cdots, m), \\ x(0) = x(2\pi), \end{cases}$$
(1.1)

where $f \in C[J \times E \times E \times E, E]$, $J = [0, 2\pi]$, $I_k \in C[E, E]$ $(k = 1, 2, \cdots, m)$,

$$(Tx)(t) = \int_0^t K(t,s)x(s)ds, \quad (Sx)(t) = \int_0^{2\pi} H(t,s)x(s)ds, \tag{1.2}$$

 $K \in C[D, R_+], D = \{(t, s) \in J \times J : t \geq s\}, H \in C[J \times J, R_+], R_+$ denotes the set of all nonnegative numbers, and $0 < t_1 < \cdots < t_k < \cdots < t_m < 2\pi$. $\Delta x|_{t=t_k}$ represents the jump of x(t) at $t = t_k$, i.e., $\Delta x|_{t=t_k} = x(t_k^+) - x(t_k^-)$, where $x(t_k^+)$ and $x(t_k^-)$ denote the right and left limits of x(t) at $t = t_k$, respectively. A special case of PBVP (1.1) has been considered in Euclidean space recently in [2], where by developing a comparison result the monotonicity condition normally imposed on the right-hand side relative to the integral term is removed successfully and the existence of extremal solutions is established.

In Section 2 we establish a comparison result, and then we state and prove the main theorem in Section 3. Finally, to illustrate our result, Section 4 offers two examples in both finite and infinite dimensional spaces.

Manuscript received January 5, 1996. Revised April 8, 1996.

^{*}Department of Applied Mathematics, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1.

^{**}Department of Mathematics, Shandong University, Jinan 250100, China.

^{* * *}Project supported by the NSERC Canada.

\S **2.** Comparison Result

Let $PC[J, E] = \{x : x \text{ is a map from } J \text{ into } E \text{ such that } x(t) \text{ is continuous at } t \neq t_k, \text{ and left continuous at } t = t_k, \text{ and the right limit } x(t_k^+) \text{ exists for } k = 1, 2, \cdots, m\}.$ Evidently, PC[J, E] is a Banach space with norm $||x||_{PC} = \sup_{t \in J} ||x(t)||$. Let $J' = J \setminus \{t_1, \cdots, t_m\}$. $x \in PC[J, E] \cap C^1[J', E]$ is called a solution of PBVP (1.1) if it satisfies (1.1).

Let *E* be partially ordered by a cone *P* of *E*, i.e., $x \leq y$ if and only if $y - x \in P$. *P* is said to be normal if there exists a positive constant *N* such that $\theta \leq x \leq y$ implies $||x|| \leq N||y||$, where θ denotes the zero element of *E*, and *P* is said to be regular if $x_1 \leq x_2 \leq \cdots \leq x_n \leq \cdots \leq y$ implies $||x_n - x|| \to 0$ as $n \to \infty$ for some $x \in E$. It is well known that the regularity of *P* implies the normality of *P* (see [1, Theorem 1.2.1]). Let $Q = \{x \in PC[J, E] : x(t) \geq \theta$ for $t \in J\}$. Then *Q* is a cone in space PC[J, E], and so, PC[J, E] is partial ordered by $Q : u \leq v$ if and only if $v - u \in Q$, i.e., $u(t) \leq v(t)$ for $t \in J$.

In the following, let $J_0 = [0, t_1]$, $J_1 = (t_1, t_2], \dots, J_{m-1} = (t_{m-1}, t_m]$, $J_m = (t_m, 2\pi]$, $\delta = \max\{t_k - t_{k-1} : k = 1, 2, \dots, m+1\}$ (where $t_0 = 0, t_{m+1} = 2\pi$) and $k_0 = \max\{K(t, s) : (t, s) \in D\}$. $h_0 = \max\{H(t, s) : (t, s) \in J \times J\}$.

Lemma 2.1 (Comparison result). Assume that $p \in PC[J, E] \cap C^1[J', E]$ satisfies

$$\begin{cases} p' \leq -Mp - NTp - N_1 Sp, & \forall t \in J, \quad t \neq t_k \quad (k = 1, 2, \cdots, m), \\ \triangle p|_{t=t_k} \leq -L_k p(t_k) & (k = 1, 2, \cdots, m), \\ p(0) \leq p(2\pi), \end{cases}$$
(2.1)

where constants M > 0, $N \ge 0$, $N_1 \ge 0$, $0 \le L_k \le 1$ $(k = 1, 2, \dots, m)$, and

$$M^{-1}(Nk_0 + N_1h_0)(e^{4\pi M} - 1)\delta \le \frac{\left\{\prod_{k=1}^m (1 - L_k)\right\}^2}{1 + \sum_{n=1}^m \prod_{k=n}^m (1 - L_k)}.$$
(2.2)

Then $p(t) \leq \theta$ for $t \in J$.

Proof. For any $g \in P^*$ (P^* denotes the dual cone of P (see [1])), let u(t) = g(p(t)). Then $u \in PC[J, R] \cap C^1[J', R]$ and

$$u'(t) = g(p'(t)), \quad g((Tp)(t)) = (Tu)(t), \quad g((Sp)(t)) = (Su)(t),$$

where R denotes the set of all real numbers. By (2.1), we have

$$\begin{cases} u' \leq -Mu - NTu - N_1 Su, & \forall t \in J, \quad t \neq t_k \quad (k = 1, 2, \cdots, m), \\ \triangle u|_{t=t_k} \leq -L_k u(t_k) & (k = 1, 2, \cdots, m), \\ u(0) \leq u(2\pi). \end{cases}$$
(2.3)

Let $v(t) = u(t)e^{Mt}$, $\forall t \in J$. Then $v \in PC[J, R] \cap C^1[J', R]$ and (2.3) implies

$$\begin{cases} v'(t) \leq -N \int_{0}^{t} k^{*}(t,s)v(s)ds - N_{1} \int_{0}^{2\pi} h^{*}(t,s)v(s)ds, \\ \forall t \in J, \quad t \neq t_{k} \quad (k = 1, 2, \cdots, m), \\ \triangle v|_{t=t_{k}} \leq -L_{k}v(t_{k}) \quad (k = 1, 2, \cdots, m), \\ v(0) \leq v(2\pi)e^{-2\pi M}, \end{cases}$$

$$(2.4)$$

where $k^*(t,s) = K(t,s)e^{M(t-s)}$, $h^*(t,s) = H(t,s)e^{M(t-s)}$. We now prove

$$v(t) \le 0, \quad \forall t \in J. \tag{2.5}$$

Suppose that (2.5) not true. Then, there are two cases: (a) there exists $t_1^* \in J$ such that $v(t_1^*) > 0$, and $v(t) \ge 0$ for $t \in J$; (b) there exist $t_1^*, t_2^* \in J$ such that $v(t_1^*) > 0$ and $v(t_2^*) < 0$.

