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SEMI-LINEAR SYSTEMS OF BACKWARD
STOCHASTIC PARTIAL DIFFERENTIAL

EQUATIONS IN lRn∗∗

TANG Shanjian∗

Abstract

This paper explores the diffeomorphism of a backward stochastic ordinary differen-
tial equation (BSDE) to a system of semi-linear backward stochastic partial differential
equations (BSPDEs), under the inverse of a stochastic flow generated by an ordinary
stochastic differential equation (SDE). The author develops a new approach to BSPDEs
and also provides some new results. The adapted solution of BSPDEs in terms of those
of SDEs and BSDEs is constructed. This brings a new insight on BSPDEs, and leads to
a probabilistic approach. As a consequence, the existence, uniqueness, and regularity
results are obtained for the (classical, Sobolev, and distributional) solution of BSPDEs.
The dimension of the space variable x is allowed to be arbitrary n, and BSPDEs are
allowed to be nonlinear in both unknown variables, which implies that the BSPDEs
may be nonlinear in the gradient. Due to the limitation of space, however, this paper
concerns only classical solution of BSPDEs under some more restricted assumptions.
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§ 1 . Introduction

Backward stochastic differential equations (BSDEs) differ from stochastic differential
equations (SDEs) at least in the two aspects: (1) the boundary conditions of BSDEs are
given at the terminal time, while the boundary conditions of SDEs are given at the initial
time; (2) the solutions of BSDEs consist of a pair of processes, while the solutions of SDEs
consist of a single process.

BSDEs were initially formulated by Bismut [6–10] when he studied the stochastic maxi-
mum principle for optimal stochastic controls. They appeared in a linear form as the adjoint
equations in the stochastic maximum principle. The general Lipschitz nonlinear case was
solved by Pardoux and Peng [25]. The Riccati equation associated with a linear quadratic
optimal stochastic control problem was also suitably formulated by Bismut [9] as a special
nonlinear (but not Lipschitz) BSDE. The solution of the Riccati equation had been left
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open for a long time, and it has been solved recently by Tang [34] for the interesting case
of Brownian motion-driven stochastic differential systems. A detailed systematic account
of the theory and applications of BSDEs is available in El Karoui, Peng and Quenez [13],
Pardoux [24], and Yong and Zhou [35].

Backward stochastic partial differential equations (SPDEs), which are a natural general-
ization of BSDEs, arise in many applications of probability theory and stochastic processes,
for instance in the optimal control of processes with incomplete information, as an adjoint
equation of the Duncan-Mortensen-Zakai filtration equation. For example, see [4, 5, 15, 29,
36, 37, 21, 32, 33]. A class of fully nonlinear BSPDEs, the so-called backward stochastic
Hamilton-Jacobi-Bellman equations, are also introduced in the study of controlled non-
markovian processes by Peng [29].

Let (Ω,F , {Ft}t≥0, P ) be a complete filtered probability space on which is defined a
d-dimensional standard Brownian motion w = {w(t) : t ∈ [0, T ]} such that {Ft}t≥0 is the
natural filtration generated by w and augmented by all the P -null sets in F . In this paper,
we consider the following semi-linear system of BSPDEs:





du(t, x) = −L(t, x)u(t, x)−Mv − f(t, x, u, v + ∂uσ)

+
d∑

r=1

v,r(t, x) dwr
t , (t, x) ∈ [0, T )× lRn,

u(T, x) = g(x), x ∈ lRn.

(1.1)

Here we have defined

∂i :=
∂

∂xi
, ∂2

ij :=
∂2

∂xi∂xj
,

L(t, x) :=
1
2

n∑

i,j=1

d∑
r=1

σirσjr(t, x)∂2
ij +

n∑

i=1

bi(t, x)∂i,

Mr(t, x) :=
n∑

i=1

σir(t, x)
∂

∂xi
,

∂u := (∂ju
i)1≤i≤m,1≤j≤n, Lu := (Lu1, · · · ,Lun)′,

Mv :=
( d∑

r=1

Mrv1r, · · · ,
d∑

r=1

Mrvmr
)′

.

(1.2)

Our aim is to find a pair of random fields (u, v) : [0, T ]× lRn×Ω → lRm× lRm×d in suitable
spaces such that the system (1.1) is satisfied in some sense.

The solution will be constructed by using the solutions of both SDEs and BSDEs in the
following way. Consider the SDE (its solution will be denoted by X·(t, x)):





dXs = b(s,Xs) ds +
d∑

r=1

σ,r(s,Xs) dwr
s , t ≤ s ≤ T,

Xt = x.

(1.3)
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and the following BSDE (its adapted solution will be denoted by (Y·(t, x), Z·(t, x))):




dYs = −f(s,Xs(t, x), Ys, Zs) ds +
d∑

r=1

Z,r
s dwr

s , t ≤ s ≤ T,

YT = g(XT (t, x)).

(1.4)

Under suitable assumptions on the coefficients b, σ, f , and g of Equations (1.3) and (1.4),
Equation (1.3) defines a stochastic flow Xs(t, · ), which can be proved to have an inverse
X−1

s (t, ·), and Equation (1.4) defines a pair of random fields {(Ys(t, x), Zs(t, x)); (s, x) ∈
[t, T ] × lRn}. Then, it can be shown by using a suitable form of generalized Itô’s formula
that the pair of random fields (u, v) defined by

u(t, x) := Yt(0, X−1
t (0, x)),

v(t, x) := Zt(0, X−1
t (0, x))− ∂u(t, x)σ(t, x)

(1.5)

is a unique solution of the system (1.1). In this way, we can construct both parts of the
solution of the system (1.1) using SDE (1.3) and BSDE (1.4). Furthermore, with the help
of the SDE of ∂X and the BSDE of (∂Y, ∂Z), we could obtain various estimates of (u, v)
defined by (1.5).

The above-described probabilistic point of view seems to be new. It permits us to
study the system of BSPDEs (1.1) via the properties of SDEs and BSDEs depending on a
parameter, which have been well studied (see for example [11, 17–19, 26]). The link plays a
crucial role, and constitutes a distinct feature of the paper.

The previous method to BSPDEs is analytic (see [4, 20, 21, 36, 37]): the main feature
is to analyze the involved differential operators so as to get some a priori estimates. The
existence proof is based on a finite-dimensional approximation. Instead, we use stochastic
flows (defined by an Itô differential equation) and a pair of random fields (as the solutions of
the associated BSDEs) to construct and then to estimate the solution. In this way we could
avoid the analyses on differential operators and the limiting arguments presented in [4, 20,
21, 36, 37]. However, it is worth noting that the method of stochastic flows has already been
used to study stochastic partial differential equations, and the reader is referred to [1, 2].

