
Chin. Ann. Math.
34B(5), 2013, 733–752
DOI: 10.1007/s11401-013-0790-z

Chinese Annals of
Mathematics, Series B
c© The Editorial Office of CAM and

Springer-Verlag Berlin Heidelberg 2013

Stochastic H2/H∞ Control with Random Coefficients
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Abstract This paper is concerned with the mixed H2/H∞ control for stochastic systems
with random coefficients, which is actually a control combining the H2 optimization with
the H∞ robust performance as the name of H2/H∞ reveals. Based on the classical theory of
linear-quadratic (LQ, for short) optimal control, the sufficient and necessary conditions for
the existence and uniqueness of the solution to the indefinite backward stochastic Riccati
equation (BSRE, for short) associated with H∞ robustness are derived. Then the sufficient
and necessary conditions for the existence of the H2/H∞ control are given utilizing a pair
of coupled stochastic Riccati equations.
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1 Introduction

H∞ control is an important robust control design for eliminating the effect of disturbance
efficiently, and has been widely employed to deal with the robust performance control problem
with uncertain disturbance. There may be more than one solution to H∞ control problem
with desired robustness. In engineering practice, the ideal control is not only to attenuate
external disturbance, but also to minimize a desired control performance when the worst case
disturbance is imposed, which naturally leads to the mixed H2/H∞ control, see [1, 8, 13, 17]
for deterministic systems.

In recent years, the study on H∞ and mixed H2/H∞ controller designs for stochastic Itô
systems has attracted great attentions, see [3–6, 19–20] and the references therein. In [6], H∞
control for general linear stochastic Itô systems was discussed very extensively. Moreover, a
very useful lemma called the “stochastic bounded real lemma (SBRL, for short)” was given
therein using linear matrix inequalities. Later, Zhang and Chen [19] investigated the nonlinear
H∞ control for stochastic affine systems, where a nonlinear SBRL was obtained. As for the
H2/H∞ control, Chen and Zhang [3] studied the mixed H2/H∞ control with state-dependent
noise, and then a further discussion on the case of (x, u, v)-dependent noise was given in Zhang
et al [20], both of which extended the deterministic H2/H∞ control results of Limebeer et al
[13] to the stochastic setting.

It should be pointed out that the above mentioned works are concerned only with the
stochastic system with deterministic coefficients. To the author’s best knowledge, the case of
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random coefficients, except Zhang et al [21], seems to be unsolved. The objective of this paper
is to develop an H2/H∞ control theory for stochastic Itô systems with random coefficients. A
motivation for random coefficients comes from the observation that in many situations, system
coefficients are estimated using historical data (e.g. the past and present system information),
and not every element in those matrices can be directly observed. Moreover, there exist param-
eter perturbations in those obtained data due to measurement errors, identification errors and
the variations of environment and operating conditions, etc. Therefore, it is more reasonable to
assume the system parameters to be random processes rather than deterministic functionals.

Consider the following linear system governed by Itô stochastic differential equations:⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

dxt = [Atxt + B1
t vt + B2

t ut]dt + [A0
t xt + B0

t vt]dWt, t ∈ [0, T ],

x0 = x0,

zt =

⎛⎜⎝Ctxt

D1
t vt

D2
t ut

⎞⎟⎠ ,

(1.1)

where Wt is a one-dimensional standard Brownian motion defined on a given probability space
(Ω,F , P ), and {Ft, 0 � t � T } is the augmented natural filtration of the standard Brownian
motion W . u is viewed as the control input, v as an external disturbance and z as the controlled
output, respectively. We also assume that all the coefficients are Ft-adapted bounded matrix-
valued processes with suitable dimensions.

We discuss a Nash game approach to the state feedback H2/H∞ control problem for the
system (1.1). Given a disturbance attenuation level γ > 0 satisfying γ2I − (D1

t )′D1
t � εI for a

sufficiently small constant ε > 0, we consider two cost functionals as follows:⎧⎪⎪⎪⎨⎪⎪⎪⎩
J1(u, v) = E

∫ T

0

[γ2|vt|2 − |zt|2]dt,

J2(u, v) = E

∫ T

0

|zt|2dt.

(1.2)

According to the analysis in the next section, the H2/H∞ control problem can be converted
into finding the Nash equilibria point (u∗, v∗) such that

J1(u∗, v∗) � J1(u∗, v), J2(u∗, v∗) � J2(u, v∗).

To this end, we approach the H2/H∞ control problem as a linear quadratic (LQ, for short)
optimal control problem and obtain the solution by studying the associated Riccati equations.

It should be noted that minimizing J2(u, v∗) with respect to u under the constraint (1.1) is a
standard LQ problem, which means that the state weighting matrices are positive semi-definite
and the control weighting matrix is positive definite in the cost. According to Peng [16] or Tang
[18], the existence and uniqueness of the solution to the associated Riccati equation can be
obtained, by which the optimal control can be constructed explicitly as a linear state feedback.
While minimizing J1(u∗, v) with respect to v under the constraint (1.1) is an indefinite LQ
problem whose cost involves a positive definite control weighting matrix and a negative semi-
definite state weighting matrix. Such an indefinite LQ problem leads to an indefinite backward
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stochastic Riccati equation (BSRE, for short) in the following form:⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

dPt = −[A′
tPt + PtAt + (A0

t )′PtA
0
t + (A0

t )′Lt + LtA
0
t − C′

tCt

−(PtB
1
t + (A0

t )
′PtB

0
t + LtB

0
t )(γ2I − (D1

t )′D1
t + (B0

t )′Pt(B0
t ))−1

·((B1
t )′Pt + (B0

t )′PtA
0
t + (B0

t )′Lt)]dt + LtdWt,

PT = 0,

γ2I − (D1
t )′D1

t + (B0
t )′Pt(B0

t ) > 0.

(1.3)

The first two equalities constitute a nonlinear backward stochastic differential equation (BSDE
for short) and the last inequality serves as a constraint. The unknown of the BSRE is a pair of
matrix-valued Ft-adapted stochastic processes (P, L).

The general form of the indefinite BSRE is a matrix-valued BSDE with high nonlinearity
and possible singularity. Several recent papers were devoted to the stochastic LQ problem with
random coefficients and the associated indefinite BSRE. Chen and Yong [2] proved the local
existence and uniqueness results with the additional regularities of the coefficients (i.e., the
conditions on the Malliavin derivatives of the coefficients). Kohlmann and Tang [9–12] used the
typical approximation scheme to construct a solution when the control weighting matrix was
possibly singular. A scalar-valued indefinite BSRE, which arose from a mean-variance portfolio
selection problem for a market with random coefficients, was resolved in [14] for a complete
market and in [15] for an incomplete market. In [7], the existence and uniqueness of solutions
to certain special indefinite BSREs were established. However, our BSREs in this paper go
beyond their discussions.