If case (a) holds, then (2.4) implies $v'(t) \leq 0$, $\forall t \in J$, $t \neq t_k$ $(k = 1, 2, \dots, m)$, and

$$v(t_k^+) = v(t_k) + \Delta v|_{t=t_k} \le (1 - L_k)v(t_k) \le v(t_k) \quad (k = 1, 2, \cdots, m).$$

This means that v(t) is nonincreasing in J, and therefore

$$v(0) \ge v(t_1^*) > 0, \tag{2.6}$$

$$v(0) \ge v(2\pi). \tag{2.7}$$

It follows from (2.7) and the last inequality in (2.4) that $v(0) \ge v(0)e^{2\pi M}$, which contradicts (2.6).

In case (b), let $\inf_{t \in J} v(t) = -\lambda$. Then $\lambda > 0$, and there exists $t_i < t_0^* \leq t_{i+1}$ for some i such that $v(t_0^*) = -\lambda$ or $v(t_i^+) = -\lambda$. We may assume that $v(t_0^*) = -\lambda$ since, in case of $v(t_i^+) = -\lambda$, the proof is similar. From (2.4), it is easy to see that

$$v'(t) \leq \lambda N k_0 \int_0^t e^{M(t-s)} ds + \lambda N_1 h_0 \int_0^{2\pi} e^{M(t-s)} ds$$

$$\leq \lambda M_0, \qquad \forall t \in J, \quad t \neq t_k \quad (k = 1, 2, \cdots, m),$$
(2.8)

where $M_0 = M^{-1}(Nk_0 + N_1h_0)(e^{2\pi M} - 1)$. We have

$$\begin{cases} v(2\pi) - v(t_m^+) = v'(\xi_m)(2\pi - t_m) & (t_m < \xi_m < 2\pi), \\ v(t_m) - v(t_{m-1}^+) = v'(\xi_{m-1})(t_m - t_{m-1}) & (t_{m-1} < \xi_{m-1} < t_m), \\ \dots \\ v(t_{i+2}) - v(t_{i+1}^+) = v'(\xi_{i+1})(t_{i+2} - t_{i+1}) & (t_{i+1} < \xi_{i+1} < t_{i+2}), \\ v(t_{i+1}) - v(t_0^+) = v'(\xi_i)(t_{i+1} - t_0^+) & (t_0^+ < \xi_i < t_{i+1}), \end{cases}$$

$$(2.9)$$

and so, by (2.4) and (2.8),

$$\begin{cases} v(2\pi) - (1 - L_m)v(t_m) \le \lambda M_0 \delta, \\ v(t_m) - (1 - L_{m-1})v(t_{m-1}) \le \lambda M_0 \delta, \\ \dots \\ v(t_{i+2}) - (1 - L_{i+1})v(t_{i+1}) \le \lambda M_0 \delta, \\ v(t_{i+1}) + \lambda \le \lambda M_0 \delta, \end{cases}$$
(2.10)

which implies

$$v(2\pi) \le -\lambda \prod_{k=i+1}^{m} (1 - L_k) + \lambda M_0 \delta \Big\{ 1 + \sum_{n=i+1}^{m} \prod_{k=n}^{m} (1 - L_k) \Big\}.$$
 (2.11)

If $v(2\pi) > 0$, then (2.11) gives

$$M_0\delta > \frac{\prod_{k=i+1}^m (1-L_k)}{1+\sum_{n=i+1}^m \prod_{k=n}^m (1-L_k)} \ge \frac{\prod_{k=1}^m (1-L_k)}{1+\sum_{n=1}^m \prod_{k=n}^m (1-L_k)},$$

which contradicts (2.2). So, we have $v(2\pi) \leq 0$, and by (2.4), $v(0) \leq v(2\pi)e^{-2\pi M} \leq 0$. Hence $0 < t_1^* < 2\pi$. Let $t_j < t_1^* \leq t_{j+1}$ for some j.

We first assume that $t_0^* < t_1^*$. So, $i \leq j$. We have, similar to (2.9),

$$\begin{cases} v(t_1^*) - v(t_j^+) = v'(\xi_j)(t_1^* - t_j) & (t_j < \xi_j < t_1^*), \\ v(t_j) - v(t_{j-1}^+) = v'(\xi_{j-1})(t_j - t_{j-1}) & (t_{j-1} < \xi_{j-1} < t_j), \\ \dots \dots \dots \dots & (t_{i+2}) - v(t_{i+1}^+) = v'(\xi_{i+1})(t_{i+2} - t_{i+1}) & (t_{i+1} < \xi_{i+1} < t_{i+2}), \\ v(t_{i+1}) - v(t_0^*) = v'(\xi_i)(t_{i+1} - t_0^*) & (t_0^* < \xi_i < t_{i+1}), \end{cases}$$

$$(2.12)$$

and so, as in (2.10) and (2.11), we get

$$0 < v(t_1^*) \le -\lambda \prod_{k=i+1}^j (1 - L_k) + \lambda M_0 \delta \Big\{ 1 + \sum_{n=i+1}^j \prod_{k=n}^j (1 - L_k) \Big\},$$
(2.13)

which implies

$$M_0 \delta > \frac{\prod_{k=i+1}^{j} (1-L_k)}{1+\sum_{n=i+1}^{j} \prod_{k=n}^{j} (1-L_k)} = \frac{\prod_{k=i+1}^{m} (1-L_k)}{\prod_{k=j+1}^{m} (1-L_k) + \sum_{n=i+1}^{j} \prod_{k=n}^{m} (1-L_k)}$$
$$\geq \frac{\prod_{k=1}^{m} (1-L_k)}{1+\sum_{n=1}^{m} \prod_{k=n}^{m} (1-L_k)},$$

and this contradicts (2.2).

