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Abstract

The author considers harmonic maps on complete noncompact manifolds, solves the Dirichlet
problem in manifolds with nonnegative sectional curvature out of a compact set, and proves
the Fatou theorem for harmonic maps into convex balls.
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§1. Introduction

In recent three decades, harmonic maps have been attracting the attention of many

geometers and analysts. In particular, in recent years, the theory of harmonic maps of

complete noncompact manifolds is becoming one of the active areas in differential geometry

increasingly (see [15], [8], [2]). In the present paper, motivated by [2], we consider the

existence and boundary behavior of harmonic maps from complete noncompact manifolds

with nonnegative sectional curvature at infinity to convex balls. In fact, we generalize

Fatou property on harmonic functions (see [13, Theorem 3]) to harmonic maps with certain

conditions on the domain manifolds. The reason is that in the present case, not as in

[2], the Green’s functions do not decrease rapidly at infinity, and we can not find Harnack

inequality at infinity as in [3]. This makes us add certain conditions on Green’s functions,

and we assume that the energy of the harmonic maps discussed is finite. It should be pointed

out that the energy of the harmonic maps constructed in Section 3 is finite. Combining these

facts, we characterize all such harmonic maps. We also consider the existence of harmonic

maps with prescribed boundary data at infinity from certain Cartan-Hadamard manifolds to

convex balls. It should be noticed that the boundary at infinity is a geometric boundary, not

necessarily a Martin boundary. Finally we should point out that the results on existence can

be considered as a special case of [2], but we must firstly consider the solvability of Dirichlet

problem on harmonic functions, and then the existence of harmonic maps can be obtained

by using an approximation process by harmonic functions, which is analogous to [2].

This paper is organized as follows: Section 2 provides some preliminaries. In particular

Lemma 2.1 is used frequently. We shall refer the readers to [13], [14] for many properties of

the complete noncompact manifolds with nonnegative sectional curvature at infinity. Section
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3 gives an existence theorem of harmonic maps from complete noncompact manifolds with

nonnegative sectional curvature at infinity to convex balls. Section 4 gives Fatou property

of harmonic maps in Section 3. Section 5 gives an existence theorem of harmonic maps from

certain Cartan-Hadamard manifolds to convex balls.

§2. Preliminaries

Throughout this paper, we assume that Bτ (p) is a convex ball in Riemannian manifold

Nn, dimN = n, i.e., the geodesic ball centered at p with radius τ , τ < π
2
√
κ
, and Bp(τ) lies

inside the cut-locus of p, where κ is an upper bound of the sectional curvature of N , κ ≥ 0.

In addition, Ω always denotes a bounded domain with smooth boundary in a complete

noncompact manifold M .

We firstly state a lemma which is a key in the following development.

Lemma 2.1 (see [2, Lemma 3.1]). Given φ ∈ C0(∂Ω, Bτ (p)), let u ∈ C0(Ω̄, Bτ (p)) ∩
C∞(Ω, Bτ (p)) be a harmonic map on Ω which equals φ on ∂Ω. With respect to geodesic

normal coordinates centered at p, φ may also be viewed as being Rn-valued. Let h : Ω̄ → Rn

be the harmonic extention of φ, i.e., h = (h1, · · · , hn), where hi is a harmonic function for

each i and h|∂Ω = φ. Let v : Ω̄ → R be the harmonic extention of 1
2 |φ|

2 = 1
2

n∑
i=1

(φi)2. Then,

there exists a constant C > 0, depending only on the geometry of Bτ (p), such that

[ρ(u(x), h(x))]2 ≤ C(v(x)− 1

2
|h(x)|2), x ∈ Ω, (2.1)

where ρ is the distance function on N .

By complete noncompact manifold Mm, dim M = m, with nonnegative sectional curva-

ture at infinity we mean that there exists a compact subset D in M such that the sectional

curvature on M \D is nonnegative. Without loss of generality we may assume D = Bx0(1),

a geodesic ball in M centered at x0 with radius 1. From [13] (also see [5]), we know that M

is of finite topological type. More precisely, M has finite ends, i.e., there exists a compact

subset C0 ⊂ M such that for any compact subset C containing C0, M \ C has the same

number of components. In particular we call each component an end. We also know that

any end is diffeomorphic to the product of a compact manifold and the half line.