Noting that the drift of (1.3) is quadratic in L and has a singularity in P , we are not able
to prove the existence of the solution in a direct way. Instead we will first treat the case where
only B0 = 0. In this case, the generator of BSRE (1.3) depends on the second unknown variable
L in a linear form. We prove the existence and uniqueness of the solution by using Bellman’s
quasi-linearization and a monotone convergence result of symmetric matrices, which is inspired
by Peng [16]. To some extent, this result extends the SBRL of Hinrichsen and Pritchard [6]
to the counterpart for stochastic systems with random coefficients. Furthermore, this crucial
result enables us to obtain sufficient and necessary conditions for the existence of finite horizon
mixed H2/H∞ control for stochastic systems with random coefficients, which is an extension
in comparison with the result of Chen and Zhang [3].

The rest of this paper is organized as follows. In Section 2, some preliminaries about
stochastic H∞ and H2/H∞ control are stated. The relationship between the H∞ robustness
and the solvability of indefinite BSRE is presented in Section 3, which plays an essential role
in this paper. Based on the results presented in Section 3, we then derive the necessary and
sufficient conditions for the existence of stochastic H2/H∞ control in Section 4. Concluding
remarks are presented in Section 5.

Finally we end this section by introducing some notations.
M ′ is the transpose of the vector or matrix M . |M | denotes the square root of the summa-

rized squares of all the components of the vector or matrix M . 〈M1, M2〉 is the inner product of
two vectors M1 and M2. M−1 is the inverse of a nonsingular square matrix M . R

m stands for the
m-dimensional Euclidean space. S

n is the space of all n×n symmetric matrices. EFtx denotes
taking conditional expectation with respect to filtration Ft for random variable x. C([0, T ]; H)
is the space of H-valued continuous functions on [0, T ], endowed with the maximum norm for a
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given Hilbert space H . L2
F(τ, T ; H) is the space of H-valued {Ft, τ ≤ t ≤ T }-adapted square-

integrable stochastic processes f on [τ, T ], endowed with the norm ‖f‖ = [E
∫ T

τ
|ft|2dt]

1
2 for a

given Euclidean space H . L∞
F (0, T ; H) is the space of H-valued Ft-adapted, essentially bounded

stochastic processes f on [0, T ], endowed with the norm ‖f‖ = esssup
t,ω

|f(t)| for a given Euclidean

space H . L2(Ω,F , P ; H) is the space of H-valued norm-square-integrable random variables on
the probability space (Ω,F , P ). L∞(Ω,F , P ; C([0, T ]; Rn)) is the space of C([0, T ]; Rn)-valued,
essentially maximum-norm-bounded random variables f on the probability space (Ω,F , P ),
endowed with the norm ‖f‖ = esssup

ω∈Ω
max

0�t�T
|f(t, ω)|.

2 Preliminaries

In engineering practice, H2/H∞ control is employed to attenuate the effect of external
disturbance and obtain the desired optimality performance. Let us consider the flight control
system, and take the longitudinal movement model of a small aircraft as an example.

Example 2.1 The flight movement system is always a nonlinear system with uncertainty
and sensitivity to external perturbation. By linearization and introducing Itô’s stochastic dif-
ferential equations, the longitudinal movement system can be described as (1.1), where Wt

denotes the unmodeled uncertainty such as the impact from the transverse movement, the mo-
ment of force from propulsion or other neglected small perturbations. Let x = (�, α, q, ϑ)′, z

and u = (δe, δT )′ represent deviations from desired fixed values of the state, the output, and
the control, respectively. Here �, α, q, ϑ, δe, δT represent velocity, angle of attack, pitch rate,
pitch attitude, deflection angle of elevon and deflection of rudder, respectively. Denote by v

the wind gusts and atmospheric turbulence, which adversely affects the signal output z (whose
ideal value is represented by 0). The coefficient matrices A, A0, B0, B1, B2 are always assumed
to be constant in the conventional model for simplicity. In fact, not every element in those
matrices can be directly observed and there exists parameter perturbation. For instance, the
parameters related to the aerodynamics may have a significant change as the plane flies at
different altitudes. Therefore, it is rational to assume the matrices to be random processes. For
such a system, the H2/H∞ control design is necessary to ensure flight safety and stability, and
meanwhile to minimize the energy input like aircraft fuel and the loss of aircraft components
when the plane suffers the worst case of uncertainty and atmospheric disturbances.

Consider the following stochastic linear system:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

dxt = [Atxt + B1
t vt + B2

t ut]dt + A0
t xtdWt, t ∈ [0, T ],

x0 = x0,

zt =

⎛⎜⎝Ctxt

D1
t vt

D2
t ut

⎞⎟⎠ ,

(2.1)

where we assume (D2)′D2 = I. Wt is a one-dimensional standard Brownian motion defined
on a given probability space (Ω,F , P ) and {Ft, 0 � t � T } is the augmented natural filtration
of W . All the coefficients are assumed to be bounded matrix-valued processes with suitable
dimensions. For all 0 < T < ∞ and (u, v, x0) ∈ L2

F (0, T ; Rnu) × L2
F (0, T ; Rnv) × R

n, there
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exists a unique solution xt = x(t, u, v, x0) ∈ L2
F (0, T ; Rn) to the state equation of system (2.1).

In applications, such models are often obtained by linearization. We view v as an external
disturbance which adversely affects the to-be-controlled output z ∈ R

nz (whose desired value is
represented by 0). The disturbing effect is to be ameliorated via control input u ∈ L2

F (0, T ; Rnu).
The effect of the disturbance on the to-be-controlled output z of system (2.1) is then described
by the perturbation operator Lcl: v �→ z which (for the zero initial state) maps disturbance
signals v into the corresponding output signals z of the closed loop system. The size of this
linear operator is measured by the induced norm. The larger this norm is, the larger the effect
of the unknown disturbance v on the to-be-controlled output z in the worst case is. Then the
H∞ control problem is to determine whether or not for each γ > 0 there exists a control input
u∗ achieving ‖Lu∗‖ < γ. Obviously, there may be more than one solution satisfying the required
condition. In engineering practice, as pointed out in Example 2.1, we want the control not only
to guarantee robust stability, but also to optimize system performance. That is, we wish to:

(1) Find a feedback control u∗ ∈ L2
F (0, T ; Rnu) such that the norm of the perturbation

operator of system (2.1) is less than some given number γ > 0, i.e., ‖Lu∗‖ < γ.
(2) We require the control u∗ to minimize the output energy z when the worst case distur-

bance v∗ ∈ L2
F (0, T ; Rnv) is applied to the system (2.1).

As we will show, this problem may be formulated as an LQ nonzero sum game. The two
cost functions we use are defined as (1.2). The first is associated with an H∞ robustness, while
the second reflects an H2 optimality requirement. The aim is to find equilibrium strategies u∗

and v∗ defined by

J1(u∗, v∗) � J1(u∗, v), ∀v ∈ L2
F(0, T ; Rnv),

J2(u∗, v∗) � J2(u, v∗), ∀u ∈ L2
F (0, T ; Rnu).

