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Abstract

Briand et al. gave a counterexample showing that given g, Jensen’s inequality
for g-expectation usually does not hold in general. This paper proves that Jensen’s
inequality for g-expectation holds in general if and only if the generator g (t, z) is
super-homogeneous in z. In particular, g is not necessarily convex in z.
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§ 1 . Introduction

It is by now well known that there exists a unique adapted and square integrable
solution to a backward stochastic differential equation (BSDE in short) of type

yt = ξ +
∫ T

t

g(s, ys, zs)ds−
∫ T

t

zsdBs, 0 ≤ t ≤ T, (1.1)

providing that the generator g is Lipschitz in both variables y and z , and that ξ and the
process g(·, 0, 0) are square integrable. We denote the unique solution of the BSDE (1.1) by
(yξ(t), zξ(t))t∈[0,T ].

In [1], yξ(0), denoted by Eg[ξ], is called g-expectation of ξ. The notion of g-expectation
can be considered as a nonlinear extension of the well-known Girsanov transformations.
The original motivation for studying g-expectation comes from the theory of expected util-
ity, which is the foundation of modern mathematical economics. Z. Chen and L. Epstein [2]
gave an application of g-expectation to recursive utility. Since the notion of g-expectation
was introduced, many properties of g-expectation have been studied in [1, 3–5]. Some prop-
erties of classical expectation are preserved (monotonicity for instance), and some results on
Jensen’s inequality for g-expectation were obtained in [3, 5]. But also in [3], the authors gave
a counterexample to indicate that even for a linear function ϕ, which is obviously convex,
Jensen’s inequality for g-expectation usually does not hold. This yields a natural question:

What kind of generator g can make Jensen’s inequality for g-expectation hold in gen-
eral? Roughly speaking, for convex function ϕ : R → R, what conditions should be given
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to the generator g such that the following inequality

Eg[ϕ(ξ)|Ft] ≥ ϕ[Eg(ξ|Ft)]

will hold in general?
The objective of this paper is to investigate this problem and to prove that Jensen’s

inequality for g-expectation holds in general if and only if g(t, z) is super-homogeneous,
and if g is convex, then Jensen’s inequality for g-expectation holds in general if and only if
g(t, z) is a positive-homogeneous generator; For monotonic convex function ϕ, we also get
two necessary and sufficient conditions.

§ 2 . Preliminaries

2.1. Notations and Assumptions

Let (Ω,F ,P) be a probability space and (Bt)t≥0 be a d -dimensional standard Brownian
motion on this space such that B0 = 0. Let (Ft)t≥0 be the filtration generated by this
Brownian motion

Ft = σ{Bs, s ∈ [0, t]} ∨ N , t ∈ [0, T ],

where N is the set of all P -null subsets.
Let T >0 be a given real number. In this paper, we always work in the space (Ω,FT , P ),

and only consider processes indexed by t ∈ [0, T ]. For any positive integer n and z ∈ Rn, |z|
denotes its Euclidean norm.

We define the following usual spaces of processes:

S2
F (0,T ;R) :=

{
ψ continuous and progressively measurable; E

[
sup

0≤t≤T
|ψt|2

]
< ∞

}
;

H2
F (0, T ;Rn) :=

{
ψ progressively measurable; ‖ψ‖22 = E

[ ∫ T

0

|ψt|2dt
]

< ∞
}

.

We recall the notion of g-expectation, defined in [1]. We are given a function

g : Ω× [0, T ]×R×Rd −→ R

such that the process (g(t, y, z))t∈[0,T ] is progressively measurable for each pair (y, z) in
R×Rd , and furthermore, g satisfies some of the following assumptions:

(A1) There exists a constant K ≥ 0 , such that P -a.s., we have

∀ t ∈ [0, T ], ∀ y1, y2 ∈ R, z1, z2 ∈ Rd,

|g(t, y1, z1)− g(t, y2, z2)| ≤ K(|y1 − y2|+ |z1 − z2|).

(A2) The process (g(t, 0, 0))t∈[0,T ] ∈ H2
F (0,T ;R).

(A3) P -a.s., ∀ (t, y) ∈ [0, T ]×R, g(t, y, 0) ≡ 0.
(A4) P -a.s., ∀ (y, z) ∈ R×Rd, t → g(t, y, z) is continuous.

Remark 2.1. The assumption (A3) implies the assumption (A2).