Next assume that $t_1^* < t_0^*$. So $j \le i$. Similar to (2.12) and (2.13), we have

$$0 < v(t_1^*) \le v(0) \prod_{k=1}^j (1 - L_k) + \lambda M_0 \delta \Big\{ 1 + \sum_{n=1}^j \prod_{k=n}^j (1 - L_k) \Big\},\$$

which implies

$$v(0)\prod_{k=1}^{j}(1-L_k) > -\lambda M_0 \delta \Big\{ 1 + \sum_{n=1}^{j}\prod_{k=n}^{j}(1-L_k) \Big\}.$$
(2.14)

On the other hand, we have, by (2.4),

$$v(0) \le v(2\pi)e^{-2\pi M}.$$
 (2.15)

It follows from (2.11), (2.14) and (2.15) that

$$-\lambda M_0 \delta \Big\{ 1 + \sum_{n=1}^j \prod_{k=n}^j (1 - L_k) \Big\}$$

< $-\lambda e^{-2\pi M} \prod_{k=1}^j (1 - L_k) \prod_{k=i+1}^m (1 - L_k)$
+ $\lambda M_0 \delta e^{-2\pi M} \prod_{k=1}^j (1 - L_k) \Big\{ 1 + \sum_{n=i+1}^m \prod_{k=n}^m (1 - L_k) \Big\},$

or

$$\prod_{k=1}^{j} (1 - L_k) \prod_{k=i+1}^{m} (1 - L_k)$$

< $M_0 \delta e^{2\pi M} \left\{ 1 + \sum_{n=1}^{j} \prod_{k=n}^{j} (1 - L_k) \right\}$
+ $M_0 \delta \prod_{k=1}^{j} (1 - L_k) \left\{ 1 + \sum_{n=i+1}^{m} \prod_{k=n}^{m} (1 - L_k) \right\}$

Hence

$$\begin{split} &\left\{\prod_{k=1}^{m}(1-L_{k})\right\}^{2} \\ &\leq \left[\prod_{k=j+1}^{m}(1-L_{k})\right]\left[\prod_{k=1}^{j}(1-L_{k})\prod_{k=i+1}^{m}(1-L_{k})\right] \\ &< M_{0}\delta e^{2\pi M}\left\{\prod_{k=j+1}^{m}(1-L_{k})+\sum_{n=1}^{j}\prod_{k=n}^{m}(1-L_{k})\right\} \\ &+ M_{0}\delta\prod_{k=1}^{m}(1-L_{k})\left\{1+\sum_{n=i+1}^{m}\prod_{k=n}^{m}(1-L_{k})\right\} \\ &\leq M_{0}\delta e^{2\pi M}\left\{1+\sum_{n=1}^{m}\prod_{k=n}^{m}(1-L_{k})\right\}+M_{0}\delta\left\{1+\sum_{n=1}^{m}\prod_{k=n}^{m}(1-L_{k})\right\} \\ &= M_{0}\delta(e^{2\pi M}+1)\left\{1+\sum_{n=1}^{m}\prod_{k=n}^{m}(1-L_{k})\right\}, \end{split}$$

which contradicts (2.2). The proof is thus complete.

Remark 2.1. Lemma 2.1 develops some ideas in [2] and [3].

Lemma 2.2. Let σ , $\eta \in PC[J, E]$ and M, N, N_1 , L_k $(k = 1, 2, \dots, m)$ be constants with $M \neq 0$. Then $x \in PC[J, E] \cap C^1[J', E]$ is a solution of the PBVP for linear impulsive integro-differential equation

$$\begin{cases} x' + Mx + NTx + N_1 Sx = \sigma(t), & \forall t \in J, \quad t \neq t_k \quad (k = 1, 2, \cdots, m), \\ \triangle x|_{t=t_k} = I_k(\eta(t_k)) - L_k[x(t_k) - \eta(t_k)] & (k = 1, 2, \cdots, m), \\ x(0) = x(2\pi), \end{cases}$$
(2.16)

if and only if $x \in PC[J, E]$ is a solution of the following impulsive integral equation

$$x(t) = e^{-Mt} \left\{ \frac{1}{e^{2\pi M} - 1} \left[\int_{0}^{2\pi} e^{Ms} (\sigma(s) - N(Tx)(s) - N_{1}(Sx)(s)) ds + \sum_{k=1}^{m} e^{Mt_{k}} (I_{k}(\eta(t_{k})) - L_{k}(x(t_{k}) - \eta(t_{k}))) \right] + \int_{0}^{t} e^{Ms} (\sigma(s) - N(Tx)(s) - N_{1}(Sx)(s)) ds + \sum_{0 < t_{k} < t} e^{Mt_{k}} (I_{k}(\eta(t_{k})) - L_{k}(x(t_{k}) - \eta(t_{k}))) \right\}.$$

$$(2.17)$$

Proof. Assume that $x \in PC[J, E] \cap C^1[J', E]$ is a solution of PBVP (2.16). Let $z(t) = x(t)e^{Mt}$. Then $z \in PC[J, E] \cap C^1[J', E]$ and, by (2.16),

$$z'(t) = [\sigma(t) - N(Tx)(t) - N_1(Sx)(t)]e^{Mt}, \ \forall t \in J, \ t \neq t_k \ (k = 1, 2, \cdots, m),$$
(2.18)

$$\Delta z|_{t=t_k} = \{I_k(\eta(t_k)) - L_k[x(t_k) - \eta(t_k)]\}e^{Mt_k} \quad (k = 1, 2, \cdots, m).$$
(2.19)

It is easy to establish the following formula (see [4, Lemma 1])

$$z(t) = z(0) + \int_0^t z'(t)ds + \sum_{0 < t_k < t} [z(t_k^+) - z(t_k)], \quad \forall t \in J.$$
(2.20)

