PERIODIC BOUNDARY VALUE PROBLEMS FOR IMPULSIVE INTEGRO-DIFFERENTIAL EQUATIONS OF MIXED TYPE IN BANACH SPACES***

Liu Xinzhi* Guo Dajun**

Abstract

This paper investigates periodic boundary value problem for first order nonlinear impulsive integro-differential equations of mixed type in a Banach space. By establishing a comparison result, criteria on the existence of maximal and minimal solutions are obtained.

Keywords Periodic boundary value problem, Impulsive integro-differential equation, Ordered Banach space, Maximal solution, Minimal solution
1991 MR Subject Classification 34G20, 45J05
Chinese Library Classification O175.15, O175.6

§1. Introduction

In this paper, we investigate the periodic boundary value problem (PBVP) for first order nonlinear impulsive integro-differential equations of mixed type in a Banach space E :

$$
\begin{cases}x^{\prime}=f(t, x, T x, S x), & \forall 0 \leq t \leq 2 \pi, \quad t \neq t_{k} \quad(k=1,2, \cdots, m) \tag{1.1}\\ \left.\triangle x\right|_{t=t_{k}}=I_{k}\left(x\left(t_{k}\right)\right) & (k=1,2, \cdots, m), \\ x(0)=x(2 \pi)\end{cases}
$$

where $f \in C[J \times E \times E \times E, E], J=[0,2 \pi], I_{k} \in C[E, E] \quad(k=1,2, \cdots, m)$,

$$
\begin{equation*}
(T x)(t)=\int_{0}^{t} K(t, s) x(s) d s, \quad(S x)(t)=\int_{0}^{2 \pi} H(t, s) x(s) d s \tag{1.2}
\end{equation*}
$$

$K \in C\left[D, R_{+}\right], D=\{(t, s) \in J \times J: t \geq s\}, H \in C\left[J \times J, R_{+}\right], R_{+}$denotes the set of all nonnegative numbers, and $0<t_{1}<\cdots<t_{k}<\cdots<t_{m}<2 \pi .\left.\triangle x\right|_{t=t_{k}}$ represents the jump of $x(t)$ at $t=t_{k}$, i.e., $\left.\triangle x\right|_{t=t_{k}}=x\left(t_{k}^{+}\right)-x\left(t_{k}^{-}\right)$, where $x\left(t_{k}^{+}\right)$and $x\left(t_{k}^{-}\right)$denote the right and left limits of $x(t)$ at $t=t_{k}$, respectively. A special case of PBVP (1.1) has been considered in Euclidean space recently in [2], where by developing a comparison result the monotonicity condition normally imposed on the right-hand side relative to the integral term is removed successfully and the existence of extremal solutions is established.

In Section 2 we establish a comparison result, and then we state and prove the main theorem in Section 3. Finally, to illustrate our result, Section 4 offers two examples in both finite and infinite dimensional spaces.

[^0]
§2. Comparison Result

Let $P C[J, E]=\left\{x: x\right.$ is a map from J into E such that $x(t)$ is continuous at $t \neq t_{k}$, and left continuous at $t=t_{k}$, and the right limit $x\left(t_{k}^{+}\right)$exists for $\left.k=1,2, \cdots, m\right\}$. Evidently, $P C[J, E]$ is a Banach space with norm $\|x\|_{P C}=\sup _{t \in J}\|x(t)\|$. Let $J^{\prime}=J \backslash\left\{t_{1}, \cdots, t_{m}\right\} . x \in$ $P C[J, E] \cap C^{1}\left[J^{\prime}, E\right]$ is called a solution of PBVP (1.1) if it satisfies (1.1).

Let E be partially ordered by a cone P of E, i.e., $x \leq y$ if and only if $y-x \in P . \quad P$ is said to be normal if there exists a positive constant N such that $\theta \leq x \leq y$ implies $\|x\| \leq N\|y\|$, where θ denotes the zero element of E, and P is said to be regular if $x_{1} \leq$ $x_{2} \leq \cdots \leq x_{n} \leq \cdots \leq y$ implies $\left\|x_{n}-x\right\| \rightarrow 0$ as $n \rightarrow \infty$ for some $x \in E$. It is well known that the regularity of P implies the normality of P (see [1, Theorem 1.2.1]). Let $Q=\{x \in P C[J, E]: x(t) \geq \theta$ for $t \in J\}$. Then Q is a cone in space $P C[J, E]$, and so, $P C[J, E]$ is partial ordered by $Q: u \leq v$ if and only if $v-u \in Q$, i.e., $u(t) \leq v(t)$ for $t \in J$.

In the following, let $J_{0}=\left[0, t_{1}\right], J_{1}=\left(t_{1}, t_{2}\right], \cdots, J_{m-1}=\left(t_{m-1}, t_{m}\right], J_{m}=\left(t_{m}, 2 \pi\right], \delta=$ $\max \left\{t_{k}-t_{k-1}: \quad k=1,2, \cdots, m+1\right\}\left(\right.$ where $\left.t_{0}=0, t_{m+1}=2 \pi\right)$ and $k_{0}=\max \{K(t, s):$ $(t, s) \in D\} . h_{0}=\max \{H(t, s):(t, s) \in J \times J\}$.

Lemma 2.1 (Comparison result). Assume that $p \in P C[J, E] \cap C^{1}\left[J^{\prime}, E\right]$ satisfies

$$
\begin{cases}p^{\prime} \leq-M p-N T p-N_{1} S p, & \forall t \in J, \quad t \neq t_{k} \quad(k=1,2, \cdots, m) \tag{2.1}\\ \left.\triangle p\right|_{t=t_{k}} \leq-L_{k} p\left(t_{k}\right) & (k=1,2, \cdots, m) \\ p(0) \leq p(2 \pi) & \end{cases}
$$

where constants $M>0, N \geq 0, N_{1} \geq 0,0 \leq L_{k} \leq 1 \quad(k=1,2, \cdots, m)$, and

$$
\begin{equation*}
M^{-1}\left(N k_{0}+N_{1} h_{0}\right)\left(e^{4 \pi M}-1\right) \delta \leq \frac{\left\{\prod_{k=1}^{m}\left(1-L_{k}\right)\right\}^{2}}{1+\sum_{n=1}^{m} \prod_{k=n}^{m}\left(1-L_{k}\right)} \tag{2.2}
\end{equation*}
$$

Then $p(t) \leq \theta$ for $t \in J$.
Proof. For any $g \in P^{*}\left(P^{*}\right.$ denotes the dual cone of P (see [1])), let $u(t)=g(p(t))$. Then $u \in P C[J, R] \cap C^{1}\left[J^{\prime}, R\right]$ and

$$
u^{\prime}(t)=g\left(p^{\prime}(t)\right), \quad g((T p)(t))=(T u)(t), \quad g((S p)(t))=(S u)(t)
$$

where R denotes the set of all real numbers. By (2.1), we have

$$
\begin{cases}u^{\prime} \leq-M u-N T u-N_{1} S u, & \forall t \in J, \quad t \neq t_{k} \quad(k=1,2, \cdots, m), \tag{2.3}\\ \left.\triangle u\right|_{t=t_{k}} \leq-L_{k} u\left(t_{k}\right) & (k=1,2, \cdots, m) \\ u(0) \leq u(2 \pi) & \end{cases}
$$