If J1(u∗, v∗) � 0 with x0 = 0, certainly |z|2 � γ2|v|2 for all v ∈ L2
F (0, T ; Rnv), which ensures

‖Lu∗‖ � γ. The second Nash inequality shows that u∗ minimizes the output energy z when
the input disturbance is at its worst v∗. Clearly, if the Nash equilibria (u∗, v∗) exists, then u∗

is our desired H2/H∞ controller, and v∗ is the corresponding worst case disturbance.
In Example 2.1, u∗ represents the minimum control effort and sensitivity of the control

response to the worst-case atmospheric disturbances. v∗ means the worst-case weather under
the requirement of system stability (‖Lu∗‖ < γ).

In the following, we will give sufficient and necessary conditions for the existence of the
linear state feedback pair (u∗, v∗). To this end, we will make some preliminaries in the next
section.

3 The Stochastic Bounded Real Lemma with Random Coefficients

Let (Ω,F , P ) be a given probability space and {Wt, 0 � t � T } is a one-dimensional standard
Brownian Motion on it. {Ft, 0 � t � T } is the augmented natural filtration of the standard
Brownian motion W . Note that we assume the Brownian motion to be one-dimensional just
for simplicity, and there is no essential difficulty in the analysis below for the multi-dimensional
cases. Consider the following stochastic linear system:{

dxt = (Atxt + Btvt)dt + A0
t xtdWt, t ∈ [0, T ],

x0 = x0
(3.1)
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and

zt =
(

Ctxt

Dtvt

)
. (3.2)

Here we assume that all the coefficients A, A0, B, C and D are {Ft, 0 � t � T }-progressively
measurable bounded matrix-valued processes, defined on Ω× [0, T ], of dimensions n×n, n×n,
n × m, q × n and l × m, respectively. We also denote v ∈ R

m as the external disturbance and
z ∈ R

q+l the controlled output. We use (3.2) rather than the more natural zt = Ctxt + Dtvt to
avoid the appearance of cross terms when computing z′z.

Definition 3.1 The system (3.1)–(3.2) with the initial state zero is said to be externally
stable or L2 input-output stable if, there exists a constant γ � 0 such that

|z(·)| � γ|v(·)|, ∀v ∈ L2
F (0, T ; Rm). (3.3)

Definition 3.2 Suppose that the system (3.1)–(3.2) is externally stable. The operator L:
L2
F (0, T ; Rm) → L2

F (0, T ; Rq+l) defined by

(Lv)(t) =
(

Ctx(t, v; 0, 0)
Dtvt

)
, ∀(t, v) ∈ [0, T ]× L2

F(0, T ; Rm)

is called the perturbation operator of (3.1)–(3.2). Its norm is defined as the minimal γ � 0 such
that (3.3) is satisfied, i.e.,

‖L‖ = sup
v∈L2

F (0,T ;Rm)
v �=0
x0=0

|(Lv)|
|v| = sup

v∈L2
F (0,T ;Rm)
v �=0
x0=0

{E ∫ T

0 (x′
tC

′
tCtxt + v′tD′

tDtvt)dt} 1
2

{E ∫ T

0 v′tvtdt} 1
2

,

‖L‖ is a measure of the worst effect that the stochastic disturbance v may have on the to-be-
controlled output z of the system. Therefore, it is important to find a way of determining the
norm ‖L‖. The stochastic bounded real lemma with random coefficients provides a method for
computing ‖L‖.

We proceed by associating a finite time quadratic cost functional with the problem param-
eterized by the initial data (τ, ξ) ∈ [0, T ]× R

n, v ∈ L2
F (τ, T ; Rm) and z ∈ L2

F (τ, T ; Rq+l):

J(v; τ, ξ) = EFτ

∫ T

τ

[γ2|vt|2 − |zt|2]dt

= EFτ

∫ T

τ

[〈(γ2I − D′
tDt)vt, vt〉 − 〈C′

tCtxt, xt〉]dt, (3.4)

where x denotes the solution of (3.1) with xτ = ξ, for any τ ∈ [0, T ]. Note that for a given
γ > 0, the cost J(v; 0, 0) is nonnegative for all v ∈ L2

F (0, T ; Rm) (at x0 = 0) if and only if
‖L‖ � γ. In order to examine whether or not J(v; 0, 0) � 0 for all v ∈ L2

F(0, T ; Rm), we will
analyze the finite horizon optimal control problem ess inf

v∈L2
F (τ,T ;Rm)

J(v; τ, ξ). Formally, the problem

of minimizing J(v; τ, ξ) has the form of an optimal control problem and so in our development
in this section we will refer to the disturbance v as a “control” and the perturbation operator
L as an “input-output” operator. The value function is defined as

V (τ, ξ) = ess inf
v∈L2

F (τ,T ;Rm)
J(v; τ, ξ), ∀(τ, ξ) ∈ [0, T ]× R

n. (3.5)
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It is known that the above stochastic LQ problem (3.1) and (3.4)–(3.5) is associated with
the following BSRE:⎧⎪⎨⎪⎩

dPt = −[A′
tPt + PtAt + (A0

t )
′PtA

0
t + (A0

t )
′Lt + LtA

0
t − C′

tCt

−PtBt(γ2I − D′
tDt)−1B′

tPt]dt + LtdWt,

PT = 0.

(3.6)

This equation is a nonlinear BSDE, the unknown of which is a pair of matrix-valued stochastic
processes (P, L).

Definition 3.3 A stochastic process (P, L) ∈ [L∞
F (0, T ; Sn)∩L∞(Ω,FT , P ; C([0, T ]; Sn))]×

L2
F (0, T ; Sn) is called a solution to the BSRE (3.6) if it satisfies the first equation of (3.6) in

the Itô sense as well as the second (the terminal condition). A solution (P, L) of (3.6) is called
bounded if P ∈ L∞

F (0, T ; Sn), and is called negative (negative semi) definite if P < (�) 0.

Next, we will prove that ‖L‖ < γ is equivalent to the solvability of the BSRE (3.6), which is
called the stochastic bounded real lemma with random coefficients and plays an essential role
in this paper.

3.1 Sufficiency for the solution of the BSRE

In this subsection, we will show that the solvability of (3.6) is sufficient for the solvability
of the LQ problem (3.1) and (3.4)–(3.5). Moreover, the optimal linear state feedback control
can be obtained via the solution to the BSRE. Meanwhile, the perturbation operator can be
rendered less than γ (appearing in the BSRE).