Let g satisfy the assumptions (A1) and (A2). Then for each ξ ∈ L2(Ω,FT , P ), there
exists a unique pair (yξ(t), zξ(t))t∈[0,T ] of adapted processes in S2

F (0, T ;R)×H2
F (0,T ;Rd)

solving the BSDE (1.1) (see [6]). We often denote (yξ(t), zξ(t))t∈[0,T ] by (yt, zt)t∈[0,T ] in
short.



ON JENSEN’S INEQUALITY FOR g-EXPECTATION 403

2.2. Definitions and Propositions

For the convenience of readers, we recall the notion of g-expectation and conditional
g-expectation defined in [1]. We also list some basic properties of BSDEs and g-expectation.
In the following Definitions 2.1 and 2.2, we always assume that g satisfies (A1) and (A3).

Definition 2.1. The g-expectation Eg[ · ] : L2(Ω,FT , P ) 7−→ R is defined by

Eg[ξ] = yξ(0).

Definition 2.2. The conditional g-expectation of ξ with respect to Ft is defined by

Eg[ξ|Ft] = yξ(t).

The following Comparison Theorem is one of the great achievements of theory of BS-
DEs, readers can see the proof in [7] or [8].

Proposition 2.1. (cf. [7, 8]) Let g, ḡ satisfy (A1) and (A2), let YT , Y T ∈
L2(Ω,FT , P ). Let (y(t), z(t))t∈[0,T ], (ȳ(t), z̄(t))t∈[0,T ] be the solutions of the following two
BSDEs:

yt = YT +
∫ T

t

g(s, ys, zs)ds−
∫ T

t

zsdBs, 0 ≤ t ≤ T ;

ȳt = Y T +
∫ T

t

ḡ(s, ȳs, z̄s)ds−
∫ T

t

z̄sdBs, 0 ≤ t ≤ T.

(1) If YT ≥ Y T , g(t, ȳt, z̄t) ≥ ḡ(t, ȳt, z̄t), a.s., a.e., then we have

yt ≥ ȳt, a.e., a.s.

(2) In addition, if we also assume that P (YT − Y T > 0) > 0, then

P (yt − ȳt > 0) > 0, in particular, y0 > ȳ0.

Propositions 2.2–2.5 come from [1], where g is assumed to satisfy (A1) and (A3).

Proposition 2.2. (1) (Preserving of constants) For each constant c, Eg[c] = c;
(2) (Monotonicity) If X1 ≥ X2, a.s., then Eg[X1] ≥ Eg[X2];
(3) (Strict Monotonicity) If X1 ≥ X2, a.s., and P (X1 > X2) > 0, then Eg[X1] >

Eg[X2].

Proposition 2.3. (1) If X is Ft-measurable, then Eg[X|Ft] = X;
(2) For all t, s ∈ [0, T ], Eg[Eg[X|Ft]|Fs] = Eg[X|Ft∧s].

Proposition 2.4. Eg[X|Ft] is the unique random variable η in L2(Ω,Ft, P ), such
that

Eg[X1A] = Eg[η1A] for all A ∈ Ft.

Proposition 2.5. Let g(ω, t, y, z) : Ω × [0, T ] × R×Rd 7−→ R be a given function
satisfying (A1) and (A3). If g does not depend on y, then we have

Eg[X + η|Ft] = Eg[X|Ft] + η, ∀ η ∈ L2(Ω,Ft, P ), ∀X ∈ L2(Ω,FT , P ).
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Proposition 2.6. (cf. [3, 8]) Let ξ ∈ L2(Ω,FT , P ), and let the assumptions (A1) and
(A2) hold. If the process (yt, zt)t∈[0,T ] is the solution of BSDE (1.1), then we have

E
[

sup
t≤s≤T

(eβs|ys|2) +
∫ T

t

eβs|zs|2ds|Ft

]

≤ CE
[
eβT |ξ|2 +

(∫ T

t

e(β/2)s|g(s, 0, 0)|ds
)2∣∣∣Ft

]
,

where β = 2(K + K2) and C is a universal constant.

Proposition 2.7. (cf. [3]) Suppose g does not depend on y and g satisfies (A1) and
(A3). Suppose moreover that for each t ∈ [0, T ], P -a.s., z −→ g(t, z) is convex. Given
ξ ∈ L2(Ω,FT , P ), let ϕ : R −→ R be a convex function such that ϕ(ξ) ∈ L2(Ω,FT , P ). If
P -a.s., ∂ϕ[Eg(ξ|Ft)]∩ ]0, 1[c 6= ∅, then we have

P -a.s., ϕ[Eg(ξ|Ft)] ≤ Eg[ϕ(ξ|Ft)].