Our method also provides new results. It allows us to treat a more general class of
BSPDEs than that in [20–22]. Since Hu, Ma, and Yong [14] appeared, it has been very
challenging to solve semi-linear BSPDEs for arbitrary finite state dimension n. We provide
an answer to this problem. Note that Hu and Peng [15] also discussed a class of nonlinear
BSPDEs but in the language of semigroups.

The rest of this paper is organized as follows. Notations and known results and tools
are collected in Section 2. In Section 3, the pair of random fields generated by a BSDE are
studied in detail, and some new properties are derived. They guarantee the applicability of
the generalized Itô’s formula, and are the basis of the subsequent arguments. In Section 4,
a new pair of random fields are constructed by using the pair of random fields generated by
a BSDE and the inverse flow. Some useful bounded estimates are obtained. In Section 5,
we show that there is unique adapted classical solution for BSPDEs. Section 6 is devoted
to the comparison property of BSPDEs, which is reduced to that of BSDEs. In general, our
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BSPDEs (1.1) is degenerate parabolic in the sense of [22, Definition 1.1, Chapter 5, p.104].
However, it may be super-parabolic by restricting the random sources of the coefficients to
some partial components of the Brownian motion w. The details are explained in Section
7. Section 8 contains some remarks.

§ 2 . Preliminaries

Notations

Let A := {α = (α1, · · · , αn) : αi, i = 1, · · · , n are nonnegative integers} be the set of
multi-indices. For any α ∈ A and x = (x1, · · · , xn) ∈ lRn, denote

|α| :=
n∑

i=1

αi, ∂α := ∂α1
1 ∂α2

2 · · · ∂αn
n .

The inner product in a Euclidean space lE is denoted by 〈 · , · 〉, and the norm in lE by
| · |lE or simply by | · | when there is no confusion.

Let lB be a Banach space, k be a positive integer, and a ∈ [0, 1]. We say that a mapping f :
lRn → lB is of class Ck,α or belongs to Ck,α(lRn; lB) if f is k-times continuously differentiable
and if all the partial derivatives of order k are a-Hölder continuous on lRn. Write for f ∈
Ck,0(lRn; lB),

‖f‖Ck,0 := sup
x∈lRn

‖f(x)‖lB +
∑

1≤|α|≤k

sup
x∈lRn

‖∂αf(x)‖lB, (2.1)

and for f ∈ Ck,a(lRn; lB),

‖f‖Ck,a := ‖f‖Ck,0 +
∑

|α|=k

sup
x,x̃∈lRn

‖∂αf(x)− ∂αf(x̃)‖lB

|x− x̃|a . (2.2)

L∞n (lE) := L∞(lRn; lE) for a Euclidean space lE, L∞n,m := L∞n (lRm), and L∞n,m×d :=
L∞n (lRm×d).

For any integer k ≥ 1, Mn
⊗k(lE) is the space consisting of all the bounded multi-linear

maps from (lRn)⊗
k

to Euclidean space lE. Mn
⊗k(lRm) and Mn

⊗k(lRm×d) will be abbreviated
as Mn,m

⊗k and Mn,m×d
⊗k , respectively. Define Mn,m

⊗0 := lRm and Mn,m×d
⊗0 := lRm×d. Note that

Mn,m
⊗1 is identical to lRm×n.
For an integer k, a Banach space lB, and u ∈ Ck(lRn; lB), we use (for any x ∈ lRn)

∂ku(x) to denote the multi-linear map of (lRn)⊗
k

into lB which is derived from the partial
derivatives of order k of u at x, and use ∂ku(x0)(x1, · · · , xk) to denote the image of the map
∂ku : lRn × (lRn)k → lB at (x0, x1, · · · , xk). Throughout the paper, for any integer k > 1,

∂kuσ is meant by
n∑

i=1

∂k−1∂iuσi, where σi, is the i-th row of σ.

For a given Banach space lB and a real number p > 1, denote by L∞,p
F (0, T ; lB) the

Banach space of all lB-valued adapted continuous processes X which satisfy the following

‖X‖L∞,p
F (0,T ;lB) :=

(
E sup

0≤t≤T
‖X(t)‖p

lB

)1/p

< ∞,
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and denote by Lk,p
F (0, T ; lB) (k ∈ [1,∞)) the set of lB-valued adapted processes Z satisfying

the following

‖X‖Lk,p
F (0,T ;lB) :=

(
E

( ∫ T

0

‖Z(t)‖k
lB dt

)p/k)1/p

< ∞.

Lp
F (0, T ; lB) := Lp,p

F (0, T ; lB) with p ∈ (1,∞]. Lp(FT ; lB) is the Banach space consisting of
lB-valued FT -measurable Lp-integrable variables.

Consider the following SDE:
{

dXs = b(s,Xs) ds + σ(s,Xs) dws, t ≤ s ≤ T,

Xt = x.
(2.3)

We introduce the following assumption.
(C1)k The coefficients σ and b satisfy the following

σ ∈ L∞F (0, T ;Ck(lRn; lRn×d)) and b ∈ L∞F (0, T ;Ck(lRn; lRn)). (2.4)

Note that (C1)k implies that the partial derivatives in x of σ and b up to order k

are uniformly bounded in (ω, t, x) by a common positive constant. Under (C1)1, SDE
(2.3) has a unique strong solution, which will be denoted by {Xs(t, x), t ≤ s ≤ T}. Set
Xs(x) := Xs(0, x) for s ∈ [0, T ].

Lemma 2.1. (see [16, Theorem 2.8.6]) Suppose that (C1)k is satisfied for some positive
integer k. Then, the process X ∈ Ck(lRn;L∞,p(0, T ; lRn)) for any p ≥ 2. Moreover, the
gradient ∂X of Xt(x) satisfies the following SDE:

{
∂Xt(y) = bx(t,Xt(y))∂Xt(y) dt + σx(t,Xt(y))∂Xt(y) dwt,

∂X0(y) = In×n.
(2.5)

Lemma 2.2. (see [17]) Suppose that (C1)k is satisfied for some positive integer k. For
all ω from some subset of probability 1 and for each t ∈ [0, T ] the map Xt(0, ·) : x ∈ lRn →
Xt(0, x) ∈ lRn is a diffeomorphism of class Ck−1 of lRn into itself, and if k ≥ 3, the inverse
map X−1

t (0, x) solves the following SPDE:
{

du(t, x) = (MrMr − L)(t, x)u(t, x) dt−Mr(t, x)u(t, x) dwr
t , 0 ≤ t ≤ T,

u(0, x) = x.
(2.6)

Lemma 2.3. (see [18, Exercise 4.6.8]) Let (C1)1 be satisfied. Then [∂Xt(y)]−1 exists
and satisfies the following SDE:





[∂X0(y)]−1 = In×n,

d[∂Xt(y)]−1 = −[∂Xt(y)]−1{bx(t,Xt(y))− [σx(t,Xt(y))]2} dt

−[∂Xt(y)]−1σx(t,Xt(y)) dwt, 0 ≤ t ≤ T.