Substituting (2.18) and (2.19) into (2.20), we get

$$x(t)e^{Mt} = x(0) + \int_0^t e^{Ms} [\sigma(s) - N(Tx)(s) - N_1(Sx)(s)] ds + \sum_{0 < t_k < t} e^{Mt_k} [I_k(\eta(t_k)) - L_k(x(t_k) - \eta(t_k))], \quad \forall t \in J.$$
(2.21)

Letting $t = 2\pi$ in (2.21), we find

$$x(2\pi)e^{M2\pi} = x(0) + \int_0^{2\pi} e^{Ms} [\sigma(s) - N(Tx)(s) - N_1(Sx)(s)] ds + \sum_{k=1}^m e^{Mt_k} [I_k(\eta(t_k)) - L_k(x(t_k) - \eta(t_k))].$$
(2.22)

Since $x(0) = x(2\pi)$, (2.22) implies

$$x(0) = \frac{1}{e^{2\pi M} - 1} \bigg\{ \int_0^{2\pi} e^{Ms} [\sigma(s) - N(Tx)(s) - N_1(Sx)(s)] ds + \sum_{k=1}^m e^{Mt_k} [I_k(\eta(t_k)) - L_k(x(t_k) - \eta(t_k))] \bigg\}.$$
(2.23)

Substituting (2.23) into (2.21), we see that x(t) satisfies (2.17).

Conversely, if $x \in PC[J, E]$ is a solution of Equation (2.17), then, it is easy to see by direct differentiations that $x \in C^1[J', E]$ and x satisfies (2.16).

Lemma 2.3. Let constants M > 0, $N \ge 0$, $N_1 \ge 0$, $L_k \ge 0$ $(k = 1, 2, \dots, m)$ and $\sigma, \eta \in PC[J, E]$. If

$$2\pi M^{-1}(Nk_0 + N_1h_0)(2 - e^{-2\pi M}) + \sum_{k=1}^{m} [1 + (e^{2\pi M} - 1)^{-1}e^{Mt_k}]L_k < 1,$$
(2.24)

then Equation (2.17) has a unique solution in PC[J, E].

Proof. Define operator F by

$$(Fx)(t) = e^{-Mt} \left\{ \frac{1}{e^{2\pi M} - 1} \left[\int_0^{2\pi} e^{Ms} (\sigma(s) - N(Tx)(s) - N_1(Sx)(s)) ds + \sum_{k=1}^m e^{Mt_k} (I_k(\eta(t_k)) - L_k(x(t_k) - \eta(t_k))) \right] + \int_0^t e^{Ms} (\sigma(s) - N(Tx)(s) - N_1(Sx)(s)) ds + \sum_{0 < t_k < t} e^{Mt_k} (I_k(\eta(t_k)) - L_k(x(t_k) - \eta(t_k))) \right\}.$$

It is easy to see that F is an operator from PC[J, E] into PC[J, E] and it satisfies

$$||Fx - Fy||_{PC} \le \gamma ||x - y||_{PC}, \quad \forall x, y \in PC[J, E],$$

where

$$\gamma = 2\pi M^{-1} (Nk_0 + N_1 h_0) (2 - e^{-2\pi M}) + \sum_{k=1}^{m} [1 + (e^{2\pi M} - 1)^{-1} e^{Mt_k}] L_k < 1$$

on account of (2.24). Thus, the Banach fixed point theorem implies that F has a unique fixed point in PC[J, E], and the lemma is proved.

Lemma 2.4. Let $x_n \in PC[J, E]$ $(n = 1, 2, 3, \cdots)$. If functions $x_n(t)$ $(n = 1, 2, 3, \cdots)$ are equicontinuous on each J_k $(k = 0, 1, \cdots, m)$ and

$$\lim_{n \to \infty} x_n(t) = x(t), \quad \forall t \in J,$$
(2.25)

then $x \in PC[J, E]$ and

$$\|x_n - x\|_{PC} \to 0 \quad (n \to \infty).$$

$$(2.26)$$

Proof. Let $V = \{x_n : n = 1, 2, 3, \dots\}$ and $V_k = \{x_n|_{J_k} : n = 1, 2, 3, \dots\}$ $(k = 0, 1, \dots, m)$. Since $x_n(t_k^+)$ exist $(n = 1, 2, 3, \dots)$, V_k may be regarded as a subset of space $C[\bar{J}_k, E]$, where \bar{J}_k denotes the closure of J_k , i.e., $\bar{J}_k = [t_k, t_{k+1}]$. Hence, by hypotheses and the Ascoli-Arzela theorem, V_k is relatively compact in $C[\bar{J}_k, E]$ $(k = 0, 1, \dots, m)$. Consequently, V is relatively compact in PC[J, E].

Assume that (2.26) is not true. Then, there exists an $\varepsilon_0 > 0$ and a subsequence $\{x_{n_i}\} \subset \{x_n\}$ such that

$$||x_{n_i} - x||_{PC} \ge \varepsilon_0 \quad (i = 1, 2, 3, \cdots).$$
 (2.27)

Since V is relatively compact in PC[J, E], $\{x_{n_i}\}$ contains a subsequence which converges uniformly on J to some $y \in PC[J, E]$. Without loss of generality, we may assume that $\{x_{n_i}\}$ itself converges uniformly on J to y, i.e.

$$|x_{n_i} - y||_{PC} \to 0 \quad (i \to \infty).$$

$$(2.28)$$

Now, (2.28) and (2.25) imply that y(t) = x(t) for $t \in J$, i.e. y = x, and (2.28) becomes

$$||x_{n_i} - x||_{PC} \to 0 \quad (i \to \infty).$$
 (2.29)

Evidently, (2.29) contradicts (2.27), and therefore, (2.26) holds.

§3. Main Theorem

We shall state and prove our main theorem in this section. For convenience let us list some conditions for later use.