Proposition 2.7 can be regarded as an important result on Jensen’s inequality for g-
expectation, but if ∂ϕ[Eg(ξ|Ft)]∩]0, 1[c= ∅, for example ϕ(x) = x/2, ∀x ∈ R, Proposition
2.7 can not solve this kind of problems. It also can not tell us what kind of generator g can
make Jensen’s inequality hold in general.

§ 3 . Jensen’s Inequality for Super-homogeneous Generator g

In the following, we always consider the situation where the generator g does not
depend on y, that is, g : Ω× [0, T ]×Rd → R. We denote this kind of generator g by g(t, z).
We always assume that g(t, z) satisfies (A1) and (A3).

Definition 3.1. Let g satisfy (A1) and (A3). We say that g is a super-homogeneous
generator in z if g also satisfies

P -a.s., ∀ (t, z) ∈ [0, T ]×Rd, λ ∈ R : g(t, λz) ≥ λg(t, z).

Now we introduce our main results on Jensen’s inequality for g-expectation.

Theorem 3.1. Let g satisfy (A1), (A3) and (A4). Then the following two conditions
are equivalent:

( i ) g is a super-homogeneous generator;
(ii) Jensen’s inequality for g-expectation holds in general, i.e., for each ξ ∈ L2(Ω,FT , P )

and convex function ϕ : R → R, if ϕ(ξ) ∈ L2(Ω,FT , P ), then for each t ∈ [0, T ], P -a.s.,

Eg[ϕ(ξ)|Ft] ≥ ϕ[Eg(ξ|Ft)].

Proof. (i)⇒(ii). Given ξ ∈ L2(Ω,FT , P ) and convex function ϕ such that ϕ(ξ) ∈
L2(Ω,FT , P ), for each t ∈ [0, T ], we set ηt = ϕ′−[Eg(ξ|Ft)]. Then ηt is Ft-measurable. Since
ϕ is convex, we have

ϕ(x)− ϕ(y) ≥ ϕ′−(y)(x− y), ∀x, y ∈ R.

Take x = ξ, y = Eg(ξ|Ft). Then we have

ϕ(ξ)− ϕ[Eg(ξ|Ft)] ≥ ηt[ξ − Eg(ξ|Ft)].
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For each positive integer n, we define

Ωt,n := {|Eg(ξ|Ft)|+ |ηt|+ |ϕ[Eg(ξ|Ft)]| ≤ n}.
Because Eg[ξ|Ft], ηt, ϕ[Eg(ξ|Ft)] are all Ft-measurable, we see that Ωt,n ∈ Ft. We denote
the indicator function of Ωt,n by 1Ωt,n . Set ηt,n = 1Ωt,nηt. Then we have

1Ωt,n
[ϕ(ξ)− ϕ[Eg(ξ|Ft)]] ≥ ηt,n[ξ − Eg(ξ|Ft)]. (3.1)

Since ηt,n, 1Ωt,nϕ[Eg(ξ|Ft)] are bounded by n and ξ, ϕ(ξ) ∈ L2(Ω,FT , P ), we deduce that

1Ωt,n
ϕ(ξ), ηt,nξ ∈ L2(Ω,FT , P ),

1Ωt,nϕ[Eg(ξ|Ft)] ∈ L2(Ω,Ft, P ),

(ηt,nEg(ξ|Fs))t≤s≤T ∈ S2
F (t, T ; R).

From the well-known Comparison Theorem we know that conditional g-expectation
Eg[ · |Ft] is nondecreasing. Thus from the inequality (3.1), and by taking conditional g-
expectation, we can get

Eg[1Ωt,n [ϕ(ξ)− ϕ(Eg(ξ|Ft))]|Ft] ≥ Eg[ηt,n[ξ − Eg(ξ|Ft)]|Ft].

Since 1Ωt,nϕ[Eg(ξ|Ft)], ηt,nEg[ξ|Ft] ∈ L2(Ω,Ft, P ), it follows from Proposition 2.5 that

Eg[1Ωt,nϕ(ξ)|Ft]− 1Ωt,nϕ[Eg(ξ|Ft)] ≥ Eg[ηt,nξ|Ft]− ηt,nEg[ξ|Ft]. (3.2)

Let (yu, zu)u∈[0,T ] be the solution of the following BSDE (3.3)

yu = ξ +
∫ T

u

g(s, zs)ds−
∫ T

u

zsdBs, 0 ≤ u ≤ T. (3.3)

Then for the given t ∈ [0, T ], we have

ηt,nyu = ηt,nξ +
∫ T

u

ηt,ng(s, zs)ds−
∫ T

u

ηt,nzsdBs, t ≤ u ≤ T. (3.4)

We define function g1(s, z) in this way: for each (s, z) ∈ [t, T ]×Rd,

g1(s, z) :=

{
ηt,ng(s, z/ηt,n), if ηt,n 6= 0;
0, if ηt,n = 0.