(2.7)

Let us now recall some basic results (existence and uniqueness, a priori estimates, com-
parison theorem, and the Malliavin differentiability) of BSDEs, which will be used in our
subsequent arguments. They are more or less well known now.
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Consider the following BSDE:
{

dyt = −f(t, yt, zt) dt + zt dwt,

yT = ξ.
(2.8)

Here f is the generator and ξ is the terminal condition. Its solution consists of a pair of
adapted processes (y, z). The BSDE whose generator and terminal condition are f and ξ

respectively will be referred to as BSDE (f, ξ).

Lemma 2.4. (see [13, Theorem 5.1]) Let the predictable random fields f(t, y, z) be
Lipschitz in (y, z), uniformly with respect to (t, y, z). Moreover assume that the generator f

and the terminal condition ξ satisfy the following for some p > 1,

f(·, 0, 0) ∈ Lp
F (0, T ; lRm), ξ ∈ Lp(FT ; lRm). (2.9)

Then, BSDE (2.8) has a unique adapted solution (y, z) ∈ L∞,p
F (0, T ; lRm)×L2,p

F (0, T ; lRm×d).

Lemma 2.5. (see [13, Proposition 5.1]) Let the predictable random fields f(t, y, z) be
Lipschitz in (y, z), uniformly with respect to (t, y, z). Moreover assume that the generator f

and the terminal condition ξ satisfy (2.9) for some p > 1. Then an adapted solution (y, z)
of BSDE (2.8) satisfies the following

‖y·‖p
L∞,p
F (t,T ;lRm)

+ E

∫ T

t

|ys|p−2|zs|2 ds ≤ Cp{‖f(·, 0, 0)‖p
Lp
F (t,T ;lRm)

+ ‖ξ‖p
Lp(FT ;lRm)} (2.10)

and

‖z·‖p

L2,p
F (t,T ;lRm×d)

≤ Cp{‖f(·, 0, 0)‖p
Lp
F (t,T ;lRm)

+ ‖ξ‖p
Lp(FT ;lRm)} (2.11)

for some positive constant Cp, which depends on p.

We can check that all the expectation operators involved in the estimates (2.10) and
(2.11) of Lemma 2.5 may be replaced with the conditional expectation with respect to Ft.
That is, we have

Lemma 2.6. Let the assumptions of Lemma 2.5 be satisfied. Then an adapted solution
(y, z) of BSDE (2.8) satisfies the following

EFt sup
t≤s≤T

|ys|p + EFt

∫ T

t

|ys|p−2|zs|2 ds ≤ C
{

EFt |ξ|p + EFt

( ∫ T

t

|f(s, 0, 0)| ds
)p}

(2.12)

and

EFt

( ∫ T

t

|zs|2 ds
)p/2

≤ Cp

{
EFt |ξ|p + EFt

( ∫ T

t

|f(s, 0, 0)| ds
)p}

(2.13)

for some positive constant Cp. In particular, we have

|yt|p ≤ Cp

{
EFt |ξ|p + EFt

( ∫ T

t

|f(s, 0, 0)| ds
)p}

. (2.14)
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Lemma 2.7. (see [13, Theorem 2.2]) Let m = 1. Consider two BSDEs (f1, ξ1) and
(f2, ξ2) whose generators f1 and f2 are predictable random fields and are Lipschitz in (y, z),
uniformly with respect to all the arguments. Moreover, assume that fi(·, 0, 0) ∈ L2

F (0, T ; lR)
and ξi ∈ L2(FT ; lR) for i = 1, 2. Let (y1, z1) and (y2, z2) be the adapted solutions of BSDEs
(f1, ξ1) and (f2, ξ2), respectively. If f1(ω, t, y, z) ≥ f2(ω, t, y, z) for a.s.a.e., (ω, t) ∈ Ω×[0, T ]
and any (y, z) ∈ lR× lRd, and if ξ1 ≥ ξ2 almost surely, then y1(t) ≥ y2(t) almost surely for
any t ∈ [0, T ].

§ 3 . Random Fields Generated by BSDEs

Consider the following BSDE:
{

dYt = −f(t,Xt(x), Yt, Zt) dt + Zt dwt, 0 ≤ t < T ;

YT = g(Xt(x)).
(3.1)

Obviously, the adapted solution {(Yt, Zt), 0 ≤ t ≤ T} depends on the parameter x, and
thus will be denoted by {(Yt(x), Zt(x)) : (t, x) ∈ [0, T ]× lRn} or {(Y (x, t), Z(x, t)) : (t, x) ∈
[0, T ]× lRn} when necessary or convenient.

We introduce the following assumption.
(C2)k The coefficients f and g satisfy the following

f ∈ L∞F (0, T ;Ck(lRn × lRm × lRm×d; lRm)) and g ∈ L∞(FT ;Ck(lRn; lRm)). (3.2)

Lemma 3.1. (see [26]) Suppose that (C1)k and (C2)k are satisfied for k = 1 or k = 2.
Let (Y (x), Z(x)) be the unique adapted solution of BSDE (3.1). Then Y ∈ Ck(lRn;L∞,p

F (0, T ;
lRm)) and Z ∈ Ck(lRn;L2,p

F (0, T ; lRm×d)) for any p ≥ 2. For any p ≥ 2 and any nonnegative
integer β ≤ k − 1, we have

‖∂βY·(x1)− ∂βY·(x2)‖p
L∞,p
F (t,T ;Mn,m

⊗β )

+ E

∫ T

t

|∂βYs(x1)− ∂βYs(x2)|p−2
Mn,m
⊗β

|∂βZs(x1)− ∂βZs(x2)|2Mn,m×d
⊗β

ds

≤ Cp|x1 − x2|p, ∀x1, x2 ∈ lRn

(3.3)

and

‖∂βZ·(x1)− ∂βZ·(x2)‖p

L2,p
F (t,T ;Mn,m×d

⊗β )
≤ Cp|x1 − x2|p, ∀x1, x2 ∈ lRn. (3.4)

Furthermore, the gradient (∂Y, ∂Z) satisfies the following BSDE:




∂Yt(y) = {−fx(Ξy
t )∂Xt(y)− fy(Ξy

t )∂Yt(y)− fz(Ξ
y
t )∂Zt(y)} dt + ∂Zt(y) dwt,

∂YT (y) = ∂g(XT (y))∂XT (y),
(3.5)

where we have used the notation Ξy
t := (t,Xt(y), Yt(y), Zt(y)) and ∂Zt(y) dwt :=

d∑
r=1

∂Z ,r
t (y)

dwr
t . We have the following estimates:

‖∂Y·(x)‖p
L∞,p
F (t,T ;lRm×n)

+ E

∫ T

t

|∂Ys(x)|p−2
lRm×n |∂Zs(x)|2

Mn,m×d
⊗1

ds ≤ Cp, ∀x ∈ lRn (3.6)
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and

‖∂Z·(x)‖p

L2,p
F (t,T ;Mn,m×d

⊗1 )
≤ Cp, ∀x ∈ lRn. (3.7)

We introduce the following assumption.
(C3) The function f(t, x, y, z) is linear in z with fz being bounded and being independent

of (x, y, z).
We have

Theorem 3.1. Suppose that (C1)k and (C2)k are satisfied for some positive integer k

and that (C3) is satisfied. Then if (Y (x), Z(x)) is the unique adapted solution of BSDE
(3.1), we have Y ∈ Ck(lRn;L∞,p

F (0, T ; lRm)) and Z ∈ Ck(lRn;L2,p
F (0, T ; lRm×d)) for any

p ≥ 2. For any p ≥ 2 and any nonnegative integer β ≤ k − 1, we have

‖∂βY·(x1)− ∂βY·(x2)‖p
L∞,p
F (t,T ;Mn,m

⊗β )

+ E

∫ T

t

|∂βYs(x1)− ∂βYs(x2)|p−2
Mn,m
⊗β

|∂βZs(x1)− ∂βZs(x2)|2Mn,m×d
⊗β

ds

≤ Cp|x1 − x2|p, ∀x1, x2 ∈ lRn

(3.8)

and

‖∂βZ·(x1)− ∂βZ·(x2)‖p

L2,p
F (t,T ;Mn,m×d

⊗β )
≤ Cp|x1 − x2|p, ∀x1, x2 ∈ lRn. (3.9)

Proof. We use the principle of induction. As k = 1, Theorem 3.1 is true in view of
Lemma 3.1. Suppose that Theorem 3.1 is true for integer k ≥ 1.

We have




∂kYt(x) = −{fy(t,Xt(x), Yt(x))∂kYt(x) + fz(t)∂kZt(x)} dt

−{fx(t,Xt(x), Yt(x))∂kXt(x) + Pk−1(t, x)} dt + ∂kZt(x) dwt,

∂kYT (x) = ∂k[g(XT (x))].

(3.10)

Here Pk(t, x) belongs to Mn,m
⊗k , and it takes values in lRm whose components are polynomials

of the partial derivatives up to order k of the components of Xt(x) and Yt(x). From the
induction assumption, we easily see that Pk−1 ∈ C1(lRn;L∞,p

F (t, T ;Mn,m
⊗k )) and moreover,

‖Pk−1(·, x1)− Pk−1(·, x2)‖p
L∞,p
F (t,T ;Mn,m

⊗k )
≤ Cp|x1 − x2|p.

In view of Lemma 3.1 and the fact that g ∈ Ck+1(lRn; lRm), we also see that ∂k[g(XT )] ∈
C1(lRn;Lp(0, T ; lRm)). Therefore the desired result follows.

Now we establish the general Cm,α-estimates for the solutions.

Theorem 3.2. Let (C1)k and (C2)k be satisfied with k > l + n/2 for some positive
integer l ≥ 2, and (C3) be satisfied. For any compact subset K, we have

E sup
0≤t≤T

‖Yt(·)‖2Ck−1,α;K < ∞ and E

∫ T

0

‖Zt(·)‖2Cl,α;K dt < ∞. (3.11)
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Therefore, Yt(x) is a continuous Ck−1-process and a continuous Cl-semimartingale. The
characteristic of Yt(x) is (f(t,Xt(x), Yt(x), Zt(x)), Zt(x)Zt(y)′) satisfying

E

∫ T

0

sup
x∈K

|∂βf(t,Xt(x), Yt(x), Zt(x))|lRm dt < ∞,

E

∫ T

0

sup
x,y∈K

|∂β
x∂β

y Zt(x)Zt(y)′|lRm×m dt < ∞
(3.12)

for any β ∈ A such that |β| ≤ l, and any compact subset K ⊂ lRn.

Proof. It is immediate consequences of [18, Theorem 1.4.1], [31, Lemma 1] and Theorem
3.1.

Definition 3.1. Define

u(t, x) := Yt(0, X−1
t (0, x)),

v,r(t, x) := Z,r
t (0, X−1

t (0, x))− ∂u(t, x)σ,r(t, x), r = 1, 2, · · · , d,
(3.13)

where ∂u := (∂1u, · · · , ∂nu).

§ 4 . Bounded Estimates for (u, v) and Their Derivatives

In this section, we shall establish various bounded estimates for the pair of random fields
(u, v) with the help of SDE for ∂X and BSDE for (∂Y, ∂Z). The key point is that ∂u(·, X·)
and ∂2u(·, X·) are governed by two ordinary BSDEs, which can be obtained with SDE (2.3)
and BSDE (3.1). Let Cp be a universal positive constant depending on p. Note that it also
may depend on the bounds of the coefficients b, σ, f, and g and their partial derivatives of
suitable orders depending on the situations.

4.1. Bounded estimate of (u, v)

We have

Lemma 4.1. If φ ∈ L∞F (0, T ;L∞n,m), then φ(·, X) and φ(·, X−1) lie in L∞F (0, T ;L∞n,m).

Proof. For any ψ ∈ L1
F (0, T ;C(lRn; lRm)), we have

∫ T

0

∫

lRn

〈φ(t,X−1
t (x)), ψ(t, x)〉 dxdt =

∫ T

0

∫

lRn

〈φ(t, y), ψ(t,Xt(y))〉det(∂X(y)) dydt

≤ ‖φ‖L∞F
∫ T

0

∫

lRn

|ψ(t,Xt(y))|det(∂X(y)) dydt

= ‖φ‖L∞F
∫ T

0

∫

lRn

|ψ(t, x)| dxdt = ‖φ‖L∞F ‖ψ‖L1 .