(H₁) There exist
$$u_0, v_0 \in PC[J, E] \cap C^1[J', E]$$
 satisfying $u_0(t) \leq v_0(t) \ (\forall t \in J)$ and

$$\begin{cases}
u'_0 \leq f(t, u_0, Tu_0, Su_0), & \forall t \in J, \ t \neq t_k \ (k = 1, 2, \cdots, m), \\
\Delta u_0|_{t=t_k} \leq I_k(u_0(t_k)) & (k = 1, 2, \cdots, m), \\
u_0(0) \leq u_0(2\pi),
\end{cases}$$

$$\begin{cases}
v'_0 \geq f(t, v_0, Tv_0, Sv_0), & \forall t \in J, \ t \neq t_k \ (k = 1, 2, \cdots, m), \\
\Delta v_0|_{t=t_k} \geq I_k(v_0(t_k)) & (k = 1, 2, \cdots, m), \\
v_0(0) \geq v_0(2\pi),
\end{cases}$$

i.e. $u_0(t)$ and $v_0(t)$ are lower and upper solutions of PBVP (1.1) respectively.

(H₂) There exist constants M > 0, $N \ge 0$ and $N_1 \ge 0$ such that

$$f(t, x, y, z) - f(t, \overline{x}, \overline{y}, \overline{z}) \ge -M(x - \overline{x}) - N(y - \overline{y}) - N_1(z - \overline{z}),$$

whenever $t \in J$, $u_0(t) \leq \overline{x} \leq x \leq v_0(t)$, $(Tu_0)(t) \leq \overline{y} \leq y \leq (Tv_0)(t)$, and $(Su_0)(t) \leq \overline{z} \leq z \leq (Sv_0)(t)$.

(H₃) There exist constants $0 \le L_k \le 1$ $(k = 1, 2, \dots, m)$ such that

$$I_k(x) - I_k(\overline{x}) \ge -L_k(x - \overline{x}),$$

whenever $u_0(t_k) \leq \overline{x} \leq x \leq v_0(t_k)$, $(k = 1, 2, \dots, m)$. As usual, $[u_0, v_0] = \{x \in PC[J, E] : u_0 \leq x \leq v_0\}$ denotes an ordered interval in PC[J, E].

Theorem 3.1. Let cone P be regular, f be bounded on $J \times B_r \times B_r \times B_r$ and I_k be bounded on B_r $(k = 1, 2, \dots, m)$ for any r > 0, where $B_r = \{x \in E : ||x|| \le r\}$. Let conditions $(H_1) - (H_3)$ be satisfied. Assume that inequilities (2.2) and (2.24) hold. Then there exist monotone sequences $\{u_n\}$, $\{v_n\} \subset PC[J, E] \cap C^1[J', E]$ which converge uniformly and monotonically on J to the minimal and maximal solutions \overline{x} , $x^* \in PC[J, E] \cap C^1[J', E]$ of PBVP (1.1) in $[u_0, v_0]$ respectively. That is, if $x \in PC[J, E] \cap C^1[J', E]$ is any solution of PBVP (1.1) satisfying $x \in [u_0, v_0]$, then

$$u_0(t) \le u_1(t) \le \dots \le u_n(t) \le \overline{x}(t) \le x(t) \le x^*(t)$$

$$\le v_n(t) \le \dots \le v_1(t) \le v_0(t), \quad \forall t \in J, \quad \forall n \ge 0.$$
(3.1)

Proof. For any $\eta \in [u_0, v_0]$, consider the linear PBVP (2.16) with

$$\sigma(t) = f(t, \eta(t), (T\eta)(t), (S\eta)(t)) + M\eta(t) + N(T\eta)(t) + N_1(S\eta)(t).$$
(3.2)

By Lemma 2.2 and Lemma 2.3, PBVP (2.16) has a unique solution $x \in PC[J, E] \cap C^1[J', E]$. Let $x = A\eta$. Then A is an operator from $[u_0, v_0]$ into $PC[J, E] \cap C^1[J', E]$. We now show that (a) $u_0 \leq Au_0$, $Av_0 \leq v_0$ and (b) A is nondecreasing in $[u_0, v_0]$. To prove (a), we set $u_1 = Au_0$ and $p = u_0 - u_1$. By (2.16) and (3.2), we have

$$\begin{cases} u_1' + Mu_1 + NTu_1 + N_1Su_1 = f(t, u_0, Tu_0, Su_0) + Mu_0 + NTu_0 + N_1u_0, \\ \forall t \in J, \ t \neq t_k \ (k = 1, 2, \cdots, m), \\ u_1|_{t=t_k} = I_k(u_0(t_k)) - L_k[u_1(t_k) - u_0(t_k)] \ (k = 1, 2, \cdots, m), \\ u_1(0) = u_1(2\pi), \end{cases}$$

and so, by (H_1) ,

$$\begin{cases} p' = u'_0 - u'_1 \leq -Mp - NTp - N_1 Sp, & \forall t \in J, \ t \neq t_k \ (k = 1, 2, \cdots, m), \\ \triangle p|_{t=t_k} = \triangle u_0|_{t=t_k} - \triangle u_1|_{t=t_k} \leq -L_k p(t_k) & (k = 1, 2, \cdots, m), \\ p(0) = u_0(0) - u_1(0) \leq u_0(2\pi) - u_1(2\pi) = p(2\pi), \end{cases}$$

which implies by virtue of Lemma 1.1 that $p(t) \leq \theta$ for $t \in J$, i.e. $u_0 \leq Au_0$. Similarly, we can show that $Av_0 \leq v_0$. To prove (b), let η_1 , $\eta_2 \in [u_0, v_0]$ such that $\eta_1 \leq \eta_2$ and let $p = x_1 - x_2$, where $x_1 = A\eta_1$ and $x_2 = A\eta_2$. It is easy to see from (2.16), (3.2) and (H₂),(H₃) that

$$\begin{aligned} p' &= x_1' - x_2' = -[f(t, \eta_2, T\eta_2, S\eta_2) - f(t, \eta_1, T\eta_1, S\eta_1) \\ &\quad + M(\eta_2 - \eta_1) + NT(\eta_2 - \eta_1) + N_1S(\eta_2 - \eta_1) \\ &\quad - Mp - NTp - N_1Sp \leq -Mp - NTp - N_1Sp, \\ &\forall t \in J, \ t \neq t_k \ (k = 1, 2, \cdots, m), \end{aligned}$$

$$\begin{split} \triangle p|_{t=t_k} &= \triangle x_1|_{t=t_k} - \triangle x_2|_{t=t_k} \\ &= -\{I_k(\eta_2(t_k) - I_k(\eta_1(t_k)) + L_k[\eta_2(t_k) - \eta_1(t_k)]\} - L_k p(t_k) \\ &\leq -L_k p(t_k), \quad (k = 1, 2, \cdots, m), \\ p(0) &= p(2\pi). \end{split}$$

Hence, Lemma 2.1 implies that $p(t) \leq \theta$ for $t \in J$, i.e. $A\eta_1 \leq A\eta_2$, and (b) is proved.