Let E be an end and denote the volume of E ∩Bx0(t) by V (t). If∫ ∞

t0

t

V (t)
dt < ∞,

we call E a large end. Otherwise, we call E a small end. In this paper we always assume

that all ends are large and that the number of ends is greater than 1. Denote all ends by

E1, · · · , El, l ≥ 2. By means of [13] there exist l positive harmonic functions f1, · · · , fl such
that 

0 < fA(x) < 1, x ∈ M,

fA(x) → 1, x → ∞, x ∈ EA,

fA(x) → 0, x → ∞, x /∈ EA,

(2.2)

and any bounded harmonic function on M is a linear combination of fA’s, and there does

not exist any nonnegative unbounded harmonic function on M .

To compare with harmonic maps, we state the following proposition.
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Proposition 2.1. Let M be a complete noncompact manifold with nonnegative sectional

curvature at infinity, E be an end of M (not necessarily a large end). Assume that f is a

harmonic function bounded below on E. Then

f(x) → a, x → ∞, x ∈ E,

where −∞ < a ≤ ∞. When E is a large end, a is a finite number.

Proof. See [13, Theorem 3.3, Corollary 4.4].

Because we assume that M has at least a large end, from [14, Remark 1] we know

that there exists a unique minimal positive Green function G(x, y) on M , which can be

constructed as follows: Let Bx0(Rµ) be the geodesic ball on M centered at x0 with ra-

dius Rµ, Rµ → ∞, denote the Green’s function corresponding to Dirichlet boundary condi-

tion on Bx0(Rµ) by Gµ(x, y). By passing to a subsequence of Gµ(x, y)’s, still denoted by

Gµ(x, y), Gµ(x, y)’s converge uniformly to G(x, y) on arbitrary compact subset of M \ {x}
with respect to y. In addition, from [14], we know that the number of Martin boundary

points is one of large ends. More precisely, an arbitrary large end corresponds to a unique

Martin boundary point (for details, see [14, Corrollary 2]). From the point of view of Martin

boundary, Proposition 2.1 is natural.

For the sake of convenience in the sequel, we state two lemmas.

Lemma 2.2 (See [10]). Let h = (h1, · · · , hn) be normal coordinates on Bp(2τ) such that

p has coordinates (0, · · · , 0). Denote by gik(h),Γ
l
ik(h), and Γikl(h) the metric and Christoffel

symbols, respectively, in this coordinates system. Then for all h satisfying

|h| = (
n∑

i=1

hihi)
1
2 ≤ 2τ <

π√
κ

and all ξ ∈ Rn we have the following estimates

Γl
ik(h)h

lξiξk ≤ {δik − aκ(|h|)gik(h)}ξiξk, (2.3)

where

aκ(t) =

{
t
√
κctg(t

√
κ), κ > 0, 0 ≤ t < π√

κ
,

1, κ = 0, 0 ≤ t < ∞.

Lemma 2.3 (See [4]). Let u : M → N be a harmonic map such that u(M) ⊂ Bp(τ).

Then e(u) is bounded by a constant depending only on κ, τ , and the lower bound of the Ricci

curvature of M .

§3. Harmonic Maps on Noncompact Complete Manifolds
with Nonnegative Sectional Curvature at Infinity

Let Mm be a noncompact complete manifold with nonnegative sectional curvature at

infinity, and its ends be large, which are denoted by E1, · · · , El, l ≥ 2. Thus, from Section

2, there exist positive harmonic functions such that
0 < fA(x) < 1, x ∈ M,

fA(x) → 1, x → ∞, x ∈ EA,

fA(x) → 0, x → ∞, x /∈ EA, 1 ≤ A ≤ l.