Theorem 3.1 Let (P, L) be a solution to BSRE (3.6) with P being almost surely and
almost everywhere (abbreviated hereafter as a.s.a.e.) negative definite and uniformly bounded,
and γ2I − D′

tDt be uniformly positive for a.s.a.e. (t, ω) ∈ [0, T ] × Ω. Then, the LQ problem
(3.1) and (3.4)–(3.5) is solvable with the optimal control vt = Ψtxt and ‖L‖ < γ, where

Ψt = −(γ2I − D′
tDt)−1B′

tPt.

Proof Suppose that BSRE (3.6) has a solution, and let x be the solution of (3.1) with
ξ = xτ , for any τ ∈ [0, T ]. Applying Itô’s formula to 〈Ptxt, xt〉, in view of (3.4) and using the
completion of squares, we have

J(v; τ, ξ) = J(v; τ, ξ) + EFτ

{∫ T

τ

d(x′
tPtxt) − x′

T PT xT + x′
τPτxτ

}
= ξ′Pτ ξ + EFτ

{∫ T

τ

〈(γ2I − D′
tDt)(vt − Ψtxt), vt − Ψtxt〉dt

}
� ξ′Pτ ξ, (3.7)

where

Ψt = −(γ2I − D′
tDt)−1B′

tPt.

It follows immediately that the optimal feedback control would be vt = Ψtxt and the optimal
value is V (τ, ξ) = ξ′Pτ ξ, provided that the corresponding solution to the system equation exists
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under such a feedback control. In fact, when vt = Ψtxt, the system (3.1) is reduced to{
dxt = [At − Bt(γ2I − D′

tDt)−1B′
tPt]xtdt + A0

t xtdWt, t ∈ [τ, T ],
xτ = ξ.

(3.8)

As γ2I − D′
tDt � εI, (γ2I − D′

tDt)−1 is bounded. Moreover, since P is negative definite
and uniformly bounded, the coefficients of (3.8) are uniformly bounded. Therefore, SDE (3.8)
indeed has a unique strong solution x ∈ L2

F (0, T ; Rn), and thus, vt = Ψtxt ∈ L2
F (0, T ; Rm).

From (3.7), we derive that J(v; 0, x0) � (x0)′P0x
0. In particular, if x0 = 0, then J(v; 0, 0) � 0,

which is equivalent to ‖L‖ � γ. To show ‖L‖ < γ, we define an operator

Γ : L2
F (0, T ; Rm) �→ L2

F (0, T ; Rm), Γvt = ṽt := vt − Ψtxt

with its realization

dxt = (Atxt + Btvt)dt + A0
t xtdWt,

x0 = 0,

ṽt = vt + (γ2I − D′
tDt)−1B′

tPtxt.

Then Γ−1 exists, which is determined by

dxt = {[At − Bt(γ2I − D′
tDt)−1B′

tPt]xt + Btṽt}dt + A0
t xtdWt,

x0 = 0,

vt = −(γ2I − D′
tDt)−1B′

tPtxt + ṽt.

According to the inverse operator theorem in functional analysis, ‖Γ−1‖ is bounded. There
exists a positive constant c = ε

‖Γ−1‖2 such that

J(v; 0, 0) = E

∫ T

0

(vt − Ψtxt)′(γ2I − D′
tDt)(vt − Ψtxt)dt

= E

∫ T

0

(Γvt)′(γ2I − D′
tDt)(Γvt)dt

� ε|Γvt|2 � c|vt|2 > 0,

which is equivalent to ‖L‖ < γ.
The proof of Theorem 3.1 is complete.

The preceding theorem implies that if the BSRE (3.6) (including γ) is solvable, the norm
of the input-output operator is less than γ.

3.2 Necessity for the solution of the BSRE

In this subsection we shall show that if ‖L‖ < γ, then the corresponding BSRE (3.6) admits a
unique solution by using Bellman’s principle of quasi-linearization and a monotone convergence
result of symmetric matrices.

The following lemma establishes a lower bound for the cost functional, which depends only
on the norm of the initial state.
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Lemma 3.1 Suppose that ‖L‖ < γ. Then there exists μ > 0, such that for any (τ, ξ) ∈
[0, T ]× R

n and any v ∈ L2
F (τ, T ; Rm), we have J(v; τ, ξ) � −μ|ξ|2.

Proof From the assumption of ‖L‖ < γ and the definition of ‖L‖, there exists a sufficiently
small constant δ > 0 such that

J(v; 0, 0) = E

∫ T

0

[〈(γ2I − D′
tDt)vt, vt〉 − 〈C′

tCtx(t, v; 0, 0), x(t, v; 0, 0)〉]dt

� δ2E

∫ T

0

〈vt, vt〉dt, ∀v ∈ L2
F (0, T ; Rm).

It follows immediately that

E

∫ T

τ

[〈(γ2I − D′
tDt)vt, vt〉 − 〈C′

tCtx(t, v; τ, 0), x(t, v; τ, 0)〉]dt � δ2E

∫ T

τ

〈vt, vt〉dt.

We deduce from the last inequality that for a.s.a.e. (t, ω) ∈ [τ, T ] × Ω,

〈(γ2I − D′
tDt − δ2I)vt, vt〉 − 〈C′

tCtx(t, v; τ, 0), x(t, v; τ, 0)〉 � 0.

Finally we obtain

J(v; τ, 0) = EFτ

{∫ T

τ

[〈(γ2I − D′
tDt)vt, vt〉 − 〈C′

tCtx(t, v; τ, 0), x(t, v; τ, 0)〉]dt
}

� δ2EFτ

{∫ T

τ

〈vt, vt〉dt
}
. (3.9)

On the other hand, denote by P2 the solution of the following equation:{
dPt = −(A′

tPt + PtAt + (A0
t )

′PtA
0
t + (A0

t )
′Lt + LtA

0
t − C′

tCt)dt + LtdWt,

PT = 0.

By linearity, the solution x(t, v; τ, ξ) of the system equation (3.1) satisfies

x(t, v; τ, ξ) = x(t, v; τ, 0) + x(t, 0; τ, ξ).

By Itô’s formula, we have

J(v; τ, ξ) = J(v; τ, ξ) + EFτ

{∫ T

τ

d[x′
tP2,txt]

}
+ x′

τP2,τxτ − x′
T P2,T xT

= ξ′P2,τξ + EFτ

{∫ T

τ

[〈(γ2I − D′
tDt)vt, vt〉

+ 〈vt, B
′
tP2,tx(t, v; τ, ξ)〉 + 〈x(t, v; τ, ξ), P2,tBtvt〉]dt

}
. (3.10)

According to the estimate for SDE, there exists a constant α0 > 0 such that

EFτ

{
sup

τ�t�T
|xt|2

}
� α0E

Fτ

{
|ξ|2 +

∫ T

τ

|vt|2dt
}

.

