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§1. Introduction

In this paper, we investigate the periodic boundary value problem (PBVP) for first order

nonlinear impulsive integro-differential equations of mixed type in a Banach space E:x′ = f(t, x, Tx, Sx), ∀ 0 ≤ t ≤ 2π, t ̸= tk (k = 1, 2, · · · ,m),
△x|t=tk = Ik(x(tk)) (k = 1, 2, · · · ,m),
x(0) = x(2π),

(1.1)

where f ∈ C[J × E × E × E,E], J = [0, 2π] , Ik ∈ C[E,E] (k = 1, 2, · · · ,m),

(Tx)(t) =

∫ t

0

K(t, s)x(s)ds, (Sx)(t) =

∫ 2π

0

H(t, s)x(s)ds, (1.2)

K ∈ C[D,R+], D = {(t, s) ∈ J × J : t ≥ s},H ∈ C[J × J,R+], R+ denotes the set of all

nonnegative numbers, and 0 < t1 < · · · < tk < · · · < tm < 2π. △x|t=tk represents the jump

of x(t) at t = tk, i.e., △x|t=tk = x(t+k )−x(t−k ), where x(t
+
k ) and x(t−k ) denote the right and

left limits of x(t) at t = tk, respectively. A special case of PBVP (1.1) has been considered

in Euclidean space recently in [2], where by developing a comparison result the monotonicity

condition normally imposed on the right-hand side relative to the integral term is removed

successfully and the existence of extremal solutions is established.

In Section 2 we establish a comparison result, and then we state and prove the main

theorem in Section 3. Finally, to illustrate our result, Section 4 offers two examples in both

finite and infinite dimensional spaces.
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§2. Comparison Result

Let PC[J,E] = {x : x is a map from J into E such that x(t) is continuous at t ̸= tk, and

left continuous at t = tk, and the right limit x(t+k ) exists for k = 1, 2, · · · ,m}. Evidently,
PC[J,E] is a Banach space with norm ∥x∥PC = sup

t∈J
∥x(t)∥. Let J ′ = J\{t1, · · · , tm}. x ∈

PC[J,E] ∩ C1[J ′, E] is called a solution of PBVP (1.1) if it satisfies (1.1).

Let E be partially ordered by a cone P of E, i.e., x ≤ y if and only if y − x ∈ P. P

is said to be normal if there exists a positive constant N such that θ ≤ x ≤ y implies

||x|| ≤ N ||y||, where θ denotes the zero element of E, and P is said to be regular if x1 ≤
x2 ≤ · · · ≤ xn ≤ · · · ≤ y implies ||xn − x|| → 0 as n → ∞ for some x ∈ E. It is well

known that the regularity of P implies the normality of P (see [1, Theorem 1.2.1]). Let

Q = {x ∈ PC[J,E] : x(t) ≥ θ for t ∈ J}. Then Q is a cone in space PC[J,E], and so,

PC[J,E] is partial ordered by Q : u ≤ v if and only if v− u ∈ Q, i.e., u(t) ≤ v(t) for t ∈ J .

In the following, let J0 = [0, t1], J1 = (t1, t2], · · · , Jm−1 = (tm−1, tm], Jm = (tm, 2π], δ =

max{tk − tk−1 : k = 1, 2, · · · ,m + 1} (where t0 = 0, tm+1 = 2π) and k0 = max{K(t, s) :

(t, s) ∈ D}. h0 = max{H(t, s) : (t, s) ∈ J × J}.
Lemma 2.1 (Comparison result). Assume that p ∈ PC[J,E] ∩ C1[J ′, E] satisfies p′ ≤ −Mp−NTp−N1Sp, ∀t ∈ J, t ̸= tk (k = 1, 2, · · · ,m),

△p|t=tk ≤ −Lkp(tk) (k = 1, 2, · · · ,m),
p(0) ≤ p(2π),

(2.1)

where constants M > 0, N ≥ 0, N1 ≥ 0, 0 ≤ Lk ≤ 1 (k = 1, 2, · · · ,m), and

M−1(Nk0 +N1h0)(e
4πM − 1)δ ≤

{ m∏
k=1

(1− Lk)
}2

1 +
m∑

n=1

m∏
k=n

(1− Lk)
. (2.2)

Then p(t) ≤ θ for t ∈ J .

Proof. For any g ∈ P ∗ (P ∗ denotes the dual cone of P (see [1])), let u(t) = g(p(t)).

Then u ∈ PC[J,R] ∩ C1[J ′, R] and

u′(t) = g(p′(t)), g((Tp)(t)) = (Tu)(t), g((Sp)(t)) = (Su)(t),

where R denotes the set of all real numbers. By (2.1), we haveu′ ≤ −Mu−NTu−N1Su, ∀ t ∈ J, t ̸= tk (k = 1, 2, · · · ,m),
△u|t=tk ≤ −Lku(tk) (k = 1, 2, · · · ,m),
u(0) ≤ u(2π).