From now on, we fix normal coordinates (h1, · · · , hn) on Bp(τ) satisfying the condition

in Lemma 2.3, the notations are also as in Lemma 2.3. Let p1, · · · , pl be in Bp(τ), their
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coordinates be (h1
A, · · · , hn

A) respectively. We construct n functions
l∑

A=1

hk
AfA, 1 ≤ k ≤ n,

which are harmonic. Set h =
( l∑
A=1

h1
AfA, · · · ,

l∑
A=1

hn
AfA

)
, which defines a map from M

to Bp(τ) under the above fixed coordinates of Bp(τ) denoted still by h, this is because

h(x) → pB , as x → ∞, x ∈ EB, and by means of Maximum principle one has

n∑
k=1

(
l∑

A=1

hk
AfA(x)

)2

< τ2, ∀x ∈ M.

Let Rµ’s be a real number sequence such that Rµ → ∞, as µ → ∞, Bx0(Rµ) be the

geodesic ball in M . Considering the boundary map φµ: ∂Bx0(Rµ) → Bp(τ) with φµ =

h|∂Bx0 (Rµ), according to [10], we can find a unique harmonic map uµ: Bx0(Rµ) → Bp(τ)

with uµ|∂Bx0 (Rµ) = h|∂Bx0 (Rµ). By means of Theorem 4 in [9], we see that uµ’s converge

uniformly to a harmonic map u: M → Bp(τ) on arbitrary compact subset of M . On the

other hand, by Lemma 2.1, we have

[ρ(uµ(x), h(x))]
2 ≤ C

(
vµ(x)−

1

2
|h(x)|2

)
, ∀x ∈ Bx0(Rµ),

where vµ is the harmonic extenstion of 1
2 |h(x)|

2|∂Bx0 (Rµ), C depends only on the geometry

of Bp(τ).

We now set ṽ = 1
2

l∑
A=1

n∑
i=1

(hi
A)

2
fA, which is harmonic on M and has the same boundary

value as 1
2 |h(x)|

2 at infinity. So, by Maximum principle, ṽ − 1
2 |h(x)|

2 > 0 on M . Obviously

vµ(x)− 1
2 |h(x)|

2 < ṽ − 1
2 |h(x)|

2 on Bx0(Rµ). Thus

[ρ(uµ(x), h(x))]
2 ≤ C(ṽ − 1

2
|h(x)|2), ∀µ.

Hence, [ρ(u(x)− h(x))]
2 ≤ C(ṽ − 1

2 |h(x)|
2), i.e.,u is a harmonic map with u(x) → pA, as

x ∈ EA, x → ∞.

In the following, we shall show that the energy of u(x) is finite. The method is similar to

that of [12], as was pointed out to me by Professor P.Li, after the author had completed this

paper. From [11], we know that uµ with the above prescribed boundary value is unique, so

it is an energy minimizing harmonic map. Thus∫
Bx0 (Rµ)

|∇uµ|2 ≤
∫

Bx0 (Rµ)

|∇h|2, ∀µ.

Hence we obtain ∫
Bx0

(R)

|∇uµ|2 ≤
∫
M

|∇h|2

for any R > 0 and Rµ > R. Therefore
∫

Bx0 (R)

|∇u|2 ≤
∫
M

|∇h|2. So, if we can prove
∫
M

|∇h|2 <

∞, we have
∫
M

|∇u|2 < ∞. For this, we only need to prove
∫
M

|∇fA|2 < ∞, 1 ≤ A ≤ l. For

the purpose, we outline the construction of fA as follows (for details see [13]). Construct

a harmonic function uR on Bx0(R) with uR|∂Bx0 (R)∩EA
= 1, uR|∂Bx0 (R)∩EB

= 0, B ̸= A.

Using the barriers on the ends, one can prove that there exists a sequence Rµ’s such that
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Rµ → ∞ as µ → ∞, and uRµ ’s converge uniformly to fA on any compact subset of M ,

which satisfies the properties stated before.