Then, there exists a constant α1 > 0 such that

EFτ

{∫ T

τ

|x(t, 0; τ, ξ)|2dt
}

� α1|ξ|2. (3.11)
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In addition, taking v = 0 in (3.10), we get

ξ′P2,τξ = J(0; τ, ξ) = −EFτ

{∫ T

τ

〈C′
tCtx(t, 0; τ, ξ), x(t, 0; τ, ξ)〉dt

}
� −β0|ξ|2,

where β0 is a positive constant. Therefore,

−β0I � P2,τ � 0, ∀τ ∈ [0, T ]. (3.12)

From (3.10), it is easy to check that for any (τ, ξ) ∈ [0, T ]× R
n and any v ∈ L2

F (τ, T ; Rm),

J(v; τ, ξ) − J(v; τ, 0)

= ξ′P2,τ ξ + EFτ

{∫ T

τ

[〈vt, B
′
tP2,tx(t, 0; τ, ξ)〉 − 〈x(t, 0; τ, ξ), P2,tBtvt〉]dt

}
.

In view of (3.9), we get

J(v; τ, ξ) � EFτ

{∫ T

τ

|δvt + δ−1B′
tP2,tx(t, 0; τ, ξ)|2dt

}
− EFτ

{∫ T

τ

|δ−1B′
tP2,tx(t, 0; τ, ξ)|2dt

}
+ ξ′P2,τξ

� ξ′P2,τ ξ − EFτ

{∫ T

τ

|δ−1B′
tP2,tx(t, 0; τ, ξ)|2dt

}
. (3.13)

By virtue of (3.11) and (3.12), there exists β1 > 0 such that

EFτ

{∫ T

τ

|δ−1B′
tP2,tx(t, 0; τ, ξ)|2dt

}
� β1|ξ|2. (3.14)

Hence, through (3.13) and (3.14), we obtain

J(v; τ, ξ) � −(β0 + β1)|ξ|2 := −μ|ξ|2.

The proof is complete.

The following lemma concerns the solvability of the matrix-valued linear BSDE, which can
be found in [16].

Lemma 3.2 Let Â, Ĉ be R
n×n-valued, and R̂ be S

n-valued, Ft-adapted processes. Assume
that they are all bounded. Let Q̂ be a bounded FT -measurable random variable with values in
S

n. Then there exists a pair (K, M) satisfying the following linear equation:{
−dKt = [Â′

tKt + KtÂt + Ĉ′
tKtĈ

′
t + (MtĈt + Ĉ′

tMt) + R̂t]dt − MtdWt,

KT = Q̂.

Moreover

sup
t,ω

|Kt(ω)|2 � k0,

where the constant k0 depends only on sup
t,ω

(|Ât| + |Ĉt|) and sup
ω

(|Q̂|2 +
∫ T

0 R̂2
t dt)(ω).
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In addition, there exists a representation: for any (t, h) ∈ [0, T ]× R
n,

〈Kth, h〉 = EFt

{∫ T

t

〈R̂sys, ys〉ds + 〈Q̂yT , yT 〉
}

with y being the solution of{
dys = Âsysdt + ĈsysdWs, s ∈ [t, T ],
yt = h.

If R̂ and Q̂ are negative (positive) semi-definite almost surely, then K is also negative (positive)
semi-definite almost surely.

We are now in a position to prove necessity.

Theorem 3.2 If ‖L‖ < γ, then there exists a unique solution to (3.6) such that P is
negative semi-definite and uniformly bounded and L is square integrable. Moreover, there exists
a deterministic constant β such that

E

∫ T

0

|Lt|2dt � β.

Here, β depends on the uniform lower bound of P and all the coefficients.

Proof From the assumption of ‖L‖ < γ and the definition of ‖L‖, there exists a sufficiently
small constant ε > 0 such that γ2I − D′D � εI.

(i) Existence: We define Û(P ): S
n → R

n×m by

Û(P ) = −(γ2I − D′D)−1B′P

and Â(P ): S
n → R

n×n by

Â(P ) = A + BÛ(P ) = A − B(γ2I − D′D)−1B′P.

We also define F (P, L; P̃ ): S
n × S

n × S
n → S

n by

F (P, L; P̃ ) = Â(P̃ )′P + PÂ(P̃ ) + A′
0PA0 + A′

0L + LA0 − C′C + Û ′(P̃ )(γ2I − D′D)Û(P̃ ).

With these notations, we can rewrite (3.6) as{
−dPt = F (Pt, Lt; Pt)dt − LtdWt,

PT = 0.

It is seen that

F (P, L; P̃ ) − F (P, L; P ) = (P̃ − P )B(γ2I − D′D)−1B′(P̃ − P ) � 0,

i.e.,

F (P, L; P̃ ) � F (P, L; P ). (3.15)
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We now iteratively construct a sequence of approximating solutions. First, we define (P1, L1)
by solving the following linear BSDE:{

−dP1,t = F (P1,t, L1,t; 0)dt − L1,tdWt,

P1,T = 0.

By Lemma 3.2, the last equation has a unique solution P1 with the representation: For any
(τ, ξ) ∈ [0, T ]× R

n,

〈P1,τ ξ, ξ〉 = EFτ

{∫ T

τ

〈−C′
tCtxt, xt〉dt

}
,

where xt satisfies {
dxt = Atxtdt + A0

t xtdWt, t ∈ [τ, T ],
xτ = ξ.

Since all the coefficients are bounded, P1 is bounded and negative semi-definite. Therefore,
Û(P1,t) = −(γ2I − D′

tDt)−1B′
tP1,t is bounded. Then, we define the pairs (P2, L2) to be the

solution of BSDE {
−dP2,t = F (P2,t, L2,t; P1,t)dt − L2,tdWt,

P2,T = 0.

Again from Lemma 3.2, for any (τ, ξ) ∈ [0, T ]×R
n, there is a unique bounded solution (P2, L2).

Thus Û(P2,t) is well-defined and bounded. Inductively, we can define (Pj+1, Lj+1) by the unique
bounded solution of {

−dPj+1,t = F (Pj+1,t, Lj+1,t; Pj,t)dt − Lj+1,tdWt,

Pj+1,T = 0, j = 1, 2, · · · .
(3.16)

Furthermore, by virtue of a classic estimate for BSDE, we have

E sup
t∈[0,T ]

|Pj+1,t|2 + E

∫ T

0

|Lj+1,t|2dt

� E

∫ T

0

[−C′
tCt + Û ′(Pj,t)(γ2I − D′

tDt)Û(Pj,t)]2dt. (3.17)

We claim that the sequence {Pj,t} is nonincreasing. Indeed, we have⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

−d(Pj,t − Pj+1,t) = [F (Pj,t, Lj,t; Pj−1,t) − F (Pj+1,t, Lj+1,t; Pj,t)]dt − [Lj,t − Lj+1,t]dWt

= [F (Pj,t, Lj,t; Pj−1,t) − F (Pj,t, Lj,t; Pj,t) + F (Pj,t, Lj,t; Pj,t)
−F (Pj+1,t, Lj+1,t; Pj,t)]dt − [Lj,t − Lj+1,t]dWt