Let $v(t)=u(t) e^{M t}, \forall t \in J$. Then $v \in P C[J, R] \cap C^{1}\left[J^{\prime}, R\right]$ and (2.3) implies

$$
\left\{\begin{array}{l}
v^{\prime}(t) \leq-N \int_{0}^{t} k^{*}(t, s) v(s) d s-N_{1} \int_{0}^{2 \pi} h^{*}(t, s) v(s) d s, \tag{2.4}\\
\quad \forall t \in J, \quad t \neq t_{k} \quad(k=1,2, \cdots, m), \\
\left.\triangle v\right|_{t=t_{k}} \leq-L_{k} v\left(t_{k}\right) \quad(k=1,2, \cdots, m), \\
v(0) \leq v(2 \pi) e^{-2 \pi M},
\end{array}\right.
$$

where $k^{*}(t, s)=K(t, s) e^{M(t-s)}, \quad h^{*}(t, s)=H(t, s) e^{M(t-s)}$. We now prove

$$
\begin{equation*}
v(t) \leq 0, \quad \forall t \in J \tag{2.5}
\end{equation*}
$$

Suppose that (2.5) not true. Then, there are two cases: (a) there exists $t_{1}^{*} \in J$ such that $v\left(t_{1}^{*}\right)>0$, and $v(t) \geq 0$ for $t \in J$; (b) there exist $t_{1}^{*}, t_{2}^{*} \in J$ such that $v\left(t_{1}^{*}\right)>0$ and $v\left(t_{2}^{*}\right)<0$.

If case (a) holds, then (2.4) implies $v^{\prime}(t) \leq 0, \forall t \in J, \quad t \neq t_{k}(k=1,2, \cdots, m)$, and

$$
v\left(t_{k}^{+}\right)=v\left(t_{k}\right)+\left.\triangle v\right|_{t=t_{k}} \leq\left(1-L_{k}\right) v\left(t_{k}\right) \leq v\left(t_{k}\right) \quad(k=1,2, \cdots, m)
$$

This means that $v(t)$ is nonincreasing in J, and therefore

$$
\begin{align*}
& v(0) \geq v\left(t_{1}^{*}\right)>0 \tag{2.6}\\
& v(0) \geq v(2 \pi) \tag{2.7}
\end{align*}
$$

It follows from (2.7) and the last inequality in (2.4) that $v(0) \geq v(0) e^{2 \pi M}$, which contradicts (2.6).

In case (b), let $\inf _{t \in J} v(t)=-\lambda$. Then $\lambda>0$, and there exists $t_{i}<t_{0}^{*} \leq t_{i+1}$ for some i such that $v\left(t_{0}^{*}\right)=-\lambda$ or $v\left(t_{i}^{+}\right)=-\lambda$. We may assume that $v\left(t_{0}^{*}\right)=-\lambda$ since, in case of $v\left(t_{i}^{+}\right)=-\lambda$, the proof is similar. From (2.4), it is easy to see that

$$
\begin{align*}
v^{\prime}(t) & \leq \lambda N k_{0} \int_{0}^{t} e^{M(t-s)} d s+\lambda N_{1} h_{0} \int_{0}^{2 \pi} e^{M(t-s)} d s \\
& \leq \lambda M_{0}, \quad \forall t \in J, \quad t \neq t_{k} \quad(k=1,2, \cdots, m) \tag{2.8}
\end{align*}
$$

where $M_{0}=M^{-1}\left(N k_{0}+N_{1} h_{0}\right)\left(e^{2 \pi M}-1\right)$. We have

$$
\begin{cases}v(2 \pi)-v\left(t_{m}^{+}\right)=v^{\prime}\left(\xi_{m}\right)\left(2 \pi-t_{m}\right) & \left(t_{m}<\xi_{m}<2 \pi\right) \tag{2.9}\\ v\left(t_{m}\right)-v\left(t_{m-1}^{+}\right)=v^{\prime}\left(\xi_{m-1}\right)\left(t_{m}-t_{m-1}\right) & \left(t_{m-1}<\xi_{m-1}<t_{m}\right) \\ \quad \ldots \ldots \ldots & \\ v\left(t_{i+2}\right)-v\left(t_{i+1}^{+}\right)=v^{\prime}\left(\xi_{i+1}\right)\left(t_{i+2}-t_{i+1}\right) & \left(t_{i+1}<\xi_{i+1}<t_{i+2}\right) \\ v\left(t_{i+1}\right)-v\left(t_{0}^{*}\right)=v^{\prime}\left(\xi_{i}\right)\left(t_{i+1}-t_{0}^{*}\right) & \left(t_{0}^{*}<\xi_{i}<t_{i+1}\right)\end{cases}
$$

and so, by (2.4) and (2.8),

$$
\left\{\begin{array}{l}
v(2 \pi)-\left(1-L_{m}\right) v\left(t_{m}\right) \leq \lambda M_{0} \delta \tag{2.10}\\
v\left(t_{m}\right)-\left(1-L_{m-1}\right) v\left(t_{m-1}\right) \leq \lambda M_{0} \delta \\
\cdots \cdots \cdots \cdots \\
v\left(t_{i+2}\right)-\left(1-L_{i+1}\right) v\left(t_{i+1}\right) \leq \lambda M_{0} \delta \\
v\left(t_{i+1}\right)+\lambda \leq \lambda M_{0} \delta
\end{array}\right.
$$

which implies

$$
\begin{equation*}
v(2 \pi) \leq-\lambda \prod_{k=i+1}^{m}\left(1-L_{k}\right)+\lambda M_{0} \delta\left\{1+\sum_{n=i+1}^{m} \prod_{k=n}^{m}\left(1-L_{k}\right)\right\} \tag{2.11}
\end{equation*}
$$

If $v(2 \pi)>0$, then (2.11) gives

$$
M_{0} \delta>\frac{\prod_{k=i+1}^{m}\left(1-L_{k}\right)}{1+\sum_{n=i+1}^{m} \prod_{k=n}^{m}\left(1-L_{k}\right)} \geq \frac{\prod_{k=1}^{m}\left(1-L_{k}\right)}{1+\sum_{n=1}^{m} \prod_{k=n}^{m}\left(1-L_{k}\right)}
$$

which contradicts (2.2). So, we have $v(2 \pi) \leq 0$, and by $(2.4), v(0) \leq v(2 \pi) e^{-2 \pi M} \leq 0$. Hence $0<t_{1}^{*}<2 \pi$. Let $t_{j}<t_{1}^{*} \leq t_{j+1}$ for some j.

We first assume that $t_{0}^{*}<t_{1}^{*}$. So, $i \leq j$. We have, similar to (2.9),

$$
\begin{cases}v\left(t_{1}^{*}\right)-v\left(t_{j}^{+}\right)=v^{\prime}\left(\xi_{j}\right)\left(t_{1}^{*}-t_{j}\right) & \left(t_{j}<\xi_{j}<t_{1}^{*}\right) \tag{2.12}\\ v\left(t_{j}\right)-v\left(t_{j-1}^{+}\right)=v^{\prime}\left(\xi_{j-1}\right)\left(t_{j}-t_{j-1}\right) & \left(t_{j-1}<\xi_{j-1}<t_{j}\right) \\ \cdots \cdots \cdots \cdots & \\ v\left(t_{i+2}\right)-v\left(t_{i+1}^{+}\right)=v^{\prime}\left(\xi_{i+1}\right)\left(t_{i+2}-t_{i+1}\right) & \left(t_{i+1}<\xi_{i+1}<t_{i+2}\right) \\ v\left(t_{i+1}\right)-v\left(t_{0}^{*}\right)=v^{\prime}\left(\xi_{i}\right)\left(t_{i+1}-t_{0}^{*}\right) & \left(t_{0}^{*}<\xi_{i}<t_{i+1}\right)\end{cases}
$$