Considering the integral
∫

Bx0 (Rµ)∩EA

|∇(1− uRµ)|2, we have∫
Bx0 (Rµ)∩EA

|∇uRµ |2 =

∫
Bx0 (Rµ)∩EA

∇((1− uRµ)∇(1− uRµ))

=

∫
∂EA

(1− uRµ)
∂uRµ

∂γ

≤
∫

∂EA

|1− uRµ |
∣∣∣∣∂uRµ

∂γ

∣∣∣∣ ,
where γ is the outer unit normal vector of M \ EA. Setting µ → ∞, we have∫

EA

|∇fA|2 ≤
∫

∂EA

(1− fA)

∣∣∣∣∂fA∂γ

∣∣∣∣ < ∞.

For B ̸= A, we can consider the integral
∫

Bx0 (Rµ)∩EB

|∇uRµ |2.∫
Bx0

(Rµ)∩EB

|∇uRµ
|2 =

∫
Bx0

(Rµ)∩EB

∇(uRµ
∇uRµ

) = −
∫

∂EB

uRµ

∂uRµ

∂γ
.

Taking µ → ∞, we obtain ∫
EB

|∇fA|2 ≤ −
∫

∂EB

fA
∂fA
∂γ

< ∞.

Hence we have
∫
M

|∇fA|2 < ∞.

We now are in a position to state our result.

Theorem 3.1. Let M be a complete noncompact manifold with nonnegative sectional

curvature at infinity, the ends of which are large, denoted by E1, · · · , El, l ≥ 2. Let p1, · · · , pl
be l points in Bp(τ). Then there exists a unique harmonic map u : M → Bp(τ) with

u(x) → pA, as x ∈ EA, x → ∞, the energy of which is finite.

Proof. We only need to prove the uniqueness, which can be done as in [11] if we use

Maximum principle on complete manifolds.

To conclude the section we give the following remark.

Remark 3.1. From [4], we know that the energy density of u is bounded, as we will use

in the next section.

§4. Fatou’s Property for Harmonic Maps

In this section, we consider the converse of Section 3, i.e., the boundary behavior of har-

monic maps into convex balls, the domain manifold M satisfying the conditions in Theorem

3.1. According to [14], the Green’s function constructed in Section 1 is a unique minimal

positive Green’s function (see [7]) and

max
y∈M\Bx(R)

G(x, y) = max
y∈∂Bx(R)

G(x, y)
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for any x ∈ M,R > 0. Due to the lack of Harnack inequality at infinity, we add some

conditions to G(x, y) as follows: ∃R0 > 0, q > 1, s.t.

sup
x∈M

( max
∂Bx(R0)

G(x, y)) < ∞, (4.1)∫
Bx(R0)

|G(x, y)|q < C < ∞, ∀x ∈ M, (4.2)

for some constant C > 0. It is easy to check that the minimal positive Green’s function on

Rn, n ≥ 3, satisfies (4.1), (4.2).

We can now state Fatou’s property of harmonic maps in the present case.

Theorem 4.1 Let M satisfy the conditions in Theorem 3.1, and its minimal positive

Green’s function satisfy (4.1), (4.2). Then for any harmonic map with finite energy u :

M → Bp(τ) Fatou’s property holds, i.e., u(x) → pA ∈ Bp(τ) as x ∈ EA, x → ∞.

Proof. As in Section 3, we fix normal coordinates (h1, · · · , hn) on Bp(τ) with the coor-

dinates of p being (0, · · · , 0). Set |u(x)|2 =
n∑

i=1

|ui(x)|2. A direct computation shows

1

2
△|u|2 = |∇u|2 + ul△ul = |∇u|2 − ulΓl

ij(u)u
i
αu

j
βγ

αβ

where (γαβ)−1 is the Riemannian metric of M , Γl
ij is the Christoffel symbols on Bp(τ) with

respect to the fixed normal coordinates. Using Lemma 2.2, we have

1

2
△|u|2 ≥ |∇u|2 − {δij − aκ(|u|)gij(u)}ui

αu
j
βγ

αβ = aκ(|u|)e(u) ≥ 0, (4.3)

where (gij) is the Riemannian metric of Bp(τ), aκ(|u|) > 0 since |u| < π
2
√
κ
, and e(u) is the

energy density.

LetGµ(x, y) be the Green’s function with respect to Dirichlet boundary value on Bx0(Rµ).