Therefore, φ(·, X−1) ∈ L∞F (0, T ;L∞n,m). It is proved in an identical way that

φ(·, X) ∈ L∞F (0, T ;L∞n,m).
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Theorem 4.1. Let (C1)1 be satisfied. Let the predictable field f(t, x, y, z) be Lipschitz
in (y, z), uniformly with respect to (t, x, y, z). Assume that

g ∈ L∞(FT ;L∞n,m) and f( · , · , 0, 0) ∈ L∞F (0, T ;L∞n,m). (4.1)

Then for any p > 1, we have

‖Yt(x)‖p
L∞(Ft;lRm) ≤ Cp{‖g‖p

L∞(FT ;L∞n,m) + ‖f( · , · , 0, 0)‖p
L∞F (0,T ;L∞n,m)} (4.2)

and

EFt

( ∫ T

t

|Zs(x)|2 ds
)p/2

≤ Cp{‖g‖p
L∞(FT ;L∞n,m) + ‖f( · , · , 0, 0)‖p

L∞F (0,T ;L∞n,m)}. (4.3)

Proof. In view of Lemma 4.1, the assumption (4.1) implies that

g(XT ) ∈ L∞(FT ;L∞n,m) and f( · , X·, 0, 0) ∈ L∞F (0, T ;L∞n,m). (4.4)

Then from Lemma 2.6, we deduce Theorem 4.1.

In view of Definition 3.1, we have u(t,Xt) = Yt. Therefore, we have

Theorem 4.2. Let (C1)1 be satisfied. Let the predictable field f(t, x, y, z) be Lipschitz
in (y, z), uniformly with respect to (t, x, y, z). Assume that

g ∈ L∞(FT ;L∞n,m) and f( · , · , 0, 0) ∈ L∞F (0, T ;L∞n,m).

Then we have

‖u‖p
L∞F (0,T ;L∞n,m) ≤ Cp{‖g‖p

L∞(FT ;L∞n,m) + ‖f( · , · , 0, 0)‖p
L∞F (0,T ;L∞n,m)}. (4.5)

4.2. Gradient estimates

Write

∂̃Yt(y) := ∂Yt(y)[∂Xt(y)]−1,

∂̃Z ,r
t (y) := ∂Z ,r

t (y)[∂Xt(y)]−1, r = 1, · · · , d.
(4.6)

In view of Lemma 2.3 and BSDE (3.5), we can use Itô’s formula to verify the following
lemma.

Lemma 4.2. Let (C1)1 be satisfied. Let the predictable random fields f ∈ L∞F (0, T ;
C1(lRn×lRm×lRm×d; lRm)), and the partial derivative fx(t, x, y, z) be Lipschitz in (y, z), uni-
formly with respect to (t, x, y, z). Let g ∈ L∞(FT ;C1(lRn; lRm)). Then the pair (∂̃Yt(y), ∂̃Z ,r

t

(y), r = 1, · · · , d) satisfies the following BSDE:




d∂̃Yt(y) = {−fx(Ξy
t )− fy(Ξy

t )∂̃Yt(y)− fz(Ξ
y
t )∂̃Zt(y)− ∂̃Yt(y)bx

− [∂̃Z ,r
t (y)− ∂̃Yt(y)σ,r

x ]σ,r
x } dt + [∂̃Z ,r

t (y)− ∂̃Yt(y)σ,r
x ] dwr

t ,

∂̃YT (y) = ∂g(XT (y)).

(4.7)
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Note that the arguments in bx and σ,r
x are (ω, t, Xt(y)), which have been omitted here for

simplicity.

In view of Lemma 2.6, we immediately have

Theorem 4.3. Let (C1)k and (C2)k be satisfied for k > 2 + n
2 , and (C3) be satisfied.

Then, we have

∂̃Y ∈ L∞F (0, T ;L∞n,m×n), (4.8)

and for any p > 1, the map

(ω, t, x) 7→ EFt

( ∫ T

t

|∂̃Zs(x)|2 ds
)p/2

lies in L∞F (0, T ;L∞n,1). (4.9)

Lemma 4.3. Let (C1)1 and (C2)1 be satisfied for k > 2 + n
2 , and (C3) be satisfied. We

have

∂u(t,Xt(y)) = ∂̃Yt(y),

∂v,r(t,Xt(y)) = ∂̃Z ,r
t (y)− ∂∂u(t,Xt(y))σ,r(t,Xt(y))− ∂u(t,Xt(y))σ,r

x (t,Xt(y)).
(4.10)

Proof. Since
u(t,Xt(y)) = Yt(y),

we have by differentiating both sides

∂u(t,Xt(y))∂Xt(y) = ∂Yt(y). (4.11)

This gives the first identity of the lemma.
Since

v,r(t,Xt(y)) = Z,r
t (y)− ∂u(t,Xt(y))σ,r(t,Xt(y)),

we have by differentiating both sides

∂v,r(t,Xt(y))∂Xt(y) = ∂Z ,r
t (y)− ∂∂u(t,Xt(y))∂Xt(y)σ,r(t,Xt(y))

− ∂u(t,Xt(y))σ,r
x (t,Xt(y))∂Xt(y).

(4.12)

The last identity, multiplied with [∂Xt(y)]−1, implies the last identity of this lemma.

Theorem 4.4. Let (C1)k and (C2)k be satisfied for k > 2 + n
2 , and (C3) be satisfied.

Then, ∂u ∈ L∞F (0, T ;L∞n,m×n).

Proof. Theorem 4.3 together with the first equality in Lemma 4.3 implies that ∂u( · , X·)
∈ L∞F (0, T ;L∞n,m×n). Then the desired result follows from Lemma 4.1.

4.3. Hessian estimates

Define the following notations:

∂̃2
ijYt(y) := ∂k[∂̃iYt(y)][∂Xt(y)]−1

kj ,

∂̃2
ijZ

,r
t (y) := ∂k[∂̃iZ

,r
t (y)][∂Xt(y)]−1

kj ,

Θij(t, y) := ∂̃2
ijYt(y),
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θ,r
ij(t, y) := ∂̃2

ijZ
,r
t (y)− σk′r

xi (t,Xt(y))Θk′j(t, y)

−Θik′(t, y)σk′r
xj (t,Xt(y))− ∂̃Yt(y)σ,r

xixj (t,Xt(y)). (4.13)

Here [∂Xt(y)]−1
ij is the (i, j)-component of the matrix [∂Xt(y)]−1 for i, j = 1, · · · , n.

Lemma 4.4. Let (C1)k and (C2)k be satisfied for k > 2 + n
2 , and (C3) be satisfied.

Then we have




dΘij(t, y) = {−fy(Ξy
t )Θij(t, y)} dt

− fz,r (t)[θ,r
ij(t, y) + σk′r

xi Θk′j(t, y) + Θik′(t, y)σk′r
xj + ∂̃Yt(y)σ,r

xixj ] dt

− {bk′
xiΘk′j(t, y) + bk′

xj Θik′(t, y) + σk′r
xi Θk′k′′(t, y)σk′′r

xj } dt

− {∂̃Yt(y)bxixj + [∂̃Z ,r
t (y)− ∂̃Yt(y)σ,r

x ]σ,r
xixj + ∆̃ijf(Ξy

t ; ∂̃Ξy
t )} dt

− [σk′r
xi θ,r

k′j(t, y) + θ,r
ik′(t, y)σk′r

xj ] dt + θ,r
ij(t, y) dwr

t ,

Θij(T, y) = ∂2
ijg(XT (y)).