and so, as in (2.10) and (2.11), we get

$$
\begin{equation*}
0<v\left(t_{1}^{*}\right) \leq-\lambda \prod_{k=i+1}^{j}\left(1-L_{k}\right)+\lambda M_{0} \delta\left\{1+\sum_{n=i+1}^{j} \prod_{k=n}^{j}\left(1-L_{k}\right)\right\} \tag{2.13}
\end{equation*}
$$

which implies

$$
\begin{aligned}
M_{0} \delta & >\frac{\prod_{k=i+1}^{j}\left(1-L_{k}\right)}{1+\sum_{n=i+1}^{j} \prod_{k=n}^{j}\left(1-L_{k}\right)}=\frac{\prod_{k=i+1}^{m}\left(1-L_{k}\right)}{\prod_{k=j+1}^{m}\left(1-L_{k}\right)+\sum_{n=i+1}^{j} \prod_{k=n}^{m}\left(1-L_{k}\right)} \\
& \geq \frac{\prod_{k=1}^{m}\left(1-L_{k}\right)}{1+\sum_{n=1}^{m} \prod_{k=n}^{m}\left(1-L_{k}\right)}
\end{aligned}
$$

and this contradicts (2.2).
Next assume that $t_{1}^{*}<t_{0}^{*}$. So $j \leq i$. Similar to (2.12) and (2.13), we have

$$
0<v\left(t_{1}^{*}\right) \leq v(0) \prod_{k=1}^{j}\left(1-L_{k}\right)+\lambda M_{0} \delta\left\{1+\sum_{n=1}^{j} \prod_{k=n}^{j}\left(1-L_{k}\right)\right\},
$$

which implies

$$
\begin{equation*}
v(0) \prod_{k=1}^{j}\left(1-L_{k}\right)>-\lambda M_{0} \delta\left\{1+\sum_{n=1}^{j} \prod_{k=n}^{j}\left(1-L_{k}\right)\right\} . \tag{2.14}
\end{equation*}
$$

On the other hand, we have, by (2.4),

$$
\begin{equation*}
v(0) \leq v(2 \pi) e^{-2 \pi M} \tag{2.15}
\end{equation*}
$$

It follows from (2.11), (2.14) and (2.15) that

$$
\begin{aligned}
& -\lambda M_{0} \delta\left\{1+\sum_{n=1}^{j} \prod_{k=n}^{j}\left(1-L_{k}\right)\right\} \\
< & -\lambda e^{-2 \pi M} \prod_{k=1}^{j}\left(1-L_{k}\right) \prod_{k=i+1}^{m}\left(1-L_{k}\right) \\
& +\lambda M_{0} \delta e^{-2 \pi M} \prod_{k=1}^{j}\left(1-L_{k}\right)\left\{1+\sum_{n=i+1}^{m} \prod_{k=n}^{m}\left(1-L_{k}\right)\right\}
\end{aligned}
$$

or

$$
\begin{aligned}
& \prod_{k=1}^{j}\left(1-L_{k}\right) \prod_{k=i+1}^{m}\left(1-L_{k}\right) \\
< & M_{0} \delta e^{2 \pi M}\left\{1+\sum_{n=1}^{j} \prod_{k=n}^{j}\left(1-L_{k}\right)\right\} \\
& +M_{0} \delta \prod_{k=1}^{j}\left(1-L_{k}\right)\left\{1+\sum_{n=i+1}^{m} \prod_{k=n}^{m}\left(1-L_{k}\right)\right\} .
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \left\{\prod_{k=1}^{m}\left(1-L_{k}\right)\right\}^{2} \\
\leq & {\left[\prod_{k=j+1}^{m}\left(1-L_{k}\right)\right]\left[\prod_{k=1}^{j}\left(1-L_{k}\right) \prod_{k=i+1}^{m}\left(1-L_{k}\right)\right] } \\
< & M_{0} \delta e^{2 \pi M}\left\{\prod_{k=j+1}^{m}\left(1-L_{k}\right)+\sum_{n=1}^{j} \prod_{k=n}^{m}\left(1-L_{k}\right)\right\} \\
& +M_{0} \delta \prod_{k=1}^{m}\left(1-L_{k}\right)\left\{1+\sum_{n=i+1}^{m} \prod_{k=n}^{m}\left(1-L_{k}\right)\right\} \\
\leq & M_{0} \delta e^{2 \pi M}\left\{1+\sum_{n=1}^{m} \prod_{k=n}^{m}\left(1-L_{k}\right)\right\}+M_{0} \delta\left\{1+\sum_{n=1}^{m} \prod_{k=n}^{m}\left(1-L_{k}\right)\right\} \\
= & M_{0} \delta\left(e^{2 \pi M}+1\right)\left\{1+\sum_{n=1}^{m} \prod_{k=n}^{m}\left(1-L_{k}\right)\right\},
\end{aligned}
$$

which contradicts (2.2). The proof is thus complete.
Remark 2.1. Lemma 2.1 develops some ideas in [2] and [3].
Lemma 2.2. Let $\sigma, \eta \in P C[J, E]$ and $M, N, N_{1}, L_{k}(k=1,2, \cdots, m)$ be constants with $M \neq 0$. Then $x \in P C[J, E] \cap C^{1}\left[J^{\prime}, E\right]$ is a solution of the $P B V P$ for linear impulsive integro-differential equation

$$
\begin{cases}x^{\prime}+M x+N T x+N_{1} S x=\sigma(t), \quad \forall t \in J, \quad t \neq t_{k} \quad(k=1,2, \cdots, m) \tag{2.16}\\ \left.\triangle x\right|_{t=t_{k}}=I_{k}\left(\eta\left(t_{k}\right)\right)-L_{k}\left[x\left(t_{k}\right)-\eta\left(t_{k}\right)\right] & (k=1,2, \cdots, m) \\ x(0)=x(2 \pi), & \end{cases}
$$

if and only if $x \in P C[J, E]$ is a solution of the following impulsive integral equation

$$
\begin{align*}
x(t)= & e^{-M t}\left\{\frac { 1 } { e ^ { 2 \pi M } - 1 } \left[\int_{0}^{2 \pi} e^{M s}\left(\sigma(s)-N(T x)(s)-N_{1}(S x)(s)\right) d s\right.\right. \\
& \left.+\sum_{k=1}^{m} e^{M t_{k}}\left(I_{k}\left(\eta\left(t_{k}\right)\right)-L_{k}\left(x\left(t_{k}\right)-\eta\left(t_{k}\right)\right)\right)\right] \\
& +\int_{0}^{t} e^{M s}\left(\sigma(s)-N(T x)(s)-N_{1}(S x)(s)\right) d s \\
& \left.+\sum_{0<t_{k}<t} e^{M t_{k}}\left(I_{k}\left(\eta\left(t_{k}\right)\right)-L_{k}\left(x\left(t_{k}\right)-\eta\left(t_{k}\right)\right)\right)\right\} . \tag{2.17}
\end{align*}
$$

Proof. Assume that $x \in P C[J, E] \cap C^{1}\left[J^{\prime}, E\right]$ is a solution of PBVP (2.16). Let $z(t)=$ $x(t) e^{M t}$. Then $z \in P C[J, E] \cap C^{1}\left[J^{\prime}, E\right]$ and, by (2.16),

$$
\begin{align*}
z^{\prime}(t) & =\left[\sigma(t)-N(T x)(t)-N_{1}(S x)(t)\right] e^{M t}, \quad \forall t \in J, t \neq t_{k} \quad(k=1,2, \cdots, m), \tag{2.18}\\
\left.\triangle z\right|_{t=t_{k}} & =\left\{I_{k}\left(\eta\left(t_{k}\right)\right)-L_{k}\left[x\left(t_{k}\right)-\eta\left(t_{k}\right)\right]\right\} e^{M t_{k}} \quad(k=1,2, \cdots, m) \tag{2.19}
\end{align*}
$$