Consider
∫
Bx0 (Rµ)

△|u|2(y)Gµ(x, y)dy, denoted by fµ, which stisfies{ △fµ = −△|u|2, on Bx0(Rµ),

fµ|∂Bx0 (Rµ) = 0.

Maximum principle implies fµ ≤ τ2. Hence
∫
M

△|u|2(y)G(x, y)dy, denoted by f , is not

greater than τ2. By means of (4.3), we obtain
∫
M

e(u)(y)G(x, y)dy < ∞.

On the other hand, the harmonicity of u implies

△ul + γαβΓl
iju

i
αu

j
β = 0.

Thus, |△ul| ≤ Ce(u), C depending only on the geometry of Bp(τ). Therefore, we can set

hl =

∫
M

△ul(y)G(x, y)dy + ul, 1 ≤ l ≤ n. (4.4)

Obviously, hl’s are harmonic functions. Proposition 2.1 implies that for any large end EA

there exists a real number alA such that hl(x) → alA as x ∈ EA, x → ∞.

If we can prove that lim
x∈EA,x→∞

∫
M

△ul(y)G(x, y)dy exists, the theorem above is obtained.

To this aim, we consider more general case. Let f ∈ L∞(M) ∩ L1(M), s.t.∫
M

f(y)G(x, y)dy ∈ L∞(M).
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We claim that under the condition of the theorem, when x ∈ EA, x → ∞.∫
M

f(y)G(x, y)dy → 0, 1 ≤ A ≤ l. (4.5)

Since f ∈ L1(M), there exists an R sufficiently large such that
∫

EA\Bx0 (R)

|f | < ε for any

sufficiently small ε > 0. Fix R > 0, and consider the integral∫
EA\Bx0 (R)

f(y)G(x, y)dy.

We assume dist(x0, x) sufficiently large such that Bx(R0) ⊂ EA \Bx0(R). So we have∣∣∣ ∫
EA\Bx0 (R)

f(y)G(x, y)dy
∣∣∣

≤
∣∣∣ ∫
(EA\Bx0 (R))\Bx(R0)

f(y)G(x, y)dy
∣∣∣+ ∣∣∣ ∫

Bx(R0)

f(y)G(x, y)dy
∣∣∣

≤ max
∂Bx(R0)

G(x, y)

∫
(EA\Bx0 (R))\Bx(R0)

|f(y)|dy

+
( ∫
Bx(R0)

|f(y)|rdy
) 1

r
( ∫
Bx(R0)

|G(x, y)|qdy
) 1

q

,

where 1
r + 1

q = 1. Since f ∈ L∞, using (4.1), ( 4.2) we see that the right hand side of the

inequality above is sufficiently small.

In the following, we consider the integral
∫

M\(EA\Bx0 (R))

f(y)G(x, y)dy. We firstly observe

the behavior of G(x, y) on ∂Bx0(R)∩EA and ∂Bx0(R+R0)∩EA. Fixing xR ∈ ∂Bx0(R)∩EA,

xR0
∈ ∂Bx0

(R+R0) ∩ EA, we claim that the following inequality

G(y, x)

G(xR, x)
≤ C

G(y, xR0)

G(xR, xR0)
, ∀y ∈ M \ (EA \Bx0(R)), (4.6)

holds, where x ∈ EA with dist(x, x0) > 2(R+R0), and C > 0 depends only on the geometry

of M . This is because G(y, x) is harmonic on M \ (EA \Bx0(R)) with respect to y and the

upper and lower bounds of G(y, x)|∂Bx0 (R)∩EA
is controlled by the multiplicities of G(xR, x),

as can be obtained by using Theorem 3.2 in [13], i.e, Harnack inequality. On the other hand,

the upper and lower bounds of
G(y,xR0

)

G(xR,xR0
)G(xR, x) are also controlled by the multiplicities of

G(xR, x) restricted to ∂Bx0(R) ∩ EA with respect to y, based on the same reason. So, by

using Maximum principle, (4.6) is obtained. Thus, we have∫
M\(EA\Bx0 (R))

f(y)G(x, y)dy ≤ C

∫
M\(EA\Bx0

(R))

f(y)

(
G(xR, x)

G(xR, xR0)

)
G(y, xR0)dy.