Since ηt,n is bounded, the following BSDE

ȳu = ηt,nξ +
∫ T

u

g1(s, z̄s)ds−
∫ T

u

z̄sdBs, t ≤ u ≤ T (3.5)

has a unique solution in S2
F (t,T ;R) × H2

F (t,T ;Rd). We denote it by (ȳs, z̄s)s∈[t,T ]. Also
from that ηt,n is bounded we know that (ηt,nys, ηt,nzs)s∈[t,T ] is in S2

F (t,T ;R)×H2
F (t,T ;Rd).

From (3.4) and the definition of g1 , we conclude that the solution of BSDE (3.5) is just
(ηt,nys, ηt,nzs)s∈[t,T ].

Consider the solutions of BSDE (3.5) and the following BSDE (3.6):

ỹu = ηt,nξ +
∫ T

u

g(s, z̃s)ds−
∫ T

u

z̃sdBs, t ≤ u ≤ T. (3.6)
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Due to the super-homogeneity of g(t, z) in z, we can get that for each s ∈ [t, T ], P -a.s.,

g(s, ηt,nzs) ≥ ηt,ng(s, zs).

Combining this with the definition of g1 , we have, P -a.s.,

∀ s ∈ [t, T ], g(s, z̄s) = g(s, ηt,nzs) ≥ ηt,ng(s, zs) = g1(s, ηt,nzs) = g1(s, z̄s).

Thus from Comparison Theorem, we have, P -a.s.,

Eg[ηt,nξ|Ft] = ỹt ≥ ȳt = ηt,nyt = ηt,nEg[ξ|Ft]. (3.7)

Coming back to (3.2), we can get

Eg[1Ωt,nϕ(ξ)|Ft]− 1Ωt,nϕ[Eg(ξ|Ft)] ≥ Eg[ηt,nξ|Ft]− ηt,nEg[ξ|Ft] ≥ 0.

Applying Lebesgue’s dominated convergence theorem to (1Ωt,nϕ(ξ))∞n=1, we can get
easily that

L2 − lim
n→∞

1Ωt,nϕ(ξ) = ϕ(ξ).

Since that ξ → Eg(ξ|Ft) is a continuous map from L2(FT ) into L2(Ft) (see [1, Lemma 36.9]),
it follows that

L2 − lim
n→∞

Eg[1Ωt,nϕ(ξ)|Ft] = Eg[ϕ(ξ)|Ft].

Thus for the given t ∈ [0, T ], there exists a subsequence (Eg[ϕ(ξ)1Ωt,ni
|Ft])∞i=1 such that,

P -a.s.,
lim

i→∞
Eg[ϕ(ξ)1Ωt,ni

|Ft] = Eg[ϕ(ξ)|Ft].

On the other hand, by the definition of Ωt,n, we can get, P -a.s.,

lim
n→∞

1Ωt,nϕ[Eg(ξ|Ft)] = ϕ[Eg(ξ|Ft)].

Hence we can assert that (i) implies (ii). Indeed, P -a.s.,

Eg[ϕ(ξ)|Ft] = lim
i→∞

Eg[1Ωt,ni
ϕ(ξ)|Ft] ≥ lim

i→∞
1Ωt,ni

ϕ[Eg(ξ|Ft)] = ϕ[Eg(ξ|Ft)].

(ii)⇒(i). Firstly we show that for each z ∈ Rd, t ∈ [0, T [ ,

L2 − lim
n→∞

n[Eg(z · (Bt+1/n −Bt)|Ft)] = g(t, z). (3.8)

(3.8) is a special case of [3, Proposition 2.3]. But for the convenience of readers and
the completeness of our proof, here we give a straightforward proof. For each given z ∈ Rd,
t ∈ [0, T [ , we choose a large enough positive integer n, such that t + 1/n ≤ T . We denote
by (ys,n, zs,n)s∈[t,t+1/n] the solution of the following BSDE:

ys = z · (Bt+1/n −Bt) +
∫ t+1/n

s

g(u, zu)du−
∫ t+1/n

s

zudBu, t ≤ s ≤ t + 1/n. (3.9)

We set
ȳs,n = ys,n − z · (Bs −Bt), z̄s,n = zs,n − z.