It is easy to establish the following formula (see [4, Lemma 1])

$$
\begin{equation*}
z(t)=z(0)+\int_{0}^{t} z^{\prime}(t) d s+\sum_{0<t_{k}<t}\left[z\left(t_{k}^{+}\right)-z\left(t_{k}\right)\right], \quad \forall t \in J \tag{2.20}
\end{equation*}
$$

Substituting (2.18) and (2.19) into (2.20), we get

$$
\begin{align*}
x(t) e^{M t}= & x(0)+\int_{0}^{t} e^{M s}\left[\sigma(s)-N(T x)(s)-N_{1}(S x)(s)\right] d s \\
& +\sum_{0<t_{k}<t} e^{M t_{k}}\left[I_{k}\left(\eta\left(t_{k}\right)\right)-L_{k}\left(x\left(t_{k}\right)-\eta\left(t_{k}\right)\right)\right], \quad \forall t \in J . \tag{2.21}
\end{align*}
$$

Letting $t=2 \pi$ in (2.21), we find

$$
\begin{align*}
x(2 \pi) e^{M 2 \pi}= & x(0)+\int_{0}^{2 \pi} e^{M s}\left[\sigma(s)-N(T x)(s)-N_{1}(S x)(s)\right] d s \\
& +\sum_{k=1}^{m} e^{M t_{k}}\left[I_{k}\left(\eta\left(t_{k}\right)\right)-L_{k}\left(x\left(t_{k}\right)-\eta\left(t_{k}\right)\right)\right] . \tag{2.22}
\end{align*}
$$

Since $x(0)=x(2 \pi),(2.22)$ implies

$$
\begin{align*}
x(0)= & \frac{1}{e^{2 \pi M}-1}\left\{\int_{0}^{2 \pi} e^{M s}\left[\sigma(s)-N(T x)(s)-N_{1}(S x)(s)\right] d s\right. \\
& +\sum_{k=1}^{m} e^{M t_{k}}\left[I_{k}\left(\eta\left(t_{k}\right)\right)-L_{k}\left(x\left(t_{k}\right)-\eta\left(t_{k}\right)\right]\right\} . \tag{2.23}
\end{align*}
$$

Substituting (2.23) into (2.21), we see that $x(t)$ satisfies (2.17).
Conversely, if $x \in P C[J, E]$ is a solution of Equation (2.17), then, it is easy to see by direct differentiations that $x \in C^{1}\left[J^{\prime}, E\right]$ and x satisfies (2.16).

Lemma 2.3. Let constants $M>0, N \geq 0, N_{1} \geq 0, L_{k} \geq 0(k=1,2, \cdots, m)$ and $\sigma, \eta \in P C[J, E]$. If

$$
\begin{equation*}
2 \pi M^{-1}\left(N k_{0}+N_{1} h_{0}\right)\left(2-e^{-2 \pi M}\right)+\sum_{k=1}^{m}\left[1+\left(e^{2 \pi M}-1\right)^{-1} e^{M t_{k}}\right] L_{k}<1 \tag{2.24}
\end{equation*}
$$

then Equation (2.17) has a unique solution in $P C[J, E]$.
Proof. Define operator F by

$$
\begin{aligned}
(F x)(t)= & e^{-M t}\left\{\frac { 1 } { e ^ { 2 \pi M } - 1 } \left[\int_{0}^{2 \pi} e^{M s}\left(\sigma(s)-N(T x)(s)-N_{1}(S x)(s)\right) d s\right.\right. \\
& \left.+\sum_{k=1}^{m} e^{M t_{k}}\left(I_{k}\left(\eta\left(t_{k}\right)\right)-L_{k}\left(x\left(t_{k}\right)-\eta\left(t_{k}\right)\right)\right)\right] \\
& +\int_{0}^{t} e^{M s}\left(\sigma(s)-N(T x)(s)-N_{1}(S x)(s)\right) d s \\
& \left.+\sum_{0<t_{k}<t} e^{M t_{k}}\left(I_{k}\left(\eta\left(t_{k}\right)\right)-L_{k}\left(x\left(t_{k}\right)-\eta\left(t_{k}\right)\right)\right)\right\} .
\end{aligned}
$$

It is easy to see that F is an operator from $P C[J, E]$ into $P C[J, E]$ and it satisfies

$$
\|F x-F y\|_{P C} \leq \gamma\|x-y\|_{P C}, \quad \forall x, y \in P C[J, E]
$$

where

$$
\gamma=2 \pi M^{-1}\left(N k_{0}+N_{1} h_{0}\right)\left(2-e^{-2 \pi M}\right)+\sum_{k=1}^{m}\left[1+\left(e^{2 \pi M}-1\right)^{-1} e^{M t_{k}}\right] L_{k}<1
$$

on account of (2.24). Thus, the Banach fixed point theorem implies that F has a unique fixed point in $P C[J, E]$, and the lemma is proved.

Lemma 2.4. Let $x_{n} \in P C[J, E](n=1,2,3, \cdots)$. If functions $x_{n}(t)(n=1,2,3, \cdots)$ are equicontinuous on each $J_{k}(k=0,1, \cdots, m)$ and

$$
\begin{equation*}
\lim _{n \rightarrow \infty} x_{n}(t)=x(t), \quad \forall t \in J \tag{2.25}
\end{equation*}
$$

then $x \in P C[J, E]$ and

$$
\begin{equation*}
\left\|x_{n}-x\right\|_{P C} \rightarrow 0 \quad(n \rightarrow \infty) \tag{2.26}
\end{equation*}
$$

Proof. Let $V=\left\{x_{n}: n=1,2,3, \cdots\right\}$ and $V_{k}=\left\{\left.x_{n}\right|_{J_{k}}: n=1,2,3, \cdots\right\} \quad(k=$ $0,1, \cdots, m)$. Since $x_{n}\left(t_{k}^{+}\right)$exist $(n=1,2,3, \cdots), V_{k}$ may be regarded as a subset of space $C\left[\bar{J}_{k}, E\right]$, where \bar{J}_{k} denotes the closure of J_{k}, i.e., $\bar{J}_{k}=\left[t_{k}, t_{k+1}\right]$. Hence, by hypotheses and the Ascoli-Arzela theorem, V_{k} is relatively compact in $C\left[\bar{J}_{k}, E\right](k=0,1, \cdots, m)$. Consequently, V is relatively compact in $P C[J, E]$.

Assume that (2.26) is not true. Then, there exists an $\varepsilon_{0}>0$ and a subsequence $\left\{x_{n_{i}}\right\} \subset$ $\left\{x_{n}\right\}$ such that

$$
\begin{equation*}
\left\|x_{n_{i}}-x\right\|_{P C} \geq \varepsilon_{0} \quad(i=1,2,3, \cdots) \tag{2.27}
\end{equation*}
$$

Since V is relatively compact in $P C[J, E],\left\{x_{n_{i}}\right\}$ contains a subsequence which converges uniformly on J to some $y \in P C[J, E]$. Without loss of generality, we may assume that $\left\{x_{n_{i}}\right\}$ itself converges uniformly on J to y, i.e.

$$
\begin{equation*}
\left\|x_{n_{i}}-y\right\|_{P C} \rightarrow 0 \quad(i \rightarrow \infty) \tag{2.28}
\end{equation*}
$$

Now, (2.28) and (2.25) imply that $y(t)=x(t)$ for $t \in J$, i.e. $y=x$, and (2.28) becomes

$$
\begin{equation*}
\left\|x_{n_{i}}-x\right\|_{P C} \rightarrow 0 \quad(i \rightarrow \infty) \tag{2.29}
\end{equation*}
$$

Evidently, (2.29) contradicts (2.27), and therefore, (2.26) holds.