(2.3)

Let v(t) = u(t)eMt, ∀t ∈ J. Then v ∈ PC[J,R] ∩ C1[J ′, R] and (2.3) implies
v′(t) ≤ −N

∫ t

0
k∗(t, s)v(s)ds−N1

∫ 2π

0
h∗(t, s)v(s)ds,

∀t ∈ J, t ̸= tk (k = 1, 2, · · · ,m),
△v|t=tk ≤ −Lkv(tk) (k = 1, 2, · · · ,m),
v(0) ≤ v(2π)e−2πM ,

(2.4)

where k∗(t, s) = K(t, s)eM(t−s), h∗(t, s) = H(t, s)eM(t−s). We now prove

v(t) ≤ 0, ∀t ∈ J. (2.5)

Suppose that (2.5) not true. Then, there are two cases: (a) there exists t∗1 ∈ J such that

v(t∗1) > 0, and v(t) ≥ 0 for t ∈ J ; (b) there exist t∗1, t
∗
2 ∈ J such that v(t∗1) > 0 and v(t∗2) < 0.
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If case (a) holds, then (2.4) implies v′(t) ≤ 0, ∀t ∈ J, t ̸= tk (k = 1, 2, · · · ,m), and

v(t+k ) = v(tk) +△v|t=tk ≤ (1− Lk)v(tk) ≤ v(tk) (k = 1, 2, · · · ,m).

This means that v(t) is nonincreasing in J , and therefore

v(0) ≥ v(t∗1) > 0, (2.6)

v(0) ≥ v(2π). (2.7)

It follows from (2.7) and the last inequality in (2.4) that v(0) ≥ v(0)e2πM , which contradicts

(2.6).

In case (b), let inf
t∈J

v(t) = −λ. Then λ > 0, and there exists ti < t∗0 ≤ ti+1 for some i

such that v(t∗0) = −λ or v(t+i ) = −λ. We may assume that v(t∗0) = −λ since, in case of

v(t+i ) = −λ, the proof is similar. From (2.4), it is easy to see that

v′(t) ≤ λNk0

∫ t

0

eM(t−s)ds+ λN1h0

∫ 2π

0

eM(t−s)ds

≤ λM0, ∀t ∈ J, t ̸= tk (k = 1, 2, · · · ,m), (2.8)

where M0 = M−1(Nk0 +N1h0)(e
2πM − 1). We have

v(2π)− v(t+m) = v′(ξm)(2π − tm) (tm < ξm < 2π),
v(tm)− v(t+m−1) = v′(ξm−1)(tm − tm−1) (tm−1 < ξm−1 < tm),

· · · · · · · · · · · ·
v(ti+2)− v(t+i+1) = v′(ξi+1)(ti+2 − ti+1) (ti+1 < ξi+1 < ti+2),
v(ti+1)− v(t∗0) = v′(ξi)(ti+1 − t∗0) (t∗0 < ξi < ti+1),

(2.9)

and so, by (2.4) and (2.8),
v(2π)− (1− Lm)v(tm) ≤ λM0δ,
v(tm)− (1− Lm−1)v(tm−1) ≤ λM0δ,

· · · · · · · · · · · ·
v(ti+2)− (1− Li+1)v(ti+1) ≤ λM0δ,
v(ti+1) + λ ≤ λM0δ,

(2.10)

which implies

v(2π) ≤ −λ
m∏

k=i+1

(1− Lk) + λM0δ
{
1 +

m∑
n=i+1

m∏
k=n

(1− Lk)
}
. (2.11)

If v(2π) > 0, then (2.11) gives

M0δ >

m∏
k=i+1

(1− Lk)

1 +
m∑

n=i+1

m∏
k=n

(1− Lk)
≥

m∏
k=1

(1− Lk)

1 +
m∑

n=1

m∏
k=n

(1− Lk)
,

which contradicts (2.2). So, we have v(2π) ≤ 0, and by (2.4), v(0) ≤ v(2π)e−2πM ≤ 0.

Hence 0 < t∗1 < 2π. Let tj < t∗1 ≤ tj+1 for some j .