= [F (Pj,t, Lj,t; Pj−1,t) + F (Pj,t − Pj+1,t, Lj,t − Lj+1,t; Pj,t)
−F (Pj,t, Lj,t; Pj,t)]dt − [Lj,t − Lj+1,t]dWt,

Pj,T − Pj+1,T = 0

with Rj,t
�
= F (Pj,t, Lj,t; Pj−1,t) − F (Pj,t, Lj,t; Pj,t). From (3.15), Rj,t is nonnegative. Thus,

according to Lemma 3.2, Pj,t − Pj+1,t is also nonnegative, which implies that {Pj,t} is a non-
increasing sequence.
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In addition, according to Lemma 3.1, J(v; τ, ξ) � −μ|ξ|2, that is, for any v ∈ L2
F(τ, T ; Rm),

EFτ

{∫ T

τ

[〈(γ2I − D′
tDt)vt, vt〉 − 〈C′

tCtx(t, v; τ, ξ), x(t, v; τ, ξ)〉]dt
}

� −μ|ξ|2. (3.18)

Setting vt = Û(Pj,t)xt = −(γ2I − D′
tDt)−1B′

tPj,txt in (3.18), where xt satisfies{
dxt = Â(Pj,t)xtdt + A0xtdWt,

xτ = ξ,
∀(τ, ξ) ∈ [0, T ]× R

n,

we conclude

〈Pj+1,τ ξ, ξ〉 = EFτ

{∫ T

τ

〈[−C′
tCt + Û ′(Pj,t)(γ2I − D′

tDt)Û(Pj,t)]xt, xt〉dt
}

� −μ|ξ|2.

As seen from the afore-mentioned information, we can get

0 � P1 � P2 � · · · � Pj � · · · � −μI.

It follows that {Pj,t} converges almost surely to a negative semi-definite Sn-valued process Pt.
According to Lebesgue’s convergence theorem, we have

E

∫ T

0

|Pj,t − Pt|qdt → 0, as j → ∞, ∀q > 0.

Thus {Pj,t}, and then also Û(Pj,t) is a Cauchy sequence in the above sense. We have also
almost everywhere

E|Pj,t − Pt|q → 0, as j → ∞, ∀q > 0.

By the definition (3.16), we can apply Itô’s formula to |Pi,t − Pj,t|2,

E|Pi,0 − Pj,0|2 + E

∫ T

0

|Li,t − Lj,t|2dt

= 2E

∫ T

0

tr(Pi,t − Pj,t){[2A′
t(Pi,t − Pj,t) + (A0

t )
′(Pi,t − Pj,t)A0

t + 2(A0
t )

′(Li,t − Lj,t)

− Û ′(Pi,t)(γ2I − D′
tDt)Û(Pi,t) + Û ′(Pj,t)(γ2I − D′

tDt)Û(Pj,t)]dt + (Li,t − Lj,t)dWt}

� 1
2
E

∫ T

0

|Li,t − Lj,t|2dt + c1E

∫ T

0

|Pi,t − Pj,t|2dt

+ c2E

∫ T

0

|Û ′(Pi,t)(γ2I − D′
tDt)Û(Pi,t) − Û ′(Pj,t)(γ2I − D′

tDt)Û(Pj,t)|2dt,

where “tr” denotes the trace, c1 and c2 are positive constants. Thus {Lj,t} is a Cauchy sequence
in L2

F (0, T ; Sn). Passing to the limit in (3.16), we obtain that (Pt, Lt) is a solution of (3.6),
with

Lt = lim
j→∞

Lj,t in L2
F (0, T ; Sn).
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(ii) Uniqueness: Let (P, L) and (P̃ , L̃) be two pairs in

[L∞
F (0, T ; Sn) ∩ L∞(Ω,FT , P ; C([0, T ]; Sn))] × L2

F(0, T ; Sn)

satisfying (3.6), such that P and P̃ are negative semi-definite and uniformly bounded. Now
applying Itô’s formula to |Pτ − P̃τ |2 and using their respective equations, we have

d|Pτ − P̃τ |2 = 2(Pτ − P̃τ )d(Pτ − P̃τ ) + |Lτ − L̃τ |2dτ

= |Lτ − L̃τ |2dτ. (3.19)

On the other hand, from the proof of Theorem 3.1, we obtain V (τ, ξ) = ξ′Pτ ξ = ξ′P̃τ ξ, for all
[τ, ξ] ∈ [0, T ]× R

n, which implies Pτ = P̃τ , a.s. ω, for all τ ∈ [0, T ]. Putting this equality into
(3.19), we have Lτ = L̃τ , a.s. ω, a.e. τ ∈ [0, T ].

(iii) Boundedness: Passing the limit in (3.17) and by the boundedness of P and all the
coefficients, we immediately get E

∫ T

0
|Lt|2dt � β for some constant β, which depends on the

uniformly lower bound of P and the upper bound of all the coefficients.
The proof is complete.

From Theorems 3.1 and 3.2, we see that ‖L‖ < γ is equivalent to that (3.6) has a negative
semi-definite and uniformly bounded solution, which tells us that the minimal γ satisfying (3.6)
can be taken as an estimate of ‖L‖. Moreover, this result to some extent extends the stochastic
bounded real lemma in [6] to the case of random coefficients.

4 Solvability of the Stochastic H2/H∞ Control

In this section, we shall give necessary and sufficient conditions for the solvability of the
stochastic H2/H∞ control problem in terms of a pair of coupled Riccati equations. Consider
the stochastic linear system (2.1), and the finite horizon stochastic H2/H∞ problem can be
stated as follows.

Definition 4.1 Given a scalar γ > 0, we want to find, if possible, a state feedback control
u∗ ∈ L2

F (0, T ; Rnu), such that with the constraint (2.1), we have that
(1)

‖Lu∗‖ := sup
v∈L2

F (0,T ;Rnv )
v �=0
x0=0

|Lu∗(v)|
|v|

= sup
v∈L2

F (0,T ;Rnv )
v �=0
x0=0

{E ∫ T

0 (x′
tC

′
tCtxt + u∗

t
′u∗

t + v′t(D1
t )′D1

t vt)dt} 1
2

{E ∫ T

0 v′tvt)dt} 1
2

< γ,

where Lu∗(v) := ((Ctx(t, u∗, v, 0))′, (D1
t vt)′, (D2

t u
∗
t )′)′;

(2) When the worst case disturbance v∗ ∈ L2
F (0, T ; Rnv), if it exists, applied to (2.1), u∗

minimizes the output energy

J2(u, v∗) = E

∫ T

0

(x′
tC

′
tCtxt + u′

tut + (v∗t )′(D1
t )

′D1
t v

∗
t )dt.
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Here, the so-called worst case disturbance v∗ means that for any v ∈ L2
F (0, T ; Rnv) and any

x0 ∈ R
n,

v∗ = argmin
v

J1(u∗, v) = argmin
v

E

∫ T

0

(γ2v′tvt − z′tzt)dt.