§3. Main Theorem

We shall state and prove our main theorem in this section. For convenience let us list some conditions for later use.
$\left(\mathrm{H}_{1}\right)$ There exist $u_{0}, v_{0} \in P C[J, E] \cap C^{1}\left[J^{\prime}, E\right]$ satisfying $u_{0}(t) \leq v_{0}(t)(\forall t \in J)$ and

$$
\begin{aligned}
& \begin{cases}u_{0}^{\prime} \leq f\left(t, u_{0}, T u_{0}, S u_{0}\right), & \forall t \in J, t \neq t_{k} \quad(k=1,2, \cdots, m), \\
\left.\triangle u_{0}\right|_{t=t_{k}} \leq I_{k}\left(u_{0}\left(t_{k}\right)\right) & (k=1,2, \cdots, m), \\
u_{0}(0) \leq u_{0}(2 \pi),\end{cases} \\
& \begin{cases}v_{0}^{\prime} \geq f\left(t, v_{0}, T v_{0}, S v_{0}\right), & \forall t \in J, t \neq t_{k} \quad(k=1,2, \cdots, m) \\
\left.\triangle v_{0}\right|_{t=t_{k}} \geq I_{k}\left(v_{0}\left(t_{k}\right)\right) & (k=1,2, \cdots, m), \\
v_{0}(0) \geq v_{0}(2 \pi),\end{cases}
\end{aligned}
$$

i.e. $u_{0}(t)$ and $v_{0}(t)$ are lower and upper solutions of PBVP (1.1) respectively.
$\left(\mathrm{H}_{2}\right)$ There exist constants $M>0, N \geq 0$ and $N_{1} \geq 0$ such that

$$
f(t, x, y, z)-f(t, \bar{x}, \bar{y}, \bar{z}) \geq-M(x-\bar{x})-N(y-\bar{y})-N_{1}(z-\bar{z}),
$$

whenever $t \in J, u_{0}(t) \leq \bar{x} \leq x \leq v_{0}(t),\left(T u_{0}\right)(t) \leq \bar{y} \leq y \leq\left(T v_{0}\right)(t)$, and $\left(S u_{0}\right)(t) \leq \bar{z} \leq$ $z \leq\left(S v_{0}\right)(t)$.
$\left(\mathrm{H}_{3}\right)$ There exist constants $0 \leq L_{k} \leq 1(k=1,2, \cdots, m)$ such that

$$
I_{k}(x)-I_{k}(\bar{x}) \geq-L_{k}(x-\bar{x})
$$

whenever $u_{0}\left(t_{k}\right) \leq \bar{x} \leq x \leq v_{0}\left(t_{k}\right),(k=1,2, \cdots, m)$. As usual, $\left[u_{0}, v_{0}\right]=\{x \in P C[J, E]:$ $\left.u_{0} \leq x \leq v_{0}\right\}$ denotes an ordered interval in $P C[J, E]$.

Theorem 3.1. Let cone P be regular, f be bounded on $J \times B_{r} \times B_{r} \times B_{r}$ and I_{k} be bounded on $B_{r}(k=1,2, \cdots, m)$ for any $r>0$, where $B_{r}=\{x \in E:\|x\| \leq r\}$. Let conditions $\left(\mathrm{H}_{1}\right)-\left(\mathrm{H}_{3}\right)$ be satisfied. Assume that inequlities (2.2) and (2.24) hold. Then there exist monotone sequences $\left\{u_{n}\right\},\left\{v_{n}\right\} \subset P C[J, E] \cap C^{1}\left[J^{\prime}, E\right]$ which converge uniformly and monotonically on J to the minimal and maximal solutions $\bar{x}, x^{*} \in P C[J, E] \cap C^{1}\left[J^{\prime}, E\right]$ of PBVP (1.1) in $\left[u_{0}, v_{0}\right]$ respectively. That is, if $x \in P C[J, E] \cap C^{1}\left[J^{\prime}, E\right]$ is any solution of PBVP (1.1) satisfying $x \in\left[u_{0}, v_{0}\right]$, then

$$
\begin{align*}
u_{0}(t) & \leq u_{1}(t) \leq \cdots \leq u_{n}(t) \leq \bar{x}(t) \leq x(t) \leq x^{*}(t) \\
& \leq v_{n}(t) \leq \cdots \leq v_{1}(t) \leq v_{0}(t), \quad \forall t \in J, \quad \forall n \geq 0 \tag{3.1}
\end{align*}
$$

Proof. For any $\eta \in\left[u_{0}, v_{0}\right]$, consider the linear PBVP (2.16) with

$$
\begin{equation*}
\sigma(t)=f(t, \eta(t),(T \eta)(t),(S \eta)(t))+M \eta(t)+N(T \eta)(t)+N_{1}(S \eta)(t) \tag{3.2}
\end{equation*}
$$

By Lemma 2.2 and Lemma 2.3, PBVP (2.16) has a unique solution $x \in P C[J, E] \cap C^{1}\left[J^{\prime}, E\right]$. Let $x=A \eta$. Then A is an operator from $\left[u_{0}, v_{0}\right]$ into $P C[J, E] \cap C^{1}\left[J^{\prime}, E\right]$. We now show that (a) $u_{0} \leq A u_{0}, A v_{0} \leq v_{0}$ and (b) A is nondecreasing in $\left[u_{0}, v_{0}\right]$. To prove (a), we set $u_{1}=A u_{0}$ and $p=u_{0}-u_{1}$. By (2.16) and (3.2), we have

$$
\left\{\begin{array}{l}
u_{1}^{\prime}+M u_{1}+N T u_{1}+N_{1} S u_{1}=f\left(t, u_{0}, T u_{0}, S u_{0}\right)+M u_{0}+N T u_{0}+N_{1} u_{0} \\
\quad \forall t \in J, t \neq t_{k} \quad(k=1,2, \cdots, m), \\
\left.u_{1}\right|_{t=t_{k}}=I_{k}\left(u_{0}\left(t_{k}\right)\right)-L_{k}\left[u_{1}\left(t_{k}\right)-u_{0}\left(t_{k}\right)\right] \quad(k=1,2, \cdots, m) \\
u_{1}(0)=u_{1}(2 \pi)
\end{array}\right.
$$

and so, by $\left(\mathrm{H}_{1}\right)$,

$$
\begin{cases}p^{\prime}=u_{0}^{\prime}-u_{1}^{\prime} \leq-M p-N T p-N_{1} S p, & \forall t \in J, t \neq t_{k}(k=1,2, \cdots, m) \\ \left.\triangle p\right|_{t=t_{k}}=\left.\triangle u_{0}\right|_{t=t_{k}}-\left.\triangle u_{1}\right|_{t=t_{k}} \leq-L_{k} p\left(t_{k}\right) & (k=1,2, \cdots, m) \\ p(0)=u_{0}(0)-u_{1}(0) \leq u_{0}(2 \pi)-u_{1}(2 \pi)=p(2 \pi) & \end{cases}
$$