We first assume that t∗0 < t∗1. So, i ≤ j. We have, similar to (2.9),
v(t∗1)− v(t+j ) = v′(ξj)(t

∗
1 − tj) (tj < ξj < t∗1),

v(tj)− v(t+j−1) = v′(ξj−1)(tj − tj−1) (tj−1 < ξj−1 < tj),
· · · · · · · · · · · ·

v(ti+2)− v(t+i+1) = v′(ξi+1)(ti+2 − ti+1) (ti+1 < ξi+1 < ti+2),
v(ti+1)− v(t∗0) = v′(ξi)(ti+1 − t∗0) (t∗0 < ξi < ti+1),

(2.12)
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and so, as in (2.10) and (2.11), we get

0 < v(t∗1) ≤ −λ

j∏
k=i+1

(1− Lk) + λM0δ
{
1 +

j∑
n=i+1

j∏
k=n

(1− Lk)
}
, (2.13)

which implies

M0δ >

j∏
k=i+1

(1− Lk)

1 +
j∑

n=i+1

j∏
k=n

(1− Lk)

=

m∏
k=i+1

(1− Lk)

m∏
k=j+1

(1− Lk) +
j∑

n=i+1

m∏
k=n

(1− Lk)

≥

m∏
k=1

(1− Lk)

1 +
m∑

n=1

m∏
k=n

(1− Lk)
,

and this contradicts (2.2).

Next assume that t∗1 < t∗0. So j ≤ i. Similar to (2.12) and (2.13), we have

0 < v(t∗1) ≤ v(0)

j∏
k=1

(1− Lk) + λM0δ
{
1 +

j∑
n=1

j∏
k=n

(1− Lk)
}
,

which implies

v(0)

j∏
k=1

(1− Lk) > −λM0δ
{
1 +

j∑
n=1

j∏
k=n

(1− Lk)
}
. (2.14)

On the other hand, we have, by (2.4),

v(0) ≤ v(2π)e−2πM . (2.15)

It follows from (2.11), (2.14) and (2.15) that

− λM0δ
{
1 +

j∑
n=1

j∏
k=n

(1− Lk)
}

< −λe−2πM

j∏
k=1

(1− Lk)

m∏
k=i+1

(1− Lk)

+ λM0δe
−2πM

j∏
k=1

(1− Lk)
{
1 +

m∑
n=i+1

m∏
k=n

(1− Lk)
}
,

or

j∏
k=1

(1− Lk)
m∏

k=i+1

(1− Lk)

< M0δe
2πM

{
1 +

j∑
n=1

j∏
k=n

(1− Lk)
}

+M0δ

j∏
k=1

(1− Lk)
{
1 +

m∑
n=i+1

m∏
k=n

(1− Lk)
}
.
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Hence { m∏
k=1

(1− Lk)
}2

≤
[ m∏
k=j+1

(1− Lk)
][ j∏

k=1

(1− Lk)
m∏

k=i+1

(1− Lk)
]

< M0δe
2πM

{ m∏
k=j+1

(1− Lk) +

j∑
n=1

m∏
k=n

(1− Lk)
}

+M0δ

m∏
k=1

(1− Lk)
{
1 +

m∑
n=i+1

m∏
k=n

(1− Lk)
}

≤ M0δe
2πM

{
1 +

m∑
n=1

m∏
k=n

(1− Lk)
}
+M0δ

{
1 +

m∑
n=1

m∏
k=n

(1− Lk)
}

= M0δ(e
2πM + 1)

{
1 +

m∑
n=1

m∏
k=n

(1− Lk)
}
,

which contradicts (2.2). The proof is thus complete.

Remark 2.1. Lemma 2.1 develops some ideas in [2] and [3].

Lemma 2.2. Let σ, η ∈ PC[J,E] and M, N, N1, Lk (k = 1, 2, · · · ,m) be constants

with M ̸= 0. Then x ∈ PC[J,E] ∩ C1[J ′, E] is a solution of the PBVP for linear impulsive

integro-differential equationx′ +Mx+NTx+N1Sx = σ(t), ∀t ∈ J, t ̸= tk (k = 1, 2, · · · ,m),
△x|t=tk = Ik(η(tk))− Lk[x(tk)− η(tk)] (k = 1, 2, · · · ,m),
x(0) = x(2π),

(2.16)

if and only if x ∈ PC[J,E] is a solution of the following impulsive integral equation

x(t) = e−Mt
{ 1

e2πM − 1

[ ∫ 2π

0

eMs(σ(s)−N(Tx)(s)−N1(Sx)(s))ds

+
m∑

k=1

eMtk(Ik(η(tk))− Lk(x(tk)− η(tk)))
]

+

∫ t

0

eMs(σ(s)−N(Tx)(s)−N1(Sx)(s))ds

+
∑

0<tk<t

eMtk(Ik(η(tk))− Lk(x(tk)− η(tk)))
}
. (2.17)