If the previous (u∗, v∗) exists, then the finite horizon H2/H∞ control has a pair of solutions
(u∗, v∗).

In the following two theorems, we shall give a necessary and sufficient condition for the
existence of the linear state feedback pair (u∗, v∗). It generalizes the result of Chen and Zhang
[3] to the case of stochastic systems with random coefficients.

Theorem 4.1 Let P1, P2 be the uniformly bounded solutions of the following coupled Riccati
equations:⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

dP1,t = −
[
A′

tP1,t + P1,tAt + (A0
t )

′P1,tA
0
t + (A0

t )
′L1,t + L1,tA

0
t − C′

tCt

−
(
P1,t P2,t

)( Nt B2
t (B2

t )′

B2
t (B2

t )′ B2
t (B2

t )′

)(
P1,t

P2,t

)]
dt + L1,tdWt,

P1,T = 0

(4.1)

and ⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

dP2,t = −
[
A′

tP2,t + P2,tAt + (A0
t )′P2,tA

0
t + (A0

t )′L2,t + L2,tA
0
t + C′

tCt

−
(
P1,t P2,t

)(Mt Nt

Nt B2
t (B2

t )′

)(
P1,t

P2,t

)]
dt + L2,tdWt,

P2,T = 0.

(4.2)

Here

M = −B1(γ2I − (D1)′D1)−1(D1)′D1(γ2I − (D1)′D1)−1(B1)′,

N = B1(γ2I − (D1)′D1)−1(B1)′.

Suppose further that γ2I − (D1)′D1 is uniformly positive for a.s. a.e. (t, ω) ∈ [0, T ]×Ω. Then,
we have that

(1) the Nash equilibrium strategies are uniquely specified by{
u∗

t = −(B2
t )′P2,txt,

v∗t = −(γ2I − (D1
t )′D1

t )
−1(B1

t )′P1,txt,
(4.3)

(2) in the case that u = u∗ with x0 = 0, ‖Lu∗‖ < γ.

Proof Suppose that the coupled Riccati equations (4.1) and (4.2) have solutions. Let us
consider the cost functional J1(u, v) first. Applying Itô’s formula and the completion of squares,
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we have

J1(u, v) = E

∫ T

0

[(γ2v′tvt − z′tzt)dt + dx′
tP1,txt + (x0)′P1,0x

0dt − x′
T P1,T xT dt]

= E

∫ T

0

[〈(γ2I − (D1
t )

′D1
t )[v + (γ2I − (D1

t )′D1
t )

−1(B1
t )′P1,txt],

v + (γ2I − (D1
t )′D1

t )−1(B1
t )′P1,txt〉

− u′
tut + x′

tP2,tB
2
t (B2

t )′P2,txt + x′
tP2,tB

2
t (B2

t )′P1,txt + x′
tP1,tB

2
t (B2

t )′P2,txt

+ u′
t(B

2
t )′P1,txt + x′

tP1,tB
2
t ut]dt + (x0)′P1,0x

0

= (x0)′P1,0x
0 + E

∫ T

0

[〈(γ2I − (D1
t )′D1

t )(vt − v∗t ), (vt − v∗t )〉 − u′
tut

+ x′
tP1,tB

2
t (ut − u∗

t ) + (ut − u∗
t )

′(B2
t )′P1,txt + (u∗

t )
′ut]dt, (4.4)

where u∗ and v∗ are defined as in (4.3). Setting u = u∗, we obtain

J1(u∗, v) = (x0)′P1,0x
0 + E

∫ T

0

〈(γ2I − (D1
t )

′D1
t )(vt − v∗t ), (vt − v∗t )〉dt.

Therefore, it follows immediately that J1(u∗, v∗) � J1(u∗, v) and J1(u∗, v∗) = (x0)′P1,0x
0. We

then conclude that v∗ is the worst case disturbance with respect to u∗. Moreover, by the
discussion in the proof of Theorem 3.1, we obtain ‖Lu∗‖ < γ.

Similarly, we have

J2(u, v) = (x0)′P2,0x
0 + E

∫ T

0

[〈(ut − u∗
t ), (ut − u∗

t )〉 + x′
tP2,tB

1
t (vt − v∗t )

+ (vt − v∗t )′(B1
t )′P2,txt + v′t(D

1
t )′D1

t vt − (v∗t )′(D1
t )

′D1
t v

∗
t ]dt. (4.5)

Setting v = v∗ results in J2(u∗, v∗) � J1(u, v∗) and J2(u∗, v∗) = (x0)′P2,0x
0. It means that

min
u

J2(u, v∗) = J2(u∗, v∗). By Definition 4.1, the afore-mentioned information implies that the

finite horizon H2/H∞ control has a pair of solutions (u∗, v∗) with

u∗
t = −(B2

t )′P2,txt,

v∗t = −(γ2I − (D1
t )′D1

t )−1(B1
t )′P1,txt.

This completes the proof of Theorem 4.1.

Remark 4.1 We establish the signs of P1 and P2 as follows:
(i) Using the completion of squares similar to that which lead to (4.4), we derive that

EFτ

{∫ T

τ

(γ2v′tvt − z′tzt)dt
}

= x′
τP1,τxτ + EFτ

{∫ T

τ

[〈(γ2I − (D1
t )′D1

t )(vt − v∗t ), (vt − v∗t )〉

− u′
tut + x′

tP1,tB
2
t (ut − u∗

t ) + (ut − u∗
t )

′(B2
t )′P1,txt + (u∗

t )
′ut]dt

}
.

Setting ut = u∗
t and vt = 0 yields

x′
τP1,τxτ = EFτ

{∫ T

τ

[−(γ2I − (D1
t )

′D1
t )(v

∗
t )′(v∗t ) − z′tzt]dt

}
� 0.
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Thus, P1,τ � 0, a.s. a.e. (ω, τ) ∈ Ω × [0, T ].
(ii) By the similar calculations that lead to (4.5), setting ut = u∗

t and vt = v∗t , we finally
obtain

x′
τP2,τxτ = EFτ

{∫ T

τ

z′tztdt
}

� 0.

Consequently, P2,τ � 0, a.s. a.e. (ω, τ) ∈ Ω × [0, T ].

Remark 4.2 If the coupled BSREs (4.1) and (4.2) have solutions, then by

x′
τ (P1,τ + P2,τ )xτ = EFτ

{∫ T

τ

γ2(v∗t )′(v∗t )dt
}

� 0,

we see that P1,τ + P2,τ � 0, a.s. a.e. (ω, τ) ∈ Ω × [0, T ].

Notice that by adding J1(u∗, v∗) to J2(u∗, v∗), we prove that the energy in the worst case
feedback disturbance is given by |v∗|2 = γ−2(x0)′(P1,0 + P2,0)x0.