So, when x ∈ EA and x → ∞, we have (using the estimates for G(x, y) in [14])∫
M\(EA\Bx0 (R))

f(y)G(x, y)dy → 0. (4.7)

Combining (4.7) and (4.6), we obtain (4.5). Now come back to our present case. From
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Lemma 2.3, we have e(u) ∈ L∞(M), so e(u) ∈ L∞(M) ∩ L1(M). Finally, from (4.4) we

obtain for some alA, u
l(x) → alA, as x ∈ EA, x → ∞. The proof of the theorem is completed.

We give the following remarks to conclude this section.

Remark 4.1. From Theorem 4.1 and Theorem 3.1, we see that under the conditions of

Theorem 4.1 all harmonic maps into convex balls can be obtained from Theorem 3.1.

Remark 4.2. The conditions (4.1), (4.2) are completely technical, which should be able

to be deleted.

§5. Harmonic Maps from Cartan-Hadamard Manifolds

In this section, we use the work of W. Y. Ding and Y. D. Wang[8] (also see [15]) to derive

an existence theorem of harmonic maps from a class of Cartan-Hadamard manifolds into

convex balls. Let Mm be a Cartan-Hadamard manifold with RiccM ≥ −K2, K > 0 and

λ1(M) > 0. Fixing a point O in M , we can construct the geometric boundary of M , denoted

by Sm−1, (m − 1)-dimension sphere, which formly consists of all geodesic rays from O (for

details see [3]). We still assume

θ = O(ρ−k(x)) for some k > 0, (5.1)

where ρ(x) =dist(x,O), θ = ∠xOy, x, y ∈ M , dist(x, y) = 1, ρ(x) = ρ(y) sufficiently large,

and ∫
M\B1(O)

ρ−k(m
2 +ε)dVM < ∞ for some ε > 0, (5.2)

where dVM is the volume element of M , B1(O) is the geodesic ball centered at O with radius

1.

Theorem 5.1. Let M be a Cartan-Hadamard manifold with m ≥ 4, RiccM ≥ −K2 for

some constant K > 0, and λ(M) > 0. M satisfies (5.1), (5.2). Let ϕ ∈ C0(Sm−1, Bp(τ)).

Then there exists a unique harmonic map u : M → Bp(τ), u|Sm−1 = ϕ.

In order to prove the theorem, we firstly establish the following lemma.

Lemma 5.1. Let M satisfy the conditions of Theorem 5.1. Let ϕ ∈ C∞ (Sm−1). Then

there exists a harmonic function h on M with h|Sm−1 = ϕ.

Remark 5.1. If M satisfies −b2 ≤ RiemM ≤ −a2, a ≥ b > 0, Lemma 5.1 was proved

by M. Anderson[1] and D. Sullivan[16] independently. Recently, Q. Ding[6] also obtained a

similar theorem with the conditions −a2 ≤ RiccM ≤ −b2, a ≥ b > 0 and RiemM ≤ 0 using

his new Laplace comparison theorem. Here we use the work of W .Y. Ding and Y. D. Wang

(which generalizes the result in [15]) to prove Lemma 5.1.

Proof of Lemma 5.1. Let {(r, θ)|θ ∈ SO(1) ∼= Sm−1} be normal geodesic coordinates

at O, where SO(1) is the unit sphere of TOM . Thus ϕ can be written as ϕ = ϕ(θ), θ ∈ SO(1).

Extend ϕ to M \ {O} in radius directions, i.e., set ϕ(r, θ) = ϕ(θ), ∀r > 0, and the function

extented is still denoted by ϕ, then ϕ is a bounded smooth function on M \ {O}.
Introduce the notation oscBx(1)ϕ = sup

y∈Bx(1)

|ϕ(y)−ϕ(x)|, which expresses the osillation of

ϕ in Bx(1). By means of the definition of ϕ, we have

|ϕ(y)− ϕ(x)| = |ϕ(θ′)− ϕ(θ)| ≤ C|θ′ − θ|, ∀y ∈ Bx(1),
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where θ, θ′ are the geodesic sphere coordinates of x and y, respectively, C depends only on

ϕ|Sm−1 (and so do all the constants below). So, when dist(x,O) is sufficiently large, we have

oscBx(1)ϕ ≤ Cρ−k(x).