Then we have yt,n = ȳt,n and

ȳs,n =
∫ t+1/n

s

g(u, z̄u,n + z)du−
∫ t+1/n

s

z̄u,ndBu, t ≤ s ≤ t + 1/n. (3.10)
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Since

Eg[z · (Bt+1/n −Bt)|Ft] = yt,n = ȳt,n = E
[ ∫ t+1/n

t

g(s, z̄s,n + z)ds|Ft

]
,

by the classical Jensen’s inequality and Hölder’s inequality, we have

E[nEg[z · (Bt+ 1
n
−Bt)|Ft]− g(t, z)]2

= E
[
nE

[ ∫ t+ 1
n

t

(g(s, z̄s,n + z)− g(t, z))ds|Ft

]]2

≤ n2E
[ ∫ t+1/n

t

(g(s, z̄s,n + z)− g(t, z))ds
]2

≤ nE
∫ t+1/n

t

|g(s, z̄s,n + z)− g(t, z)|2ds

≤ 2nE
∫ t+1/n

t

|g(s, z̄s,n + z)− g(s, z)|2ds

+ 2nE
∫ t+1/n

t

|g(s, z)− g(t, z)|2ds. (3.11)

By (A1), Proposition 2.6 and (A3), we know that there exists a universal constant C
such that

2nE
∫ t+1/n

t

|g(s, z̄s,n + z)− g(s, z)|2ds

≤ 2nK 2E
∫ t+1/n

t

|z̄s,n|2ds

≤ 2nK2CE
( ∫ t+1/n

t

|g(s, z)|ds
)2

≤ 2nK2CE
( ∫ t+1/n

t

K|z|ds
)2

= 2K4C|z|2/n,

where K is the Lipschitz constant.
By (A4), we know that

P -a.s., lim
n→∞

2n

∫ t+1/n

t

|g(s, z)− g(t, z)|2ds = 0.

In view of (A3) and (A1), we have

2n

∫ t+1/n

t

|g(s, z)− g(t, z)|2ds ≤ 2n

∫ t+1/n

t

(2K|z|)2ds = 8K2|z|2.

It follows from Lebesgue’s dominated convergence theorem that

lim
n→∞

2nE
∫ t+1/n

t

|g(s, z)− g(t, z)|2ds = 0.
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Then coming back to (3.11), we can get

lim
n→∞

E[nEg(z · (Bt+1/n −Bt)|Ft)− g(t, z)]2

≤ lim
n→∞

2K4C|z|2/n + lim
n→∞

2nE
∫ t+1/n

t

|g(s, z)− g(t, z)|2ds = 0.

Therefore we have

L2 − lim
n→∞

n[Eg(z · (Bt+1/n −Bt)|Ft)] = g(t, z).

Secondly we prove that for each triple (t, z, λ) ∈ [0, T ]×Rd ×R, we have

P -a.s., g(t, λz) ≥ λg(t, z). (3.12)

Given λ ∈ R, we define a corresponding convex function ϕλ : R → R, such that
ϕλ(x) = λx, ∀x ∈ R. Given t ∈ [0, T [ , let us pick a large enough positive integer n, such that
t + 1/n ≤ T. Then for each z ∈ Rd, it is obvious that ϕλ(z · (Bt+1/n −Bt)) ∈ L2(Ω,FT , P ).
By (ii), we know that, P -a.s.,

Eg[ϕλ(z · (Bt+1/n −Bt))|Ft] ≥ ϕλ[Eg(z · (Bt+1/n −Bt)|Ft)];

that is, P -a.s.,

Eg[λz · (Bt+1/n −Bt)|Ft] ≥ λ[Eg(z · (Bt+1/n −Bt)|Ft)]. (3.13)

Because of (3.8), we know there exists a subsequence {nk}∞k=1 such that

P -a.s., lim
k→∞

nk[Eg(λz · (Bt+1/nk
−Bt)|Ft)] = g(t, λz),

P -a.s., lim
k→∞

λnk[Eg(z · (Bt+1/nk
−Bt)|Ft)] = λg(t, z).

Thus for the given t ∈ [0, T [ , z ∈ Rd, λ ∈ R, by (3.13), we have

P -a.s., g(t, λz) ≥ λg(t, z).