Let $u_n = Au_{n-1}$ and $v_n = Av_{n-1}$ $(n = 1, 2, 3, \cdots)$. By (a) and (b) just proved, we have $u_0(t) \le u_1(t) \le \cdots \le u_n(t) \le \cdots \le v_n(t) \le \cdots \le v_1(t) \le v_0(t), \quad \forall t \in J.$ (3.3) So, the regularity of P implies

$$\lim_{n \to \infty} u_n(t) = \overline{x}(t), \quad \forall t \in J.$$
(3.4)

Let $V = \{u_n : n = 0, 1, 2, \dots\}$. Since P is also normal, it follows from (3.3) that V is a bounded set in PC[J, E], and so, by hypotheses, there is a positive constant β such that

$$\|f(t, u_{n-1}(t), (Tu_{n-1})(t), (Su_{n-1})(t)) + Mu_{n-1}(t) - N(T(u_n - u_{n-1}))(t) - N_1(S(u_n - u_{n-1})(t))\| \le \beta, \quad \forall t \in J \ (n = 1, 2, 3, \cdots),$$
(3.5)

$$||I_k(u_{n-1})(t)|| \le \beta, \quad \forall t \in J \ (n = 1, 2, 3, \cdots).$$
 (3.6)

On account of the definition of u_n and (2.16), (2.17), (3.2), we have

$$u_{n}(t) = e^{-Mt} \left\{ \frac{1}{e^{2\pi M} - 1} \left[\int_{0}^{2\pi} e^{Ms} (f(s, u_{n-1}(s), (Tu_{n-1})(s), (Su_{n-1})(s)) + Mu_{n-1}(s) - N(T(u_{n} - u_{n-1}))(s) - N_{1}(S(u_{n} - u_{n-1}))(s)) ds + \sum_{k=1}^{m} e^{Mt_{k}} (I_{k}(u_{n-1}(t_{k})) - L_{k}(u_{n}(t_{k}) - u_{n-1}(t_{k}))) \right] + \int_{0}^{t} e^{Ms} (f(s, u_{n-1}(s), (Tu_{n-1})(s), (Su_{n-1})(s)) + Mu_{n-1}(s) - N(T(u_{n} - u_{n-1}))(s) - N_{1}(S(u_{n} - u_{n-1}))(s)) ds + \sum_{0 < t_{k} < t} e^{Mt_{k}} ((I_{k}(u_{n-1}(t_{k})) - L_{k}(u_{n}(t_{k}) - u_{n-1}(t_{k}))) \right\}, \quad \forall t \in J \quad (n = 1, 2, 3, \cdots).$$

$$(3.7)$$

It follows from (3.5)–(3.7) that V is equicontinuous on each J_k $(k = 0, 1, \dots, m)$, and consequently, (3.4) and Lemma 2.4 imply that $\overline{x} \in PC[J, E]$ and $\{u_n\}$ converges to \overline{x} uniformly on J. Now, we have

$$f(t, u_{n-1}(t), (Tu_{n-1})(t), (Su_{n-1})(t)) + Mu_{n-1}(t) - N(T(u_n - u_{n-1}))(t) - N_1(S(u_n - u_{n-1}))(t) \to f(t, \overline{x}(t), (T\overline{x})(t), (S\overline{x})(t)) + M\overline{x}(t) as $n \to \infty, \quad \forall t \in J,$ (3.8)$$

and, by (3.5),

$$\|f(t, u_{n-1}(t), (Tu_{n-1})(t), (Su_{n-1})(t)) + Mu_{n-1}(t) - N(T(u_n - u_{n-1}))(t) - N_1(S(u_n - u_{n-1}))(t) - f(t, \overline{x}(t), (T\overline{x})(t), (S\overline{x})(t)) - M\overline{x}(t)\| \le 2\beta, \forall t \in J \quad (n = 1, 2, 3, \cdots).$$
(3.9)

Observing (3.8) and (3.9) and taking limits as $n \to \infty$ in (3.7), we get

$$\begin{split} \overline{x}(t) &= e^{-Mt} \Big\{ \frac{1}{e^{2\pi M} - 1} \Big[\int_0^{2\pi} e^{Ms} (f(s, \overline{x}(s), (T\overline{x})(s), (S\overline{x})(s)) + M\overline{x}(s)) ds \\ &+ \sum_{k=1}^m e^{Mt_k} (I_k(\overline{x}(t_k))) \Big] \\ &+ \int_0^t e^{Ms} (f(s, \overline{x}(s), (T\overline{x})(s), (S\overline{x})(s)) + M\overline{x}(s)) ds \\ &+ \sum_{0 < t_k < t} e^{Mt_k} I_k(\overline{x}(t_k)) \Big\}, \end{split}$$

which implies by virtue of Lemma 2.2 that $\overline{x} \in PC[J, E] \cap C^1[J', E]$ and $\overline{x}(t)$ is a solution of PBVP (1.1).

In the same way, we can show that $\{v_n\}$ converges uniformly on J to some x^* , and $x^*(t)$ is a solution of PBVP (1.1) in $PC[J, E] \cap C^1[J', E]$.