Proof. Assume that x ∈ PC[J,E] ∩ C1[J ′, E] is a solution of PBVP (2.16). Let z(t) =

x(t)eMt. Then z ∈ PC[J,E] ∩ C1[J ′, E] and, by (2.16),

z′(t) = [σ(t)−N(Tx)(t)−N1(Sx)(t)]e
Mt, ∀t ∈ J, t ̸= tk (k = 1, 2, · · · ,m),

(2.18)

△z|t=tk = {Ik(η(tk))− Lk[x(tk)− η(tk)]}eMtk (k = 1, 2, · · · ,m). (2.19)

It is easy to establish the following formula (see [4, Lemma 1])

z(t) = z(0) +

∫ t

0

z′(t)ds+
∑

0<tk<t

[z(t+k )− z(tk)], ∀t ∈ J. (2.20)
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Substituting (2.18) and (2.19) into (2.20), we get

x(t)eMt = x(0) +

∫ t

0

eMs[σ(s)−N(Tx)(s)−N1(Sx)(s)]ds

+
∑

0<tk<t

eMtk [Ik(η(tk))− Lk(x(tk)− η(tk))], ∀t ∈ J. (2.21)

Letting t = 2π in (2.21), we find

x(2π)eM2π = x(0) +

∫ 2π

0

eMs[σ(s)−N(Tx)(s)−N1(Sx)(s)]ds

+
m∑

k=1

eMtk [Ik(η(tk))− Lk(x(tk)− η(tk))]. (2.22)

Since x(0) = x(2π), (2.22) implies

x(0) =
1

e2πM − 1

{∫ 2π

0

eMs[σ(s)−N(Tx)(s)−N1(Sx)(s)]ds

+
m∑

k=1

eMtk [Ik(η(tk))− Lk(x(tk)− η(tk)]
}
. (2.23)

Substituting (2.23) into (2.21), we see that x(t) satisfies (2.17).

Conversely, if x ∈ PC[J,E] is a solution of Equation (2.17), then, it is easy to see by

direct differentiations that x ∈ C1[J ′, E] and x satisfies (2.16).

Lemma 2.3. Let constants M > 0, N ≥ 0, N1 ≥ 0, Lk ≥ 0 (k = 1, 2, · · · ,m) and

σ, η ∈ PC[J,E]. If

2πM−1(Nk0 +N1h0)(2− e−2πM ) +

m∑
k=1

[1 + (e2πM − 1)−1eMtk ]Lk < 1, (2.24)

then Equation (2.17) has a unique solution in PC[J,E].

Proof. Define operator F by

(Fx)(t) = e−Mt
{ 1

e2πM − 1

[ ∫ 2π

0

eMs(σ(s)−N(Tx)(s)−N1(Sx)(s))ds

+
m∑

k=1

eMtk(Ik(η(tk))− Lk(x(tk)− η(tk)))
]

+

∫ t

0

eMs(σ(s)−N(Tx)(s)−N1(Sx)(s))ds

+
∑

0<tk<t

eMtk(Ik(η(tk))− Lk(x(tk)− η(tk)))
}
.

It is easy to see that F is an operator from PC[J,E] into PC[J,E] and it satisfies

∥Fx− Fy∥PC ≤ γ∥x− y∥PC , ∀x, y ∈ PC[J,E],

where

γ = 2πM−1(Nk0 +N1h0)(2− e−2πM ) +

m∑
k=1

[1 + (e2πM − 1)−1eMtk ]Lk < 1

on account of (2.24). Thus, the Banach fixed point theorem implies that F has a unique

fixed point in PC[J,E], and the lemma is proved.
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Lemma 2.4. Let xn ∈ PC[J,E] (n = 1, 2, 3, · · · ). If functions xn(t) (n = 1, 2, 3, · · · ) are
equicontinuous on each Jk (k = 0, 1, · · · ,m) and

lim
n→∞

xn(t) = x(t), ∀t ∈ J, (2.25)

then x ∈ PC[J,E] and

∥xn − x∥PC → 0 (n → ∞). (2.26)

Proof. Let V = {xn : n = 1, 2, 3, · · · } and Vk = {xn|Jk
: n = 1, 2, 3, · · · } (k =

0, 1, · · · ,m). Since xn(t
+
k ) exist (n = 1, 2, 3, · · · ), Vk may be regarded as a subset of space

C[J̄k, E], where J̄k denotes the closure of Jk, i.e., J̄k = [tk, tk+1]. Hence, by hypotheses and

the Ascoli-Arzela theorem, Vk is relatively compact in C[J̄k, E] (k = 0, 1, · · · ,m). Conse-

quently, V is relatively compact in PC[J,E].

Assume that (2.26) is not true. Then, there exists an ε0 > 0 and a subsequence {xni
} ⊂

{xn} such that

∥xni − x∥PC ≥ ε0 (i = 1, 2, 3, · · · ). (2.27)

Since V is relatively compact in PC[J,E], {xni} contains a subsequence which converges

uniformly on J to some y ∈ PC[J,E]. Without loss of generality, we may assume that {xni}
itself converges uniformly on J to y, i.e.