By (A4), we know that for each z, the process t −→ g(t, z) is continuous. Hence we have

P -a.s., g(T, λz) = lim
ε→0+

g(T − ε, λz) ≥ lim
ε→0+

λg(T − ε, z) = λg(T, z).

Therefore we can get (3.12) immediately. The proof is complete.

Remark 3.1. When we prove that (i) implies (ii), we do not need (A4).

Example 3.1. Let g : R→R be defined as follows: g(z) = z4, if |z|≤ 1 and g(z) =
4|z| − 3, if |z| > 1. We can see clearly that though g is convex, g is not super-homogeneous.
Thus for this generator g, by Theorem 3.1, we know that Jensen’s inequality for g-expectation
does not hold in general.

In fact, if we take T = 1, ξ = BT − T and ϕ(x) = x
3 , ∀x ∈ R, then we can verify that

(Bt − t, 1)t∈[0,T ] is the solution of the following BSDE:

yt = ξ +
∫ T

t

g(zs)ds−
∫ T

t

zsdBs, 0 ≤ t ≤ T,
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and (Bt

3 − 26T+t
81 , 1

3 )t∈[0,T ] is the solution of the following BSDE:

ȳt = ϕ(ξ) +
∫ T

t

g(z̄s)ds−
∫ T

t

z̄sdBs, 0 ≤ t ≤ T.

We can calculate that

Eg[ϕ(ξ)|Ft]− ϕ[Eg(ξ|Ft)] =
26
81

(t− T ) < 0, when t < T.

Example 3.1 yields a natural question: What kind of convex generator g can make
Jensen’s inequality for g-expectation hold in general? The following Theorem 3.2 will answer
this question.

Definition 3.2. We call a generator g(t, z) is positive-homogeneous in z if

P -a.s., ∀λ ≥ 0, t ∈ [0, T ], z ∈ Rd, g(t, λz) = λg(t, z).

Theorem 3.2. Suppose g satisfies (A1), (A3) and (A4). Suppose moreover that for
each t ∈ R, P -a.s., z −→ g(t, z) is convex in z. Then the following two conditions are
equivalent:

( i ) g(t, z) is positive-homogeneous in z;
(ii) Jensen’s inequality for g-expectation holds in general.

Proof. By Theorem 3.1, it suffices to prove that if g(t, z) is convex in z and g(t, 0) ≡ 0,
then g(t, z) is positive-homogeneous in z if and only if g(t, z) is super-homogeneous.

Suppose g(t, z) is positive-homogeneous in z. We only need to consider the case when
λ ≤ 0. For each λ ≤ 0, (t, z) ∈ [0, T ]×Rd, since g is convex and g(t, 0) ≡ 0, we have, P -a.s.,

0 = g(t, 0) = g
(
t,

λz

2
+

(−λ)z
2

)
≤ g(t, λz)

2
+

g(t,−λz)
2

=
g(t, λz)

2
+
−λg(t, z)

2
.

Thus we have

P -a.s., ∀λ ≤ 0, (t, z) ∈ [0, T ]×Rd, g(t, λz) ≥ λg(t, z).

Hence g(t, z) is super-homogeneous.
Suppose g(t, z) is super-homogeneous. For each given triple (t, z, λ) ∈ [0, T ]×Rd×R+,

if 0 ≤ λ ≤ 1, then by the convexity of g and (A3) we have

P -a.s., g(t, λz) ≤ λg(z).

Thus by the super-homogeneity of g, we have, P -a.s.,

∀λ ∈ [0, 1], t ∈ [0, T ], g(t, λz) = λg(t, z). (3.14)

For λ > 1, it follows from (3.14) that P -a.s.,

λg(t, z) = λg
(
t,

1
λ
× (λz)

)
= λ× 1

λ
× g(t, λz) = g(t, λz).

Thus g(t, z) is positive-homogeneous. This completes the proof.

Corollary 3.1. Given µ ≥ 0, let the generator g(t, z) = µ|z|, ∀ (t, z) ∈ [0, T ] × Rd.
Then Jensen’s inequality for g-expectation holds in general.

This kind of g-expectation Eg[ · ] plays a key role in [4].
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§ 4 . Jensen’s Inequality for Monotonic Convex Function ϕ

In this section, we will consider the following problem: If g is independent of y, ϕ
is a monotonic convex function, then what conditions should be given to the generator g,
such that Jensen’s inequality for g-expectation holds for ϕ? We will give two necessary and
sufficient conditions to solve this problem, one condition is for increasing convex function ϕ,
the other condition is for decreasing convex function ϕ.