Finally, let $x \in PC[J, E] \cap C^1[J', E]$ be any solution of PBVP (1.1) in $[u_0, v_0]$. Assume that $u_{n-1}(t) \leq x(t) \leq v_{n-1}(t)$ for $t \in J$, and let $p = u_n - x$. Then, as before by (2.16), (3.2) and (H₂), (H₃), it is easy to verify that p satisfies (2.1), and so, Lemma 2.1 implies that $p(t) \leq \theta$ for $t \in J$, i.e. $u_n(t) \leq x(t)$ for $t \in J$. Similarly, we can show that $x(t) \leq v_n(t)$ for $t \in J$. Consequently, by induction, we have $u_n(t) \leq x(t) \leq v_n(t)$ for $t \in J$ $(n = 0, 1, 2, \cdots)$, and by taking limits, we get $\overline{x}(t) \leq x(t) \leq x^*(t)$ for $t \in J$. Hence, (3.1) holds, and the theorem is proved.

Remark 3.1. The condition that P is regular will be satisfied if E is weakly complete (reflexive, in particular) and P is normal (see [5, Theorem 2.2]).

Remark 3.2. In some cases, it is easy to find a lower solution and an upper solution for PBVP (1.1). For example, let $I_k(\theta) = \theta$ $(k = 1, 2, \dots, m)$. If $f(t, \theta, \theta, \theta) \ge \theta$ for $t \in J, t \neq t_k$ $(k = 1, 2, \dots, m)$, then $u_0(t) \equiv \theta$ $(t \in J)$ is a lower solution of PBVP (1.1); if $f(t, x_0, Tx_0, Sx_0) \le \theta$ for some $x_0 > \theta$ and $t \in J, t \neq t_k$ $(k = 1, 2, \dots, m)$, then $v_0(t) \equiv x_0$ $(t \in J)$ is an upper solution of PBVP (1.1).

§4. Examples

Example 4.1. Consider the PBVP of finite system for scalar nonlinear impulsive integrodifferential equations

$$\begin{cases} x'_{i} = f_{i}(t, x, Tx, Sx), & \forall 0 \le t \le 2\pi, \quad t \ne t_{k} \quad (k = 1, 2, \cdots, m), \\ \triangle x_{i}|_{t=t_{k}} = I_{ik}(x(t_{k})) & (k = 1, 2, \cdots, m), \\ x_{i}(0) = x_{i}(2\pi) & (i = 1, 2, \cdots, n), \end{cases}$$

$$(4.1)$$

where $f_i = f_i(t, x, y, z), x = (x_1, \dots, x_n), y = (y_1, \dots, y_n), z = (z_1, \dots, z_n), f_i \in C^1[J \times \mathbb{R}^n \times \mathbb{R}^n \times \mathbb{R}^n, \mathbb{R}], J = [0, 2\pi], 0 < t_1 < \dots < t_k < \dots < t_m < 2\pi, I_{ik} \in C^1[\mathbb{R}^n, \mathbb{R}]$ ($k = 1, 2, \dots, m$), Tx and Sx are defined by (1.2) with $K \in C[D, \mathbb{R}_+]$ and $H \in C[J \times J, \mathbb{R}_+]$. Let $u_0 = (u_{01}, \dots, x_{0n})$ and $v_0 = (v_{01}, \dots, v_{0n})$ be lower and upper solutions of (4.1) respectively with $u_0(t) \le v_0(t)$ for $t \in J$ (i.e., $u_{0i}(t) \le v_{0i}(t)$ for $t \in J$, $i = 1, 2, \dots, n$). Let $\Omega = \{(t, x, y, z) : t \in J, u_0(t) \le x \le v_0(t), (Tu_0)(t) \le y \le (Tv_0)(t), (Su_0)(t) \le z \le (Sv_0)(t)\}$ and $\Omega_k = \{x : u_0(t_k) \le x \le v_0(t_k)\}$ ($k = 1, 2, \dots, m$).

Conclusion 4.1. If there exist constants M > 0, $N \ge 0$, $N_1 \ge 0$ and $0 \le L_k \le 1$ $(k = 1, 2, \dots, m)$ such that

$$\begin{split} &\frac{\partial f_i}{\partial x_j} \geq \begin{cases} 0, & i \neq j; \\ -M, & i = j, \end{cases} & in \ \Omega \quad (i, \ j = 1, 2, \cdots, n), \\ &\frac{\partial f_i}{\partial y_j} \geq \begin{cases} 0, & i \neq j; \\ -N, & i = j, \end{cases} & in \ \Omega \quad (i, \ j = 1, 2, \cdots, n), \\ &\frac{\partial f_i}{\partial z_j} \geq \begin{cases} 0, & i \neq j; \\ -N_1, & i = j, \end{cases} & in \ \Omega \quad (i, \ j = 1, 2, \cdots, n), \\ &\frac{\partial I_{ik}}{\partial x_j} \geq \begin{cases} 0, & i \neq j; \\ -L_k, & i = j, \end{cases} & in \ \Omega_k \quad (i, \ j = 1, 2, \cdots, n; \ k = 1, 2, \cdots, m), \end{split}$$

and inequalities (2.2) and (2.24) hold, then PBVP (4.1) has a minimal solution and a maximal solution in $[u_0, v_0]$.

Proof. Let $E = R^n$ and $P = \{x = (x_1, \dots, x_n) \in R^n : x_i \ge 0, i = 1, 2, 3, \dots, n\}$. Then P is a regular cone in E and (4.1) can be regarded as a PBVP of type (1.1) in E. For $(t, x, y, z), (t, \overline{x}, \overline{y}, \overline{z}) \in \Omega$ satisfying $\overline{x} \le x, \overline{y} \le y$ and $\overline{z} \le z$, we have, by hypotheses and the mean value theorem,

$$f_i(t, x, y, z) - f_i(t, \overline{x}, \overline{y}, \overline{z}) = \sum_{j=1}^n \left[(x_j - \overline{x}_j) \frac{\partial}{\partial x_j} + (y_j - \overline{y}_j) \frac{\partial}{\partial y_j} + (z_j - \overline{z}_j) \frac{\partial}{\partial z_j} \right]$$
$$\cdot f_i(t, \overline{x} + \xi(x - \overline{x}), \overline{y} + \xi(y - \overline{y}), \overline{z} + \xi(z - \overline{z}))$$
$$\geq -M(x_i - \overline{x}_i) - N(y_i - \overline{y}_i) - N_1(z_i - \overline{z}_i) \quad (i = 1, 2, \cdots, n),$$