We now average ϕ, denoted by ϕ̄, and show △ϕ̄ = O(ρ−k). Choose the cut-off function

χ ∈ C∞
O (R), 0 ≤ χ ≤ 1, suppχ ⊂ [−1, 1], and set

ϕ̄(x) =

∫
M

χ(ρ2x(y))ϕ(y)dy∫
M

χ(ρ2x(y))dy
,

where ρx(y) =dist(x, y). Then we have

|ϕ̄(x)− ϕ(x)| =

∣∣∣∫Bx(1)
χ(ρ2x(y))(ϕ(y)− ϕ(x))dy

∣∣∣∫
Bx(1)

χ(ρ2x(y))dy

≤ sup
Bx(1)

|ϕ(y)− ϕ(x)|

= oscBx(1)ϕ = O(ρ−k(x)),

while

△ϕ̄(x0) = △(ϕ̄(x)− ϕ(x0))|x=x0 =

∫
M

△

 χ(ρ2y(x))∫
M

χ(ρ2y(x))dy

 (ϕ(y)− ϕ(x0))dy|x=x0 .

A direct computation shows

△
(u
v

)
=

v△u− 2∇u∇v − u△v

v2
+

2u

v3
|∇v|2,

∇u = 2χ′(ρ2)ρ∇ρ,

△u = 4ρ2χ′′(ρ2)|∇ρ|2 + 2χ′(ρ2)|∇ρ|2 + 2ρχ′(ρ2)△ρ,

where u = χ(ρ2y(x)), v =
∫
M

χ(ρ2y(x))dy.

Since RiccM ≥ −K2, by the standard Laplace comparison theorem, when ρ = ρy(x) ≤ 1,

ρ△ρ ≤ C for some constant C > 0, and the other terms in ∇u and △u are finite when ρ ≤ 1.

The same reason shows the above conclusion is valid for ∇v,△v. On the other hand, by the

volume comparison theorem, when RiemM ≤ 0, we have VolBx(1) ≥ C for some constant

C ≥ 0. Therefore we have

v(x) =

∫
M

χ(ρ2x(y))dy =

∫
Bx(1)

χ(ρ2x(y))dy ≥ C > 0.

Combining the above facts, we see that |△(uv )| is bounded. Thus

|△ϕ̄(x)| ≤ CoscBx(1)ϕ = O(ρ−k(x)).

By (5.2) we have ∫
M

|△ϕ̄(x)|(m
2 +ε)dVM < ∞. (5.3)

Thus, Theorem 3.1 in [8] implies that there exists a harmonic function h such that

|h(x)− ϕ̄(x)| → 0 as x → ∞, (5.4)

i.e., h(x) reaches ϕ(x) on the geometric boundary. The proof of Lemma 5.1 is completed.
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Proof of Theorem 5.1. An approximation process can make us assume ϕ in Theorem

5.1 to be smooth. Then by using Lemma 5.1, the proof of Theorem 5.1 is completely similar

to that of Theorem 3.1. We outline the proof as follows. Fix a normal coordinate around

p. Under this coordinate ϕ can be written as (ϕ1(x), · · · , ϕn(x)), x ∈ Sm−1, so there exist

n harmonic functions h1(x), · · · , hn(x) defined in M , such that hi|Sm−1 = ϕi. Under the

above coordinate (h1(x), · · · , hn(x)) defines a map from M into Bp(τ), which is denoted by

h. Consider the following Dirichlet problem{
uµ : Ωµ → Bp(τ),

uµ|∂Ωµ = h|∂Ωµ ,

where Ωµ’s are exhaustion domains of M . Theorem 4 in [9] implies that uµ’s converge on

any compact subset in M , the limitation being denoted by u. From Lemma 2.1, we know

u|Sm−1 = ϕ. The proof is completed.
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