Theorem 4.1. Let g satisfy (A1), (A3) and (A4). Then the following two conditions
are equivalent:

( i ) P -a.s., ∀ (t, z, λ) ∈ [0, T ]×Rd ×R+, g(t, λz) ≥ λg(t, z);
(ii) Jensen’s inequality for g-expectation holds for increasing convex function, i.e., for

each ξ ∈ L2(Ω,FT , P ) and increasing convex function ϕ : R → R, if ϕ(ξ) ∈ L2(Ω,FT , P ),
then for each t ∈ [0, T ], P -a.s.,

Eg[ϕ(ξ)|Ft] ≥ ϕ[Eg(ξ|Ft)].

Proof. (i)⇒(ii). Given ξ ∈ L2(Ω,FT , P ) and increasing convex function ϕ such that
ϕ(ξ) ∈ L2(Ω,FT , P ). For each t ∈ [0, T ] and positive integer n, just as in the proof of
Theorem 3.1, we set or define

ηt = ϕ′−[Eg(ξ|Ft)], Ωt,n := {|Eg[ξ|Ft]|+ |ηt|+ |ϕ[Eg(ξ|Ft)]| ≤ n}, ηt,n = 1Ωt,nηt.

We already know that
Ωt,n ∈ Ft, ηt,n,1Ωt,n are Ft-measurable;
ηt,n, 1Ωt,nϕ[Eg(ξ|Ft)] are bounded by n;
1Ωt,nϕ(ξ), ηt,nξ ∈ L2(Ω,FT , P ), 1Ωt,nϕ[Eg(ξ|Ft)] ∈ L2(Ω,Ft, P );
(ηt,nEg(ξ|Fs))s∈[t,T ] ∈ S2

F (t, T ; R).
Moreover, we also know that

Eg[1Ωt,nϕ(ξ)|Ft]− 1Ωt,nϕ[Eg(ξ|Ft)] ≥ Eg[ηt,nξ|Ft]− ηt,nEg[ξ|Ft]. (4.1)

Let (yu, zu)u∈[0,T ] be the unique square integrable solution of the following BSDE:

yu = ξ +
∫ T

u

g(s, zs)ds−
∫ T

u

zsdBs, 0 ≤ u ≤ T. (4.2)

Then for the given t ∈ [0, T ], we have

ηt,nyu = ηt,nξ +
∫ T

u

ηt,ng(s, zs)ds−
∫ T

u

ηt,nzsdBs, t ≤ u ≤ T. (4.3)

For the given t, again we define function g1(s, z) in this way: for each (s, z) ∈ [t, T ]×Rd,

g1(s, z) :=

{
ηt,ng(s, z/ηt,n), if ηt,n 6= 0;
0, if ηt,n = 0.

Consider the solutions of the following BSDE (4.4) and BSDE (4.5):

ȳu = ηt,nξ +
∫ T

u

g1(s, z̄s)ds−
∫ T

u

z̄sdBs, t ≤ u ≤ T, (4.4)

ỹu = ηt,nξ +
∫ T

u

g(s, z̃s)ds−
∫ T

u

z̃sdBs, t ≤ u ≤ T. (4.5)
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Analogous to the proof of Theorem 3.1, from (4.3) we deduce that (ηt,nys, ηt,nzs)s∈[t,T ] is
the unique solution of BSDE (4.4).

For the given t ∈ [0, T ] and ϕ, since ϕ is increasing, we have

ηt = ϕ′−[Eg(ξ|Ft)] ≥ 0, ηt,n = 1Ωt,nηt ≥ 0.

In view of (i), for each s ∈ [t, T ], P -a.s., we have

g(s, ηt,nzs) ≥ ηt,ng(s, zs). (4.6)

Therefore, for each s ∈ [t, T ], we can get, P -a.s.,

g(s, z̄s) = g(s, ηt,nzs) ≥ ηt,ng(s, zs) = g1(s, ηt,nzs) = g1(s, z̄s).

Thus from Comparison Theorem we have

P -a.s., Eg[ηt,nξ|Ft] = ỹt ≥ ȳt = ηt,nyt = ηt,nEg[ξ|Ft]. (4.7)

This with (4.1), it follows that

Eg[1Ωt,n
ϕ(ξ)|Ft]− 1Ωt,n

ϕ[Eg(ξ|Ft)] ≥ Eg[ηt,nξ|Ft]− ηt,nEg[ξ|Ft] ≥ 0.