which implies by virtue of Lemma 1.1 that $p(t) \leq \theta$ for $t \in J$, i.e. $u_{0} \leq A u_{0}$. Similarly, we can show that $A v_{0} \leq v_{0}$. To prove (b), let $\eta_{1}, \eta_{2} \in\left[u_{0}, v_{0}\right]$ such that $\eta_{1} \leq \eta_{2}$ and let $p=x_{1}-x_{2}$, where $x_{1}=A \eta_{1}$ and $x_{2}=A \eta_{2}$. It is easy to see from $(2.16),(3.2)$ and $\left(\mathrm{H}_{2}\right),\left(\mathrm{H}_{3}\right)$ that

$$
\begin{aligned}
& p^{\prime}=x_{1}^{\prime}-x_{2}^{\prime}=-\left[f\left(t, \eta_{2}, T \eta_{2}, S \eta_{2}\right)-f\left(t, \eta_{1}, T \eta_{1}, S \eta_{1}\right)\right. \\
&+M\left(\eta_{2}-\eta_{1}\right)+N T\left(\eta_{2}-\eta_{1}\right)+N_{1} S\left(\eta_{2}-\eta_{1}\right) \\
&-M p-N T p-N_{1} S p \leq-M p-N T p-N_{1} S p, \\
& \forall t \in J, t \neq t_{k} \quad(k=1,2, \cdots, m), \\
&\left.\triangle p\right|_{t=t_{k}}=\left.\triangle x_{1}\right|_{t=t_{k}}-\left.\triangle x_{2}\right|_{t=t_{k}} \\
&=-\left\{I_{k}\left(\eta_{2}\left(t_{k}\right)-I_{k}\left(\eta_{1}\left(t_{k}\right)\right)+L_{k}\left[\eta_{2}\left(t_{k}\right)-\eta_{1}\left(t_{k}\right)\right]\right\}-L_{k} p\left(t_{k}\right)\right. \\
& \leq-L_{k} p\left(t_{k}\right), \quad(k=1,2, \cdots, m), \\
& p(0)= p(2 \pi) .
\end{aligned}
$$

Hence, Lemma 2.1 implies that $p(t) \leq \theta$ for $t \in J$, i.e. $A \eta_{1} \leq A \eta_{2}$, and (b) is proved.
Let $u_{n}=A u_{n-1}$ and $v_{n}=A v_{n-1}(n=1,2,3, \cdots)$. By (a) and (b) just proved, we have

$$
\begin{equation*}
u_{0}(t) \leq u_{1}(t) \leq \cdots \leq u_{n}(t) \leq \cdots \leq v_{n}(t) \leq \cdots \leq v_{1}(t) \leq v_{0}(t), \quad \forall t \in J \tag{3.3}
\end{equation*}
$$

So, the regularity of P implies

$$
\begin{equation*}
\lim _{n \rightarrow \infty} u_{n}(t)=\bar{x}(t), \quad \forall t \in J \tag{3.4}
\end{equation*}
$$

Let $V=\left\{u_{n}: n=0,1,2, \cdots\right\}$. Since P is also normal, it follows from (3.3) that V is a bounded set in $P C[J, E]$, and so, by hypotheses, there is a positive constant β such that

$$
\begin{align*}
& \| f\left(t, u_{n-1}(t),\left(T u_{n-1}\right)(t),\left(S u_{n-1}\right)(t)\right)+M u_{n-1}(t)-N\left(T\left(u_{n}-u_{n-1}\right)\right)(t) \\
& -N_{1}\left(S\left(u_{n}-u_{n-1}\right)(t) \| \leq \beta, \quad \forall t \in J(n=1,2,3, \cdots)\right. \tag{3.5}\\
& \quad\left\|I_{k}\left(u_{n-1}\right)(t)\right\| \leq \beta, \quad \forall t \in J(n=1,2,3, \cdots) \tag{3.6}
\end{align*}
$$

On account of the definition of u_{n} and (2.16), (2.17), (3.2), we have

$$
\begin{align*}
u_{n}(t)= & e^{-M t}\left\{\frac { 1 } { e ^ { 2 \pi M } - 1 } \left[\int _ { 0 } ^ { 2 \pi } e ^ { M s } \left(f\left(s, u_{n-1}(s),\left(T u_{n-1}\right)(s),\left(S u_{n-1}\right)(s)\right)\right.\right.\right. \\
& \left.+M u_{n-1}(s)-N\left(T\left(u_{n}-u_{n-1}\right)\right)(s)-N_{1}\left(S\left(u_{n}-u_{n-1}\right)\right)(s)\right) d s \\
& \left.+\sum_{k=1}^{m} e^{M t_{k}}\left(I_{k}\left(u_{n-1}\left(t_{k}\right)\right)-L_{k}\left(u_{n}\left(t_{k}\right)-u_{n-1}\left(t_{k}\right)\right)\right)\right] \\
& +\int_{0}^{t} e^{M s}\left(f\left(s, u_{n-1}(s),\left(T u_{n-1}\right)(s),\left(S u_{n-1}\right)(s)\right)+M u_{n-1}(s)\right. \\
& \left.-N\left(T\left(u_{n}-u_{n-1}\right)\right)(s)-N_{1}\left(S\left(u_{n}-u_{n-1}\right)\right)(s)\right) d s \\
& +\sum_{0<t_{k}<t} e^{M t_{k}}\left(\left(I_{k}\left(u_{n-1}\left(t_{k}\right)\right)-L_{k}\left(u_{n}\left(t_{k}\right)-u_{n-1}\left(t_{k}\right)\right)\right)\right\} \\
& \forall t \in J \quad(n=1,2,3, \cdots) . \tag{3.7}
\end{align*}
$$

It follows from (3.5)-(3.7) that V is equicontinuous on each $J_{k}(k=0,1, \cdots, m)$, and consequently, (3.4) and Lemma 2.4 imply that $\bar{x} \in P C[J, E]$ and $\left\{u_{n}\right\}$ converges to \bar{x} uniformly on J. Now, we have

$$
\begin{align*}
& f\left(t, u_{n-1}(t),\left(T u_{n-1}\right)(t),\left(S u_{n-1}\right)(t)\right)+M u_{n-1}(t)-N\left(T\left(u_{n}-u_{n-1}\right)\right)(t) \\
& -N_{1}\left(S\left(u_{n}-u_{n-1}\right)\right)(t) \rightarrow f(t, \bar{x}(t),(T \bar{x})(t),(S \bar{x})(t))+M \bar{x}(t) \\
& \quad \text { as } n \rightarrow \infty, \quad \forall t \in J, \tag{3.8}
\end{align*}
$$

and, by (3.5),

$$
\begin{align*}
& \| f\left(t, u_{n-1}(t),\left(T u_{n-1}\right)(t),\left(S u_{n-1}\right)(t)\right)+M u_{n-1}(t)-N\left(T\left(u_{n}-u_{n-1}\right)\right)(t) \\
& -N_{1}\left(S\left(u_{n}-u_{n-1}\right)\right)(t)-f(t, \bar{x}(t),(T \bar{x})(t),(S \bar{x})(t))-M \bar{x}(t) \| \leq 2 \beta \\
& \forall t \in J \quad(n=1,2,3, \cdots) \tag{3.9}
\end{align*}
$$

Observing (3.8) and (3.9) and taking limits as $n \rightarrow \infty$ in (3.7), we get

$$
\begin{aligned}
\bar{x}(t)= & e^{-M t}\left\{\frac { 1 } { e ^ { 2 \pi M } - 1 } \left[\int_{0}^{2 \pi} e^{M s}(f(s, \bar{x}(s),(T \bar{x})(s),(S \bar{x})(s))+M \bar{x}(s)) d s\right.\right. \\
& +\sum_{k=1}^{m} e^{M t_{k}}\left(I_{k}\left(\bar{x}\left(t_{k}\right)\right)\right] \\
& +\int_{0}^{t} e^{M s}(f(s, \bar{x}(s),(T \bar{x})(s),(S \bar{x})(s))+M \bar{x}(s)) d s \\
& \left.+\sum_{0<t_{k}<t} e^{M t_{k}} I_{k}\left(\bar{x}\left(t_{k}\right)\right)\right\}
\end{aligned}
$$

which implies by virtue of Lemma 2.2 that $\bar{x} \in P C[J, E] \cap C^{1}\left[J^{\prime}, E\right]$ and $\bar{x}(t)$ is a solution of PBVP (1.1).