(4.14)

Here

∆̃ijf(Ξy
t ; ∂̃Ξy

t ) := fxixj (Ξy
t ) + fykyl(Ξy

t )∂̃iY
k
t (y)∂̃jY

l
t (y) + 2fxiyl(Ξy

t )∂̃jY
l
t (y), (4.15)

and the arguments of the coefficients b and σ and their partial derivatives are (ω, t, Xt(y)),
which are omitted for simplicity.

In what follows, for any (t, y) ∈ [0, T ]× lRn, we define the two multi-linear maps Θ(t, y) ∈
Mn,m
⊗2 and θ(t, y) ∈ Mn,m×d

⊗2 by

Θ(t, y)(x1, x2) :=
n∑

i,j=1

Θij(t, y)xi
1x

j
2, ∀(x1, x2) ∈ (lRn)⊗

2
,

θ(t, y)(x1, x2) :=
n∑

i,j=1

θij(t, y)xi
1x

j
2, ∀(x1, x2) ∈ (lRn)⊗

2
,

respectively. In a similar way, we define the multi-linear maps ∂̃2Ys(y), ∆̃(Ξs; ∂̃Ξs) ∈ Mn,m
⊗2 ,

and ∂̃2Zs(y) ∈ Mn,m×d
⊗2 .

Theorem 4.5. Let (C1)k and (C2)k be satisfied for k > 2 + n
2 , and (C3) be satisfied.

Then, Θ ∈ L∞F (0, T ;L∞n (Mn,m
⊗2 )) and the map (ω, t, x) 7→ EFt

( ∫ T

t

|θ(s, x)|2
Mn,m×d
⊗2

ds
)p/2

lies in the space L∞F (0, T ;L∞n,1) for any p > 1.

Proof. Applying Lemma 2.6 to BSDE (4.14), we have

‖Θ‖2L∞F (0,T ;L∞n (Mn,m
⊗2 ))

≤ Cp

{
‖∂̃Y ‖2L∞F (0,T ;L∞n,m×n) +

∥∥∥EF·
∫ T

·
|∂̃Z·|2Mn,m×d

⊗1
ds

+ EF·
( ∫ T

·
|∆̃f(Ξs; ∂̃Ξs)|Mn,m

⊗2
ds

)2∥∥∥
L∞F (0,T ;L∞n,1)

}
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≤ Cp

{
1 + ‖∂̃Y ‖4L∞F (0,T ;L∞n,m×n) +

∥∥∥EF·
∫ T

·
|∂̃Zs|2Mn,m×d

⊗1
ds

∥∥∥
L∞F (0,T ;L∞n,1)

}
(4.16)

and

EFt

( ∫ T

t

|θ(s, x)|2
Mn,m×d
⊗2

ds
)p/2

≤ Cp

{
1 + ‖∂̃Y ‖4L∞F (0,T ;L∞n,m×n) +

∥∥∥EF·
∫ T

·
|∂̃Zs|2Mn,m×d

⊗1
ds

∥∥∥
L∞F (0,T ;L∞n,1)

}
.

(4.17)

In view of Theorem 4.3, we have the desired results.

By differentiating with respect to x and then multiplying with [∂Xt(y)]−1 both sides of
each equality in Lemma 4.3, we establish the following lemma.

Lemma 4.5. Let (C1)k and (C2)k be satisfied for k > 2 + n
2 , and (C3) be satisfied. We

have

∂2u(t,Xt(y)) = Θ(t, y), (4.18)

∂2v,r(t,Xt(y)) + ∂2∂u(t,Xt(y))σ,r(t,Xt(y)) = θ,r(t, y). (4.19)

From Theorem 4.5, Lemma 4.5, and Lemma 4.1, we deduce the following

Theorem 4.6. Let (C1)k and (C2)k be satisfied for k > 2 + n
2 , and (C3) be satisfied.

Then, ∂2u is uniformly bounded.

4.4. Estimates on (∂ku, ∂kv) with k ≥ 3

We shall derive, under the condition (C3), the BSDEs for {(∂ku(t,Xt), ∂kv(t,Xt)), 0 ≤
t ≤ T} for arbitrary positive integer k.

Since ∂(∂ku(t,Xt)) = ∂k+1u(t,Xt)∂Xt, we have

∂k+1u(t,Xt) = ∂(∂ku(t,Xt))(∂Xt)−1,

which provides an iterative way of calculating the differentials of ∂k+1u(t,Xt) by using the
differentials of ∂ku(t,Xt). By induction, also in view of Lemma 2.6, we can prove the
following

Theorem 4.7. Let (C1)k and (C2)k be satisfied for an integer k ≥ 1, and (C3) be
satisfied. Then the pair of random fields {(∂ku(t,Xt), ∂kv(t,Xt)), 0 ≤ t ≤ T} satisfies the
following BSDE:





d∂ku(t,Xt) = −Fk,k(t, ∂ku(t,Xt), ∂kv(t,Xt) + ∂k+1u(t,Xt)σ(t,Xt)) dt

−
k−1∑

l=1

Fk,l(t, ∂lu(t,Xt), ∂lv(t,Xt) + ∂l+1u(t,Xt)σ(t,Xt)) dt

−
k−1∑

j=0

k−j∑

i=1

k1,··· , ki≥1∑

k−j≤k1+···+ki≤k−1

∂j
x∂i

yf(t,Xt, u(t,Xt))(∂k1u(t,Xt),

· · · , ∂kiu(t,Xt)) + {∂kv(t,Xt) + ∂k+1u(t,Xt)σ(t,Xt)} dwt,

∂ku(T, XT ) = ∂kg(XT ).

(4.20)
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Here the map Fk,k : Ω× [0, T ]×Mn,m
⊗k ×Mn,m×d

⊗k → Mn,m
⊗k is defined by

Fk,k(t, ∗1, ∗2) := ∂k
xf(t,Xt, u(t,Xt)) + ∂yf(t,Xt, u(t,Xt))(∗1) + ∂zf(t)(∗2)

+ ∗1[∂b(t,Xt) + (k − 1)(∂σ(t,Xt))2] + k ∗2 ∂σ(t,Xt), (4.21)

which is linear in the last two arguments. For l = 1, · · · , k − 1, the map Fk,l : Ω × [0, T ] ×
Mn,m
⊗l ×Mn,m×d

⊗l → Mn,m
⊗k is also linear in the last two arguments with the coefficients being

the multi-linear forms of the term ∂zf(t) and the partial derivatives of b and σ up to order
k − l.