∥xni − y∥PC → 0 (i → ∞). (2.28)

Now, (2.28) and (2.25) imply that y(t) = x(t) for t ∈ J , i.e. y = x, and (2.28) becomes

∥xni − x∥PC → 0 (i → ∞). (2.29)

Evidently, (2.29) contradicts (2.27), and therefore, (2.26) holds.

§3. Main Theorem

We shall state and prove our main theorem in this section. For convenience let us list

some conditions for later use.

(H1) There exist u0, v0 ∈ PC[J,E] ∩ C1[J ′, E] satisfying u0(t) ≤ v0(t) (∀t ∈ J) andu′
0 ≤ f(t, u0, Tu0, Su0), ∀t ∈ J, t ̸= tk (k = 1, 2, · · · ,m),

△u0|t=tk ≤ Ik(u0(tk)) (k = 1, 2, · · · ,m),
u0(0) ≤ u0(2π), v′0 ≥ f(t, v0, T v0, Sv0), ∀t ∈ J, t ̸= tk (k = 1, 2, · · · ,m),
△v0|t=tk ≥ Ik(v0(tk)) (k = 1, 2, · · · ,m),
v0(0) ≥ v0(2π),

i.e. u0(t) and v0(t) are lower and upper solutions of PBVP (1.1) respectively.

(H2) There exist constants M > 0, N ≥ 0 and N1 ≥ 0 such that

f(t, x, y, z)− f(t, x, y, z) ≥ −M(x− x)−N(y − y)−N1(z − z),

whenever t ∈ J, u0(t) ≤ x ≤ x ≤ v0(t) , (Tu0)(t) ≤ y ≤ y ≤ (Tv0)(t), and (Su0)(t) ≤ z ≤
z ≤ (Sv0)(t).

(H3) There exist constants 0 ≤ Lk ≤ 1 (k = 1, 2, · · · ,m) such that

Ik(x)− Ik(x) ≥ −Lk(x− x),
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whenever u0(tk) ≤ x ≤ x ≤ v0(tk), (k = 1, 2, · · · ,m) . As usual, [u0, v0] = {x ∈ PC[J,E] :

u0 ≤ x ≤ v0} denotes an ordered interval in PC[J,E].

Theorem 3.1. Let cone P be regular, f be bounded on J × Br × Br × Br and Ik

be bounded on Br (k = 1, 2, · · · ,m) for any r > 0, where Br = {x ∈ E : ||x|| ≤ r}. Let

conditions (H1)−(H3) be satisfied. Assume that inequlities (2.2) and (2.24) hold. Then there

exist monotone sequences {un}, {vn} ⊂ PC[J,E]∩C1[J ′, E] which converge uniformly and

monotonically on J to the minimal and maximal solutions x, x∗ ∈ PC[J,E] ∩ C1[J ′, E] of

PBVP (1.1) in [u0, v0] respectively. That is, if x ∈ PC[J,E] ∩ C1[J ′, E] is any solution of

PBVP (1.1) satisfying x ∈ [u0, v0], then

u0(t) ≤ u1(t) ≤ · · · ≤ un(t) ≤ x(t) ≤ x(t) ≤ x∗(t)

≤ vn(t) ≤ · · · ≤ v1(t) ≤ v0(t), ∀t ∈ J, ∀n ≥ 0. (3.1)

Proof. For any η ∈ [u0, v0], consider the linear PBVP (2.16) with

σ(t) = f(t, η(t), (Tη)(t), (Sη)(t)) +Mη(t) +N(Tη)(t) +N1(Sη)(t). (3.2)

By Lemma 2.2 and Lemma 2.3, PBVP (2.16) has a unique solution x ∈ PC[J,E]∩C1[J ′, E].

Let x = Aη. Then A is an operator from [u0, v0] into PC[J,E] ∩ C1[J ′, E]. We now show

that (a) u0 ≤ Au0, Av0 ≤ v0 and (b) A is nondecreasing in [u0, v0]. To prove (a), we set

u1 = Au0 and p = u0 − u1. By (2.16) and (3.2), we have
u′
1 +Mu1 +NTu1 +N1Su1 = f(t, u0, Tu0, Su0) +Mu0 +NTu0 +N1u0,