In the same way, we can show that $\left\{v_{n}\right\}$ converges uniformly on J to some x^{*}, and $x^{*}(t)$ is a solution of $\operatorname{PBVP}(1.1)$ in $P C[J, E] \cap C^{1}\left[J^{\prime}, E\right]$.

Finally, let $x \in P C[J, E] \cap C^{1}\left[J^{\prime}, E\right]$ be any solution of PBVP (1.1) in $\left[u_{0}, v_{0}\right]$. Assume that $u_{n-1}(t) \leq x(t) \leq v_{n-1}(t)$ for $t \in J$, and let $p=u_{n}-x$. Then, as before by (2.16), (3.2) and $\left(\mathrm{H}_{2}\right),\left(\mathrm{H}_{3}\right)$, it is easy to verify that p satisfies (2.1), and so, Lemma 2.1 implies that $p(t) \leq \theta$ for $t \in J$, i.e. $u_{n}(t) \leq x(t)$ for $t \in J$. Similarly, we can show that $x(t) \leq v_{n}(t)$ for $t \in J$. Consequently, by induction, we have $u_{n}(t) \leq x(t) \leq v_{n}(t)$ for $t \in J(n=0,1,2, \cdots)$, and by taking limits, we get $\bar{x}(t) \leq x(t) \leq x^{*}(t)$ for $t \in J$. Hence, (3.1) holds, and the theorem is proved.

Remark 3.1. The condition that P is regular will be satisfied if E is weakly complete (reflexive, in particular) and P is normal (see [5, Theorem 2.2]).

Remark 3.2. In some cases, it is easy to find a lower solution and an upper solution for PBVP (1.1). For example, let $I_{k}(\theta)=\theta(k=1,2, \cdots, m)$. If $f(t, \theta, \theta, \theta) \geq \theta$ for $t \in J, t \neq t_{k}(k=1,2, \cdots, m)$, then $u_{0}(t) \equiv \theta(t \in J)$ is a lower solution of PBVP (1.1); if $f\left(t, x_{0}, T x_{0}, S x_{0}\right) \leq \theta$ for some $x_{0}>\theta$ and $t \in J, t \neq t_{k}(k=1,2, \cdots, m)$, then $v_{0}(t) \equiv x_{0}(t \in J)$ is an upper solution of PBVP (1.1).

§4. Examples

Example 4.1. Consider the PBVP of finite system for scalar nonlinear impulsive integrodifferential equations

$$
\begin{cases}x_{i}^{\prime}=f_{i}(t, x, T x, S x), & \forall 0 \leq t \leq 2 \pi, \quad t \neq t_{k} \quad(k=1,2, \cdots, m) \tag{4.1}\\ \left.\triangle x_{i}\right|_{t=t_{k}}=I_{i k}\left(x\left(t_{k}\right)\right) & (k=1,2, \cdots, m) \\ x_{i}(0)=x_{i}(2 \pi) & (i=1,2, \cdots, n)\end{cases}
$$

where $f_{i}=f_{i}(t, x, y, z), x=\left(x_{1}, \cdots, x_{n}\right), y=\left(y_{1}, \cdots, y_{n}\right), z=\left(z_{1}, \cdots, z_{n}\right), f_{i} \in C^{1}[J \times$ $\left.R^{n} \times R^{n} \times R^{n}, R\right], \quad J=[0,2 \pi], 0<t_{1}<\cdots<t_{k}<\cdots<t_{m}<2 \pi, \quad I_{i k} \in C^{1}\left[R^{n}, R\right] \quad(k=$ $1,2, \cdots, m ; i=1,2, \cdots, n), T x$ and $S x$ are defined by (1.2) with $K \in C\left[D, R_{+}\right]$and $H \in$ $C\left[J \times J, R_{+}\right]$. Let $u_{0}=\left(u_{01}, \cdots, x_{0 n}\right)$ and $v_{0}=\left(v_{01}, \cdots, v_{0 n}\right)$ be lower and upper solutions of (4.1) respectively with $u_{0}(t) \leq v_{0}(t)$ for $t \in J$ (i.e., $u_{0 i}(t) \leq v_{0 i}(t)$ for $\left.t \in J, i=1,2, \cdots, n\right)$. Let $\Omega=\left\{(t, x, y, z): t \in J, u_{0}(t) \leq x \leq v_{0}(t),\left(T u_{0}\right)(t) \leq y \leq\left(T v_{0}\right)(t),\left(S u_{0}\right)(t) \leq z \leq\right.$ $\left.\left(S v_{0}\right)(t)\right\}$ and $\Omega_{k}=\left\{x: u_{0}\left(t_{k}\right) \leq x \leq v_{0}\left(t_{k}\right)\right\}(k=1,2, \cdots, m)$.

Conclusion 4.1. If there exist constans $M>0, N \geq 0, N_{1} \geq 0$ and $0 \leq L_{k} \leq 1$ ($k=$ $1,2, \cdots, m)$ such that

$$
\begin{aligned}
\frac{\partial f_{i}}{\partial x_{j}} & \geq\left\{\begin{array}{ll}
0, & i \neq j ; \\
-M, & i=j,
\end{array} \quad \text { in } \Omega \quad(i, j=1,2, \cdots, n),\right. \\
\frac{\partial f_{i}}{\partial y_{j}} & \geq\left\{\begin{array}{ll}
0, & i \neq j ; \\
-N, & i=j,
\end{array} \quad \text { in } \Omega \quad(i, j=1,2, \cdots, n),\right. \\
\frac{\partial f_{i}}{\partial z_{j}} & \geq\left\{\begin{array}{ll}
0, & i \neq j ; \\
-N_{1}, & i=j,
\end{array} \quad \text { in } \Omega \quad(i, j=1,2, \cdots, n),\right. \\
\frac{\partial I_{i k}}{\partial x_{j}} & \geq\left\{\begin{array}{ll}
0, & i \neq j ; \\
-L_{k}, & i=j,
\end{array} \quad \text { in } \Omega_{k} \quad(i, j=1,2, \cdots, n ; k=1,2, \cdots, m)\right.
\end{aligned}
$$

and inequalities (2.2) and (2.24) hold, then PBVP (4.1) has a minimal solution and a maximal solution in $\left[u_{0}, v_{0}\right]$.