Further, the following quantities

u(t, x), EFt

( ∫ T

t

|v(s, x)|2lRm×d ds
)p

, p ≥ 1

and

|∂iu(t, x)|Mn,m
⊗i

, EFt

( ∫ T

t

|∂iv(s, x)|2
Mn,m×d
⊗i

ds
)p

, i = 1, · · · , k, p ≥ 1

are uniformly bounded in (ω, t, x).

§ 5 . Classical Solutions

Definition 5.1. A pair of random vector fields {(u(t, x, ω), v(t, x, ω)), (t, x, ω) ∈ [0, T ]×
lRn × Ω} is called an adapted classical solution of system (1.1), if

{
u ∈ CF ([0, T ];L2(Ω;C2(B; lRm))),

v ∈ L2
F (0, T ;C1(B; lRm×d))

(5.1)

for any centered ball B ⊂ lRn, such that the following holds almost surely (note that vu,σ :=
v + ∂uσ) :

u(t, x) = g(x) +
∫ T

t

{L(s, x)u(s, x) +M(s, x)v(s, x) + f(s, x, u(s, x), vu,σ(s, x))} ds

−
∫ T

t

v(s, x) dws, ∀ (t, x) ∈ [0, T ]× lRn. (5.2)

Lemma 5.1. Let (C1)k and (C2)k be satisfied with k > 2 + n
2 , and (C3) be satisfied.

Then u(t, x) is a C2-valued processes and satisfies that for any compact subset K ⊂ lRn, p > 1
and any β ∈ A such that |β| ≤ 2, there is a constant CK,p such that

E sup
0≤t≤T,x∈K

|∂βu(t, x)|p ≤ CK,p, (5.3)

E

∫ T

0

sup
x∈K

|∂βv(t, x)|p
lRm×d dt ≤ CK,p. (5.4)
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Proof. In view of Theorem 4.7, we use Kunita [18, Theorem 1.4.1, p.31] to get the first
estimate and Sznitman [31, Lemma 1, pp.46–47] to get the second.

Lemma 5.2. Let (C1)k and (C2)k be satisfied with k > 2 + n
2 , and (C3) be satisfied.

Then, (u, v) almost surely satisfies Equation (5.2).

Proof. Recall that

Xt(x) := Xt(0, x), Yt(x) := Yt(0, x), Zt(x) := Zt(0, x), 0 ≤ t ≤ T. (5.5)

Note that




dYt(x) = −f(t,Xt(x), Yt(x), Zt(x)) dt + Zt(x) dwt, 0 ≤ t ≤ T,

YT (x) = g(XT (x))
(5.6)

and from Lemma 2.2,




dX−1
t (x) = (MrMr − L)(t, x)X−1

t (x) dt−Mr(t, x)X−1
t (x) dwr

t , 0 ≤ t ≤ T,

X−1
0 (x) = x.

(5.7)

In view of Theorem 3.2, we can use the generalized Itô’s formula (see [11, 18, 19]) to
compute u(t, x). We have





du(t, x) = −f(t,Xt(X−1
t (x)), u(t, x), Zt(X−1

t (x))) dt + Zt(X−1
t (x)) dwt

+ ∂iYt(x̃)|x̃=X−1
t (x)(MrMr − L)(t, x)X−i

t (x) dt

− ∂iYt(x̃)|x̃=X−1
t (x)Mr(t, x)X−i

t (x) dwr
t

+
1
2
∂2

ijYt(x̃)|x̃=X−1
t (x)[Mr(t, x)X−i

t (x)][Mr(t, x)X−j
t (x)] dt

− ∂iZt(x̃)|x̃=X−1
t (x)Mr(t, x)X−i

t (x) dt, 0 ≤ t ≤ T,

u(T, x) = g(XT (X−1
T (x))).

(5.8)

Here X−i
t (x) is the i-th component of X−1

t (x). We have

Xt(X−1
t (x)) = x, 0 ≤ t ≤ T,

Mr(t, x)u(t, x) = ∂iYt(x̃)|x̃=X−1
t (x)Mr(t, x)X−i

t (x),

Mr(t, x)Zt(X−1
t (x)) = ∂iZt(x̃)|x̃=X−1

t (x)Mr(t, x)X−i
t (x),

(5.9)

MrMr(t, x)u(t, x) = Mr(t, x)(∂iYt(x̃)|x̃=X−1
t (x)Mr(t, x)X−i

t (x))

= Mr(t, x)(∂iYt(x̃)|x̃=X−1
t (x))Mr(t, x)X−i

t (x)

+ ∂iYt(x̃)|x̃=X−1
t (x)(MrMr(t, x)X−i

t (x))

= ∂2
ijYt(x̃)|x̃=X−1

t (x)[Mr(t, x)X−i
t (x)][Mr(t, x)X−j

t (x)]

+ ∂iYt(x̃)|x̃=X−1
t (x)MrMr(t, x)X−i

t (x),

(5.10)
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and

L(t, x)u(t, x) = ∂iYt(x̃)|x̃=X−1
t (x)L(t, x)X−i

t (x)

+
1
2
∂2

ijYt(x̃)|x̃=X−1
t (x)[Mr(t, x)X−i

t (x)][Mr(t, x)X−j
t (x)].

(5.11)

Therefore, (u, v) solves BSPDEs (5.2).

Concluding the above, we have

Theorem 5.1. Let (C1)k and (C2)k be satisfied with k > 2 + n
2 , and (C3) be satisfied.

Then (u, v) is a classical solution of the system (5.2). Moreover, ∂αu is bounded for any
α ∈ A such that |α| ≤ k.

In what follows, we are concerned with the uniqueness of the adapted classical solution.
We shall use a probabilistic representation method.

Theorem 5.2. Let (ũ, ṽ) be an adapted classical solution of the system (1.1). Then we
have almost surely for any (t, x) ∈ [0, T ]×Rn,

ũ(t,Xt(x)) = Yt(x) and ṽ(t,Xt(x)) = Zt(x)− ∂ũ(t, x̃)|x̃=Xt(x)σ(t,Xt(x)) (5.12)

or equivalently

ũ(t, x) = Yt(X−1
t (x)) and ṽ(t, x) = Zt(X−1

t (x))− ∂[Yt(X−1
t (x))]σ(t, x). (5.13)

Proof. The main idea is to use the generalized Itô’s formula to calculate u(t,Xt(x)) and
to verify that {(ũ(t,Xt(x)), ṽ(t,Xt(x)) + ∂ũ(t,Xt(x))σ(t,Xt(x)), (t, x) ∈ [0, T ] × Rn} is an
adapted solution of BSDE (3.1). Then the desired equalities follow.

§ 6 . A Comparison Theorem

In this section, we establish the comparison theorem for BSPDEs using the relationship
between BSDEs and BSPDEs. In this section, we always assume that m = 1.