Applying Lebesgue’s dominated theorem to (1Ωt,nϕ(ξ))∞n=1, we can get easily that

L2 − lim
n→∞

1Ωt,nϕ(ξ) = ϕ(ξ).

Similarly to the proof of Theorem 3.1, we can get

L2 − lim
n→∞

Eg[1Ωt,nϕ(ξ)|Ft] = Eg[ϕ(ξ)|Ft].

Hence for each t ∈ [0, T ], P -a,s., we have

Eg[ϕ(ξ)|Ft] ≥ ϕ[Eg(ξ|Ft)].

(ii)⇒(i). Given λ ≥ 0, we define a corresponding increasing convex function ϕλ :
R → R, such that ϕλ(x) = λx, ∀x ∈ R. For each t ∈ [0, T [ , z ∈ Rd, let us pick a large
enough positive integer n, such that t + 1/n ≤ T . It is obvious that ϕλ(z · (Bt+1/n −Bt)) ∈
L2(Ω,FT , P ). By (ii), we know that Jensen’s inequality holds for the increasing function ϕλ.
Thus we have, P -a.s.,

Eg[ϕλ(z · (Bt+1/n −Bt))|Ft] ≥ ϕλ[Eg(z · (Bt+1/n −Bt)|Ft)];

that is, P -a.s.,

Eg[λz · (Bt+1/n −Bt)|Ft] ≥ λ[Eg(z · (Bt+1/n −Bt)|Ft)]. (4.8)

By (3.8), we know that there exists a subsequence {nk}∞k=1 such that

P -a.s., lim
k→∞

nk[Eg(λz · (Bt+1/nk
−Bt)|Ft)] = g(t, λz),

P -a.s., lim
k→∞

λnk[Eg(z · (Bt+1/nk
−Bt)|Ft] = λg(t, z).

Thus for each t ∈ [0, T [ , z ∈ Rd, λ ≥ 0, it follows from (4.8) that

P -a.s., g(t, λz) ≥ λg(t, z). (4.9)

(A4) and (4.9) imply that

P -a.s., g(T, λz) = lim
ε→0+

g(T − ε, λz) ≥ lim
ε→0+

λg(T − ε, z) = λg(T, z).

Hence (ii) implies (i). The proof is complete.
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Corollary 4.1. Given µ ≥ 0, let the generator g(t, z) = −µ|z|, ∀ (t, z) ∈ [0, T ] ×Rd.
Then Jensen’s inequality for g-expectation holds for increasing convex function ϕ.

Similarly we can get the following

Theorem 4.2. Let g satisfy (A1), (A3) and (A4). Then the following two conditions
are equivalent:

( i ) P -a.s., ∀λ ≤ 0, (t, z) ∈ [0, T ]×Rd, g(t, λz) ≥ λg(t, z);
(ii) Jensen’s inequality for g-expectation holds for decreasing convex function, i.e., for

each ξ ∈ L2(Ω,FT , P ) and decreasing convex function ϕ : R → R, if ϕ(ξ) ∈ L2(Ω,FT , P ),
then for each t ∈ [0, T ], P -a.s.,

Eg[ϕ(ξ)|Ft] ≥ ϕ[Eg(ξ|Ft)].

Proof. The proof of Theorem 4.2 is similar to that of Theorem 4.1. We omit it.

By Theorem 4.2, we can obtain the following corollary immediately.

Corollary 4.2. Let g satisfy (A1) and (A3). If P -a.s., ∀ (t, z) ∈ [0, T ]×Rd, g(t, z) ≥ 0,
then Jensen’s inequality for g-expectation holds for decreasing convex function ϕ.
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[ 4 ] Coquet, F., Hu, Y., Mémin, J. & Peng, S., Filtration consistent nonlinear expectations and related
g-expectation, Probab. Theory Related Fields, 123(2002), 1–27.

[ 5 ] Chen, Z. & Peng, S., A general downcrossing inequality for g-martingales, Statistics and Probability
Letters, 46(2000), 169–175.

[ 6 ] Pardoux, E. & Peng, S., Adapted solution of a backward stochastic differential equation, Systems
Control Letters, 14(1990), 55–61.

[ 7 ] Peng, S., A generalized dynamic programming principle and Hamilton-Jacobi-Bellman equation,
Stochastics, 38:2(1992), 119–134.

[ 8 ] El Karoui, N., Peng, S. & Quenez, M. C., Backward stochastic differential equations in finance, Math.
Finance, 7:1(1997), 1–71.