Proof. Let $E=R^{n}$ and $P=\left\{x=\left(x_{1}, \cdots, x_{n}\right) \in R^{n}: x_{i} \geq 0, i=1,2,3, \cdots, n\right\}$. Then P is a regular cone in E and (4.1) can be regarded as a PBVP of type (1.1) in E. For $(t, x, y, z),(t, \bar{x}, \bar{y}, \bar{z}) \in \Omega$ satisfying $\bar{x} \leq x, \bar{y} \leq y$ and $\bar{z} \leq z$, we have, by hypotheses and the mean value theorem,

$$
\begin{aligned}
f_{i}(t, x, y, z)-f_{i}(t, \bar{x}, \bar{y}, \bar{z})= & \sum_{j=1}^{n}\left[\left(x_{j}-\bar{x}_{j}\right) \frac{\partial}{\partial x_{j}}+\left(y_{j}-\bar{y}_{j}\right) \frac{\partial}{\partial y_{j}}+\left(z_{j}-\bar{z}_{j}\right) \frac{\partial}{\partial z_{j}}\right] \\
& \cdot f_{i}(t, \bar{x}+\xi(x-\bar{x}), \bar{y}+\xi(y-\bar{y}), \bar{z}+\xi(z-\bar{z})) \\
\geq & -M\left(x_{i}-\bar{x}_{i}\right)-N\left(y_{i}-\bar{y}_{i}\right)-N_{1}\left(z_{i}-\bar{z}_{i}\right) \quad(i=1,2, \cdots, n),
\end{aligned}
$$

and, for $x, \bar{x} \in \Omega_{k}$ satisfying $\bar{x} \leq x$,

$$
\begin{aligned}
I_{i k}(x)-I_{i k}(\bar{x}) & =\sum_{j=1}^{n}\left(x_{j}-\bar{x}_{j}\right) \frac{\partial}{\partial x_{j}} I_{i k}\left(\bar{x}+\xi_{1}(x-\bar{x})\right) \\
& \geq-L_{k}\left(x_{i}-\bar{x}_{i}\right) \quad(i=1,2, \cdots, n ; k=1,2, \cdots, m)
\end{aligned}
$$

where $0<\xi<1$ and $0<\xi_{1}<1$. So, $\left(\mathrm{H}_{2}\right)$ and $\left(\mathrm{H}_{3}\right)$ are satisfied, and our conclusion follows from the main theorem.

Example 4.2. Consider the PBVP of infinite system for scalar nonlinear impulsive integro-differential equations

$$
\left\{\begin{align*}
& x_{n}^{\prime}= \frac{4}{\pi}\left(\frac{1}{4 n^{2}}-x_{n}+x_{2 n}\right)+\frac{t}{2 \pi^{3} n^{2}}\left(\int_{0}^{t} e^{-t s} x_{n+1}(s) d s\right) \tag{4.2}\\
&-\frac{2}{10^{8} \pi^{2}(n+1)^{2}}\left(\int_{0}^{t} e^{-t s} x_{n}(s) d s\right)^{2} \\
&-\frac{1}{10^{8} \pi^{3}(n+2)^{3}}\left(\int_{0}^{2 \pi} \frac{x_{n}(s) d s}{1+t^{2}+s^{2}}\right)^{3}, \quad \forall 0 \leq t \leq 2 \pi, t \neq \pi \\
&\left.\triangle x_{n}\right|_{t=\pi}=-\frac{1}{2 n} x_{n}(\pi)+x_{n+2}(\pi) \\
& x_{n}(0)=x_{n}(2 \pi) \quad(n=1,2,3, \cdots)
\end{align*}\right.
$$

Conclusion 4.2. PBVP (4.2) admits minimal and maximal solutions which continuously differentiable on $[0, \pi) \cup(\pi, 2 \pi]$ and satisfy

$$
0 \leq x_{n}(t) \leq\left\{\begin{array}{ll}
\frac{1}{n^{2}}, & \forall 0 \leq t \leq \pi \\
\frac{1}{n^{2}}\left(3-\frac{t}{\pi}\right), & \forall \pi<t \leq 2 \pi
\end{array} \quad(n=1,2,3, \cdots)\right.
$$

Proof. Let $E=\ell^{1}=\left\{x=\left(x_{1}, \cdots, x_{n}, \cdots\right): \sum_{n=1}^{\infty}\left|x_{n}\right|<\infty\right\}$ with norm

$$
\|x\|=\sum_{n=1}^{\infty}\left|x_{n}\right| \text { and } P=\left\{x=\left(x_{1}, \cdots, x_{n}, \cdots\right) \in \ell^{1}: x_{n} \geq 0, n=1,2,3, \cdots\right\}
$$

Then P is a normal cone in E. Since ℓ^{1} is weakly complete, we know from Remark 3.1 that P is regular. (4.2) can be regarded as a PBVP of type (1.1) in E, where

$$
\begin{aligned}
K(t, s) & =e^{-t s}, \quad H(t, s)=\left(1+t^{2}+s^{2}\right)^{-1}, \quad x=\left(x_{1}, \cdots, x_{n}, \cdots\right) \\
y & =\left(y_{1}, \cdots, y_{n}, \cdots\right), \quad z=\left(z_{1}, \cdots, z_{n}, \cdots\right), \quad f=\left(f_{1}, \cdots, f_{n}, \cdots\right)
\end{aligned}
$$

in which

$$
\begin{aligned}
f_{n}(t, x, y, z)= & \frac{4}{\pi}\left(\frac{1}{4 n^{2}}-x_{n}+x_{2 n}\right)+\frac{t}{2 \pi^{3} n^{2}} y_{n+1} \\
& -\frac{2}{10^{8} \pi^{2}(n+1)^{2}} y_{n}^{2}-\frac{1}{10^{8} \pi^{3}(n+2)^{3}} z_{n}^{3}
\end{aligned}
$$

and $m=1, t_{1}=\pi, I_{1}=\left(I_{11}, \cdots, I_{1 n}, \cdots\right)$ with

$$
I_{1 n}(x)=-\frac{1}{2 n} x_{n}+x_{n+2}
$$

Let

$$
u_{0}(t)=(0, \cdots, 0, \cdots), \quad \forall 0 \leq t \leq 2 \pi
$$

and

$$
v_{0}(t)= \begin{cases}\left(1, \cdots, \frac{1}{n^{2}}, \cdots\right), & \forall \quad 0 \leq t \leq \pi \\ \left(3-\frac{t}{\pi}, \cdots, \frac{1}{n^{2}}\left(3-\frac{t}{\pi}\right), \cdots\right), & \forall \quad \pi<t \leq 2 \pi\end{cases}
$$

It is not difficult to verify that u_{0} and v_{0} satisfy condition $\left(\mathrm{H}_{1}\right)$.
On the other hand, it is easy to see that conditions $\left(\mathrm{H}_{2}\right)$ and $\left(\mathrm{H}_{3}\right)$ are satisfied for

$$
M=\frac{4}{\pi}, \quad N=\frac{3}{10^{8} \pi}, \quad N_{1}=\frac{1}{10^{8} \pi}, \quad \text { and } \quad L_{1}=\frac{1}{2} .
$$

Evidently, $k_{0}=h_{0}=1$, and it is easy to check that inequalities (2.2) and (2.24) hold. Thus, our conclusion follows from the main theorem.

References

[1] Guo, D. \& Lakshmikantham, V., Nonlinear problems in abstract Cones, Academic Press, New York, 1988.
[2] Liu, X. Z., Periodic boundary value problems for first order impulsive integro-differential equations, Nonlinear Times and Digest, 2(1995), 69-82.
[3] Hu, S. \& Leela, S., Periodic boundary value problems for integro-differential equations of Hammerstein type, Appl. Math. Comput., 25(1988), 29-38.
[4] Guo, D., Existence of solutions of boundary value problems for nonlinear second order impulsive differential equations in Banach spaces, J. Math. Anal. Appl., 181(1994), 407-421.
[5] Du, Y., Fixed points of increasing opeators in ordered Banach spaces and applications, Appl. Anal., 38(1990), 1-20.

[^0]: Manuscript received January 5, 1996. Revised April 8, 1996.
 *Department of Applied Mathematics, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1.
 **Department of Mathematics, Shandong University, Jinan 250100, China.
 $* * *$ Project supported by the NSERC Canada.