Theorem 4.2 Assume that the finite horizon H2/H∞ control problem admits a pair of
solutions (u∗, v∗) with v∗t = K1

t xt, u∗
t = K2

t xt, where K1 and K2 are bounded adapted processes.
Then the coupled stochastic Riccati equations (4.1) and (4.2) have solutions P1, P2 on [0, T ]
respectively, with P1 being negative definite and uniformly bounded and P2 being positive definite
and uniformly bounded.

Proof Assuming that an admissible Nash equilibrium strategy pair exist, we will show that
the coupled Riccati equations (4.1) and (4.2) have solutions P1,t � 0 and P2,t � 0, respectively.

(i) Implementing u∗
t = K2

t xt in (2.1), we obtain⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
dxt = [(At + B2

t K2
t )xt + B1

t vt]dt + A0
t xtdWt, x0 = x0,

zt =

⎛⎜⎝
(

Ct

D2
t K

2
t

)
xt

D1
t vt

⎞⎟⎠ , (D2
t )′D2

t = I.
(4.6)

Since the finite horizon H2/H∞ control is solvable, by Definition 4.1, we have ‖Lu∗‖ < γ.
Moreover, by Theorem 3.2, there exist constants λ1 > 0 and κ1 > 0 such that the following
BSRE⎧⎪⎨⎪⎩

dPt = −[(At + B2
t K2

t )′Pt + Pt(At + B2
t K2

t ) + (A0
t )

′PtA
0
t + (A0

t )
′Lt + LtA

0
t

−C′
tCt − (K2

t )′K2
t − PtB

1
t (γ2I − (D1

t )′D1
t )−1(B1

t )′Pt]dt + LtdWt,

PT = 0
(4.7)

has a unique solution (P1, L1) with −λ1I � P1,t � 0, E
∫ T

0 |L1,t|2dt � κ1. It now follows from
Theorem 3.1 that the control problem

min
v∈L2

F (0,T ;Rnv )
J1(u∗, v)

has a unique solution v∗t = −(γ2I − (D1
t )′D1

t )−1(B1
t )′P1,txt. Therefore,

K1
t = −(γ2I − (D1

t )′D1
t )

−1(B1
t )′P1,t.
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(ii) Substituting vt = v∗t = −(γ2I − (D1
t )′D1

t )−1(B1
t )′P1,txt into (4.1), we have{

dx(t) = [(At − B1
t (γ2I − (D1

t )′D1
t )

−1(B1
t )′Pt)xt + B2

t ut]dt + A0
t xtdWt,

x0 = x0

and

zt =

⎛⎝( Ct

−D1
t (γ

2I − (D1
t )

′D1
t )

−1(B1
t )′P1,t

)
xt

D2
t ut

⎞⎠ , (D2
t )′D2

t = I.

Since

min
u∈L2

F (0,T ;Rnu )
JT

2 (u, v∗)

is a standard stochastic LQ problem, according to Peng [16] or Tang [18], there exists a unique
optimal control u∗

t = −(B2
t )′P2,txt. Here P2,t is the unique nonnegative solution of⎧⎪⎪⎪⎨⎪⎪⎪⎩

dPt = −[(At − B1
t (γ2I − (D1

t )
′D1

t )
−1(B1

t )′P1,t)Pt + Pt(At − B1
t (γ2I − (D1

t )′D1
t )

−1(B1
t )′P1,t)

+(A0
t )′PtA

0
t + (A0

t )′Lt + LtA
0
t + C′

tCt − PtB
2
t (B2

t )′Pt

+P1,tB1,t(γ2I − (D1
t )′D1

t )−1(D1
t )′D1

t (γ2I − (D1
t )′D1

t )−1(B1
t )′P1,t]dt + LtdWt,

PT = 0,

which is the coupled Riccati equation (4.2). Moreover, there exist constants λ2 > 0 and κ2 > 0
such that 0 � P2,t � λ2I, E

∫ T

0 |L2,t|2dt � κ2. By uniqueness, K2
t = −(B2

t )′P2,t. Substituting
for K2

t in (4.7), we obtain the required BSRE (4.1).
The proof is complete.

Remark 4.3 Theorems 4.1 and 4.2 tell us that, to some extent, the existence of a stochastic
H2/H∞ state feedback controller is equivalent to the solvability of a pair of coupled BSREs
(4.1)–(4.2). However, generally speaking, it is hard to solve the coupled BSREs (4.1)–(4.2)
analytically. We can only obtain its approximating solutions by decoupling the equations under
very special conditions. For example, for the one-dimensional case, by selecting some special
random matrices to decouple the equations such that (4.1) and (4.2) being two independent
BSREs, we then need to solve these BSREs which has the following form (the variable t is
suppressed): {

dP = −[αP + βL + Q − PB(γ2I − D′D)−1B′P ]dt + LdWt,

PT = 0.
(4.8)

We first consider the linear BSDE (with Q being some symmetric random matrix){
dP1 = −[αP1 + βL1 + Q]dt + L1dWt,

P1,T = 0,

whose solution is

P1,t = EFt

[ ∫ T

t

QsΓt
sds
]
, ∀s ∈ [t, T ]
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with Γt
s satisfying

dΓt
s = Γt

s[αsds + βsdWs], Γt
t = 1.

We then follow the lines of the proof of Theorem 3.2 to obtain the approximating solution to
(4.8).

5 Concluding Remarks

In this paper, we have studied the mixed H2/H∞ control for stochastic Itô systems with
random coefficients when only the state appears in the noise. We approach this problem as an
LQ optimal control problem and focus on the associated BSREs. A key part of our derivation is
the proof of the existence and uniqueness of the solution to the indefinite BSRE associated with
the H∞ robustness. This pivotal result enables us to present sufficient and necessary conditions
for the existence of H2/H∞ control in terms of a pair of coupled stochastic Riccati equations.

However, when state and control appear in the noise term, the indefinite BSRE takes the
form (1.3). The existence of the solution is hard to prove due to the following reasons. First of
all, it is a highly nonlinear BSDE, especially in view of the matrix inverse term (γ2I−(D1)′D1+
(B0)′P (B0))−1. Secondly, the indefiniteness of parameter matrixes gives rise to the singularity
of the term γ2I−(D1)′D1+(B0)′P (B0) when one tries to use the typical approximation scheme
to construct a solution. Thirdly, due to possible unboundedness of the martingale term L, the
Bellman’s quasi-linearization principle finds a difficulty in solving this problem. Finally, (1.3) is
a matrix equation. Hence certain terms do not commute, which adds substantial difficulties to
the analysis. For these reasons, the solvability of (1.3) stands out on its own as an interesting
theoretical problem and merits further studies.

The case of state-dependent noise presented in this paper serves as a preliminary discussion
on the H2/H∞ control for the stochastic system with random coefficients. The more general
case of state- and control- dependent noise will be studied elsewhere.
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