∀t ∈ J, t ̸= tk (k = 1, 2, · · · ,m),
u1|t=tk = Ik(u0(tk))− Lk[u1(tk)− u0(tk)] (k = 1, 2, · · · ,m),
u1(0) = u1(2π),

and so, by (H1), p′ = u′
0 − u′

1 ≤ −Mp−NTp−N1Sp, ∀t ∈ J, t ̸= tk (k = 1, 2, · · · ,m),
△p|t=tk = △u0|t=tk −△u1|t=tk ≤ −Lkp(tk) (k = 1, 2, · · · ,m),
p(0) = u0(0)− u1(0) ≤ u0(2π)− u1(2π) = p(2π),

which implies by virtue of Lemma 1.1 that p(t) ≤ θ for t ∈ J , i.e. u0 ≤ Au0. Similarly,

we can show that Av0 ≤ v0. To prove (b), let η1, η2 ∈ [u0, v0] such that η1 ≤ η2 and let

p = x1−x2, where x1 = Aη1 and x2 = Aη2. It is easy to see from (2.16), (3.2) and (H2),(H3)

that

p′ = x′
1 − x′

2 = −[f(t, η2, Tη2, Sη2)− f(t, η1, Tη1, Sη1)

+M(η2 − η1) +NT (η2 − η1) +N1S(η2 − η1)

−Mp−NTp−N1Sp ≤ −Mp−NTp−N1Sp,

∀t ∈ J, t ̸= tk (k = 1, 2, · · · ,m),

△p|t=tk = △x1|t=tk −△x2|t=tk

= −{Ik(η2(tk)− Ik(η1(tk)) + Lk[η2(tk)− η1(tk)]} − Lkp(tk)

≤ −Lkp(tk), (k = 1, 2, · · · ,m),

p(0) = p(2π).

Hence, Lemma 2.1 implies that p(t) ≤ θ for t ∈ J , i.e. Aη1 ≤ Aη2, and (b) is proved.

Let un = Aun−1 and vn = Avn−1 (n = 1, 2, 3, · · · ). By (a) and (b) just proved, we have

u0(t) ≤ u1(t) ≤ · · · ≤ un(t) ≤ · · · ≤ vn(t) ≤ · · · ≤ v1(t) ≤ v0(t), ∀t ∈ J. (3.3)
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So, the regularity of P implies

lim
n→∞

un(t) = x(t), ∀t ∈ J. (3.4)

Let V = {un : n = 0, 1, 2, · · · }. Since P is also normal, it follows from (3.3) that V is a

bounded set in PC[J,E], and so, by hypotheses, there is a positive constant β such that

∥f(t, un−1(t), (Tun−1)(t), (Sun−1)(t)) +Mun−1(t)−N(T (un − un−1))(t)

−N1(S(un − un−1)(t)∥ ≤ β, ∀t ∈ J (n = 1, 2, 3, · · · ), (3.5)

∥Ik(un−1)(t)∥ ≤ β, ∀t ∈ J (n = 1, 2, 3, · · · ). (3.6)

On account of the definition of un and (2.16), (2.17), (3.2), we have

un(t) = e−Mt
{ 1

e2πM − 1

[ ∫ 2π

0

eMs(f(s, un−1(s), (Tun−1)(s), (Sun−1)(s))

+Mun−1(s)−N(T (un − un−1))(s)−N1(S(un − un−1))(s))ds

+
m∑

k=1

eMtk(Ik(un−1(tk))− Lk(un(tk)− un−1(tk)))
]

+

∫ t

0

eMs(f(s, un−1(s), (Tun−1)(s), (Sun−1)(s)) +Mun−1(s)

−N(T (un − un−1))(s)−N1(S(un − un−1))(s))ds

+
∑

0<tk<t

eMtk((Ik(un−1(tk))− Lk(un(tk)− un−1(tk)))
}
,

∀t ∈ J (n = 1, 2, 3, · · · ). (3.7)

It follows from (3.5)–(3.7) that V is equicontinuous on each Jk (k = 0, 1, · · · ,m), and

consequently, (3.4) and Lemma 2.4 imply that x ∈ PC[J,E] and {un} converges to x

uniformly on J . Now, we have

f(t, un−1(t), (Tun−1)(t), (Sun−1)(t)) +Mun−1(t)−N(T (un − un−1))(t)

−N1(S(un − un−1))(t) → f(t, x(t), (Tx)(t), (Sx)(t)) +Mx(t)

as n → ∞, ∀t ∈ J, (3.8)

and, by (3.5),

∥f(t, un−1(t), (Tun−1)(t), (Sun−1)(t)) +Mun−1(t)−N(T (un − un−1))(t)

−N1(S(un − un−1))(t)− f(t, x(t), (Tx)(t), (Sx)(t))−Mx(t)∥ ≤ 2β,

∀t ∈ J (n = 1, 2, 3, · · · ). (3.9)

Observing (3.8) and (3.9) and taking limits as n → ∞ in (3.7),we get

x(t) = e−Mt
{ 1

e2πM − 1

[ ∫ 2π

0

eMs(f(s, x(s), (Tx)(s), (Sx)(s)) +Mx(s))ds

+
m∑

k=1

eMtk(Ik(x(tk))
]

+

∫ t

0

eMs(f(s, x(s), (Tx)(s), (Sx)(s)) +Mx(s))ds

+
∑

0<tk<t

eMtkIk(x(tk))
}
,



526 CHIN. ANN. OF MATH. Vol.19 Ser.B

which implies by virtue of Lemma 2.2 that x ∈ PC[J,E] ∩ C1[J ′, E] and x(t) is a solution

of PBVP (1.1).