and, for $x, \ \overline{x} \in \Omega_k$ satisfying $\overline{x} \leq x$,

$$I_{ik}(x) - I_{ik}(\overline{x}) = \sum_{j=1}^{n} (x_j - \overline{x}_j) \frac{\partial}{\partial x_j} I_{ik}(\overline{x} + \xi_1(x - \overline{x}))$$

$$\geq -L_k(x_i - \overline{x}_i) \quad (i = 1, 2, \cdots, n; k = 1, 2, \cdots, m),$$

where $0 < \xi < 1$ and $0 < \xi_1 < 1$. So, (H₂) and (H₃) are satisfied, and our conclusion follows from the main theorem.

Example 4.2. Consider the PBVP of infinite system for scalar nonlinear impulsive integro-differential equations

$$\begin{cases} x'_{n} = \frac{4}{\pi} \left(\frac{1}{4n^{2}} - x_{n} + x_{2n} \right) + \frac{t}{2\pi^{3}n^{2}} \left(\int_{0}^{t} e^{-ts} x_{n+1}(s) ds \right) \\ - \frac{2}{10^{8}\pi^{2}(n+1)^{2}} \left(\int_{0}^{t} e^{-ts} x_{n}(s) ds \right)^{2} \\ - \frac{1}{10^{8}\pi^{3}(n+2)^{3}} \left(\int_{0}^{2\pi} \frac{x_{n}(s) ds}{1 + t^{2} + s^{2}} \right)^{3}, \quad \forall 0 \le t \le 2\pi, \ t \ne \pi, \end{cases}$$

$$(4.2)$$

$$(4.2)$$

$$(\Delta x_{n}|_{t=\pi} = -\frac{1}{2n} x_{n}(\pi) + x_{n+2}(\pi), \\ x_{n}(0) = x_{n}(2\pi) \qquad (n = 1, 2, 3, \cdots).$$

Conclusion 4.2. PBVP (4.2) admits minimal and maximal solutions which continuously differentiable on $[0, \pi) \cup (\pi, 2\pi]$ and satisfy

$$0 \le x_n(t) \le \begin{cases} \frac{1}{n^2}, & \forall \ 0 \le t \le \pi\\ \frac{1}{n^2}(3 - \frac{t}{\pi}), & \forall \ \pi < t \le 2\pi \end{cases} (n = 1, 2, 3, \cdots).$$

Proof. Let $E = \ell^1 = \{x = (x_1, \dots, x_n, \dots) : \sum_{n=1}^{\infty} |x_n| < \infty\}$ with norm $||x|| = \sum_{n=1}^{\infty} |x_n|$ and $P = \{x = (x_1, \dots, x_n, \dots) \in \ell^1 : x_n \ge 0, n = 1, 2, 3, \dots\}.$

Then P is a normal cone in E. Since ℓ^1 is weakly complete, we know from Remark 3.1 that P is regular. (4.2) can be regarded as a PBVP of type (1.1) in E, where

$$K(t,s) = e^{-ts}, \quad H(t,s) = (1+t^2+s^2)^{-1}, \quad x = (x_1, \cdots, x_n, \cdots),$$
$$y = (y_1, \cdots, y_n, \cdots), \quad z = (z_1, \cdots, z_n, \cdots), \quad f = (f_1, \cdots, f_n, \cdots).$$

in which

$$\begin{split} f_n(t,x,y,z) &= \frac{4}{\pi} \Big(\frac{1}{4n^2} - x_n + x_{2n} \Big) + \frac{t}{2\pi^3 n^2} y_{n+1} \\ &\quad - \frac{2}{10^8 \pi^2 (n+1)^2} y_n^2 - \frac{1}{10^8 \pi^3 (n+2)^3} z_n^3 \end{split}$$
 and $m = 1, \ t_1 = \pi, \ I_1 = (I_{11}, \cdots, I_{1n}, \cdots)$ with $I_{1n}(x) = -\frac{1}{2n} x_n + x_{n+2}.$ Let

$$u_0(t) = (0, \cdots, 0, \cdots), \quad \forall \ \ 0 \le t \le 2\pi$$

1

and

$$v_0(t) = \begin{cases} (1, \cdots, \frac{1}{n^2}, \cdots), & \forall \quad 0 \le t \le \pi; \\ (3 - \frac{t}{\pi}, \cdots, \frac{1}{n^2}(3 - \frac{t}{\pi}), \cdots), & \forall \quad \pi < t \le 2\pi \end{cases}$$

It is not difficult to verify that u_0 and v_0 satisfy condition (H₁).

On the other hand, it is easy to see that conditions (H_2) and (H_3) are satisfied for

$$M = \frac{4}{\pi}$$
, $N = \frac{3}{10^8 \pi}$, $N_1 = \frac{1}{10^8 \pi}$, and $L_1 = \frac{1}{2}$.

Evidently, $k_0 = h_0 = 1$, and it is easy to check that inequalities (2.2) and (2.24) hold. Thus, our conclusion follows from the main theorem.

References

- [1] Guo, D. & Lakshmikantham, V., Nonlinear problems in abstract Cones, Academic Press, New York, 1988.
- [2] Liu, X. Z., Periodic boundary value problems for first order impulsive integro-differential equations, Nonlinear Times and Digest, 2(1995), 69-82.
- [3] Hu, S. & Leela, S., Periodic boundary value problems for integro-differential equations of Hammerstein type, Appl. Math. Comput., 25(1988), 29–38.
- [4] Guo, D., Existence of solutions of boundary value problems for nonlinear second order impulsive differential equations in Banach spaces, J. Math. Anal. Appl., 181(1994), 407–421.
- [5] Du, Y., Fixed points of increasing opeators in ordered Banach spaces and applications, Appl. Anal., **38**(1990), 1–20.