In the same way, we can show that {vn} converges uniformly on J to some x∗, and x∗(t)

is a solution of PBVP (1.1) in PC[J,E] ∩ C1[J ′, E].

Finally, let x ∈ PC[J,E] ∩ C1[J ′, E] be any solution of PBVP (1.1) in [u0, v0]. Assume

that un−1(t) ≤ x(t) ≤ vn−1(t) for t ∈ J , and let p = un−x. Then, as before by (2.16), (3.2)

and (H2), (H3), it is easy to verify that p satisfies (2.1), and so, Lemma 2.1 implies that

p(t) ≤ θ for t ∈ J , i.e. un(t) ≤ x(t) for t ∈ J . Similarly , we can show that x(t) ≤ vn(t) for

t ∈ J . Consequently , by induction,we have un(t) ≤ x(t) ≤ vn(t) for t ∈ J (n = 0, 1, 2, · · · ),
and by taking limits, we get x(t) ≤ x(t) ≤ x∗(t) for t ∈ J . Hence, (3.1) holds, and the

theorem is proved.

Remark 3.1. The condition that P is regular will be satisfied if E is weakly complete

(reflexive, in particular) and P is normal (see [5, Theorem 2.2]).

Remark 3.2. In some cases, it is easy to find a lower solution and an upper solution

for PBVP (1.1). For example, let Ik(θ) = θ (k = 1, 2, · · · ,m). If f(t, θ, θ, θ) ≥ θ for

t ∈ J, t ̸= tk (k = 1, 2, · · · ,m), then u0(t) ≡ θ (t ∈ J) is a lower solution of PBVP

(1.1); if f(t, x0, Tx0, Sx0) ≤ θ for some x0 > θ and t ∈ J, t ̸= tk (k = 1, 2, · · · ,m) , then

v0(t) ≡ x0 (t ∈ J) is an upper solution of PBVP (1.1).

§4. Examples

Example 4.1. Consider the PBVP of finite system for scalar nonlinear impulsive integro-

differential equationsx′
i = fi(t, x, Tx, Sx), ∀0 ≤ t ≤ 2π, t ̸= tk (k = 1, 2, · · · ,m),

△xi|t=tk = Iik(x(tk)) (k = 1, 2, · · · ,m),
xi(0) = xi(2π) (i = 1, 2, · · · , n),

(4.1)

where fi = fi(t, x, y, z), x = (x1, · · · , xn), y = (y1, · · · , yn),z = (z1, · · · , zn), fi ∈ C1[J ×
Rn × Rn × Rn, R], J = [0, 2π], 0 < t1 < · · · < tk < · · · < tm < 2π, Iik ∈ C1[Rn, R] (k =

1, 2, · · · ,m; i = 1, 2, · · · , n), Tx and Sx are defined by (1.2) with K ∈ C[D,R+] and H ∈
C[J×J,R+]. Let u0 = (u01, · · · , x0n) and v0 = (v01, · · · , v0n) be lower and upper solutions of

(4.1) respectively with u0(t) ≤ v0(t) for t ∈ J (i.e., u0i(t) ≤ v0i(t) for t ∈ J, i = 1, 2, · · · , n).
Let Ω = {(t, x, y, z) : t ∈ J, u0(t) ≤ x ≤ v0(t), (Tu0)(t) ≤ y ≤ (Tv0)(t), (Su0)(t) ≤ z ≤
(Sv0)(t)} and Ωk = {x : u0(tk) ≤ x ≤ v0(tk)} (k = 1, 2, · · · ,m).

Conclusion 4.1. If there exist constans M > 0, N ≥ 0, N1 ≥ 0 and 0 ≤ Lk ≤ 1 (k =

1, 2, · · · ,m) such that

∂fi
∂xj

≥
{
0, i ̸= j;
−M, i = j,

in Ω (i, j = 1, 2, · · · , n),

∂fi
∂yj

≥
{
0, i ̸= j;
−N, i = j,

in Ω (i, j = 1, 2, · · · , n),

∂fi
∂zj

≥
{
0, i ̸= j;
−N1, i = j,

in Ω (i, j = 1, 2, · · · , n),

∂Iik
∂xj

≥
{
0, i ̸= j;
−Lk, i = j,

in Ωk (i, j = 1, 2, · · · , n; k = 1, 2, · · · ,m),
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and inequalities (2.2) and (2.24) hold, then PBVP (4.1) has a minimal solution and a max-

imal solution in [u0, v0].

Proof. Let E = Rn and P = {x = (x1, · · · , xn) ∈ Rn : xi ≥ 0, i = 1, 2, 3, · · · , n}.
Then P is a regular cone in E and (4.1) can be regarded as a PBVP of type (1.1) in E. For

(t, x, y, z), (t, x, y, z) ∈ Ω satisfying x ≤ x, y ≤ y and z ≤ z, we have, by hypotheses and

the mean value theorem,

fi(t, x, y, z)− fi(t, x, y, z) =

n∑
j=1

[
(xj − xj)

∂

∂xj
+ (yj − yj)

∂

∂yj
+ (zj − zj)

∂

∂zj

]
· fi(t, x+ ξ(x− x), y + ξ(y − y), z + ξ(z − z))

≥ −M(xi − xi)−N(yi − yi)−N1(zi − zi) (i = 1, 2, · · · , n),

and, for x, x ∈ Ωk satisfying x ≤ x,

Iik(x)− Iik(x) =
n∑

j=1

(xj − xj)
∂

∂xj
Iik(x+ ξ1(x− x))

≥ −Lk(xi − xi) (i = 1, 2, · · · , n; k = 1, 2, · · · ,m),

where 0 < ξ < 1 and 0 < ξ1 < 1. So, (H2) and (H3) are satisfied, and our conclusion follows

from the main theorem.

Example 4.2. Consider the PBVP of infinite system for scalar nonlinear impulsive

integro-differential equations

x′
n =

4

π

( 1

4n2
− xn + x2n

)
+

t

2π3n2

(∫ t

0

e−tsxn+1(s)ds
)

− 2

108π2(n+ 1)2

(∫ t

0

e−tsxn(s)ds

)2

− 1

108π3(n+ 2)3

(∫ 2π

0

xn(s)ds

1 + t2 + s2

)3

, ∀0 ≤ t ≤ 2π, t ̸= π,

△xn|t=π = − 1

2n
xn(π) + xn+2(π),

xn(0) = xn(2π) (n = 1, 2, 3, · · · ).

(4.2)

Conclusion 4.2. PBVP (4.2) admits minimal and maximal solutions which continuously

differentiable on [0, π) ∪ (π, 2π] and satisfy

0 ≤ xn(t) ≤
{

1
n2 , ∀ 0 ≤ t ≤ π
1
n2 (3− t

π ), ∀ π < t ≤ 2π
(n = 1, 2, 3, · · · ).

Proof. Let E = ℓ1 = {x = (x1, · · · , xn, · · · ) :
∞∑

n=1
|xn| < ∞} with norm

||x|| =
∞∑

n=1

|xn| and P = {x = (x1, · · · , xn, · · · ) ∈ ℓ1 : xn ≥ 0, n = 1, 2, 3, · · · }.

Then P is a normal cone in E. Since ℓ1 is weakly complete, we know from Remark 3.1 that

P is regular. (4.2) can be regarded as a PBVP of type (1.1) in E, where

K(t, s) = e−ts, H(t, s) = (1 + t2 + s2)−1, x = (x1, · · · , xn, · · · ),
y = (y1, · · · , yn, · · · ), z = (z1, · · · , zn, · · · ), f = (f1, · · · , fn, · · · ).
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in which

fn(t, x, y, z) =
4

π

( 1

4n2
− xn + x2n

)
+

t

2π3n2
yn+1

− 2

108π2(n+ 1)2
y2n − 1

108π3(n+ 2)3
z3n

and m = 1, t1 = π, I1 = (I11, · · · , I1n, · · · ) with

I1n(x) = − 1

2n
xn + xn+2.

Let

u0(t) = (0, · · · , 0, · · · ), ∀ 0 ≤ t ≤ 2π,

and

v0(t) =

{
(1, · · · , 1

n2 , · · · ), ∀ 0 ≤ t ≤ π;

(3− t
π , · · · ,

1
n2 (3− t

π ), · · · ), ∀ π < t ≤ 2π.

It is not difficult to verify that u0 and v0 satisfy condition (H1).

On the other hand, it is easy to see that conditions (H2) and (H3) are satisfied for

M =
4

π
, N =

3

108π
, N1 =

1

108π
, and L1 =

1

2
.

Evidently , k0 = h0 = 1, and it is easy to check that inequalities (2.2) and (2.24) hold.

Thus , our conclusion follows from the main theorem.
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