Consider BSPDEs (1.1) and




dũ(t, x) = −L(t, x)ũ(t, x)−Mṽ − f̃(t, x, ũ, ṽ + ∂ũσ)

+ṽ(t, x) dwt, (t, x) ∈ [0, T )×Rn,

ũ(T, x) = g̃(x), x ∈ Rn.

(6.1)

Theorem 6.1. Suppose that all the assumptions of Theorem 5.1 are satisfied for both
(f, g) and (f̃ , g̃). Let (u, v) and (ũ, ṽ) be the classical adapted solutions of BSPDEs (1.1)
and (6.1), respectively. If g(x) ≥ g̃(x) and f(t, x, u, v) ≥ f̃(t, x, u, v) for all (t, x, u, v) ∈
[0, T ]× lRn× lR× lRd a.s., then for any t ∈ [0, T ], a.s.a.e., (ω, x) ∈ Ω× lRn, u(t, x) ≥ ũ(t, x).

Proof. From Lemma 2.7, we have

Yt(x) ≥ Ỹt(x), a.s. for any x ∈ lRn. (6.2)
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Here (Ỹ , Z̃) is the unique adapted solution of BSDE (f̃ , g̃). From Theorem 5.1, we see that

u(t, x) = Yt(X−1(x)), ũ(t, x) = Yt(X−1(x)), a.s. for any x ∈ lRn.

The proof is then complete.

§ 7 . The Super-parabolic Case

In general, BSPDEs (1.1) is degenerate parabolic in the sense of Ma and Yong [22,
Definition 1.1, p.104]. However, it may be super-parabolic in some situation. To see this,
we introduce the following assumption.

(C4) Let 0 ≤ d0 < d, and {Gt; 0 ≤ t ≤ T} be the augmented natural filtration of
{w1, · · · , wd0}. Assume that all the coefficients σ, b, f , and g are Gt-adapted or GT -measur

-able. There is α > 0 such that
d∑

r=d0+1

〈σ,r, σ,r〉 ≥ αIn×n.

Let {Dθξ, θ ∈ [0, T ]} denote the Malliavin derivative of ξ ∈ L(FT ; lB) on the Wiener
space C([0, T ]; lRd) and Dr

θξ denote the i-th component of Dθ for 1 ≤ r ≤ d.

Given separable Hilbert space lH, let lD(2)
1,p(lH) denote the subspace of Lp(FT ; lH) such

that whose elements ξ have the partial Malliavin derivatives Diξ ∈ L2,p
F (0, T ; lH) for i = d0 +

1, · · · , d. Define for ξ ∈ lD(2)
1,p(lH), ‖ξ||

lD
(2)
1,p(IH)

:=
(
E‖ξ‖p

IH +
(∫ T

0

d∑
i=d0+1

‖Di
θξ‖2IH dθ

)p/2)1/p

.

Let lLa
1,p(lH) denote the set of lH-valued progressively measurable processes {f(ω, t), (ω, t) ∈

Ω× [0, T ]} such that
( i ) For a.e., t ∈ [0, T ], f(ω, t) ∈ lD(2)

1,p(lH).
( ii ) The map (ω, t) → Dif(ω, t) ∈ (L2(0, T ; lH))d admits a progressively measurable

version for i = d0 + 1, · · · , d.

(iii) ‖f‖a
1,p = E

[(∫ T

0

‖f(t)‖2IH dt
)p/2

+
(∫ T

0

∫ T

0

d∑
i=d0+1

‖Di
θf(t)‖2IH dθdt

)p/2]
< ∞.

We have

Lemma 7.1. Let (C1)1, (C2)1, and (C4) be satisfied. Let X be the unique solution
of SDE (2.3). Let (Y, Z) be the unique adapted solution of BSDE (2.8). Then (Y, Z) ∈
L2(0, T ; lD(2)

1,2(lR
m)×(lD(2)

1,2(lR
m))d). Moreover, As θ ∈ (s, T ], we have DθYs = 0 and DθZs =

0. As θ ≤ s ≤ T , we have

Di
θYs =

∫ T

s

[fy(τ, Xτ , Yτ , Zτ )Di
θYτ + fz(τ, Xτ , Yτ , Zτ )Di

θZτ

+ fx(τ, Xτ , Yτ , Zτ )Di
θXτ ] dτ + gx(XT )Di

θXT −
∫ T

s

Di
θZτ dwr

τ (7.1)

for i = d0 + 1, · · · , d. Moreover, for i = d0 + 1, · · · , d, Di
θYs = ∂Ys(∂Xs)−1σ,i(θ, Xθ) for

0 ≤ θ ≤ s ≤ T , and {Di
sYs, 0 ≤ s ≤ T} is a version of {Z,i

s , 0 ≤ s ≤ T} which implies that
Z,i

θ = ∂Yθ(∂Xθ)−1σ,i(θ, Xθ) for a.e., θ ∈ [0, T ].
Then from Lemma 7.1, we obtain

Theorem 7.1. Let (C1)1, (C2)1, (C3) and (C4) be satisfied. Let (Y, Z) be the unique
adapted solution of BSDE (3.1). Then for r = d0 + 1, · · · , d, we have

Z,r
s (x) = ∂Ys(x)[∂Xs(x)]−1σ,r(s,Xs(x)), r = d0 + 1, · · · , d, (7.2)
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which implies

Z,r
s (Xt(x)−1) = ∂[Ys(Xt(x)−1)]σ,r(s, x), v,r(s, x) = 0, r = d0 + 1, · · · , d. (7.3)

Then BSPDEs (1.1) is super-parabolic under (C4).

§ 8 . Comments

In the paper we present the connection of BSPDEs with SDEs and BSDEs in a new way
from a probabilistic point of view. The method is purely probabilistic and constructive. A
striking feature in our context is that the coefficients of SDEs and BSDEs are allowed to
be random. In this situation, the traditional dynamic programming method will encounter
a serious difficulty in providing a probabilistic angle: it could not produce the martingale
term of the BSPDEs, and therefore it should not be expected to play a role as in the case
of Markovian coefficients. Our flow approach can attack the difficulty.

In the paper, it is shown that in the case of the partial derivative fz(t, x, y, z) being
independent of (x, y, z) and being bounded, the smoothness with suitable growth conditions
on the coefficients implies the smoothness of the solutions (u, v) of BSPDEs (1.1) and the
boundedness of the partial derivatives ∂αu. It would be very challenging to prove or disprove
the property for the case of f being nonlinear in z. In making this efforts, we meet with the
following difficulty: to get some regularity of the solution’s derivatives of order higher than
two, we have to estimate the terms like

∫ T

0

d∑
r=1

|∂Z ,r
t (x)|k dt and

∫ T

0

∫

lRn

d∑
r=1

|∂Z ,r
t (x)|k dxdt with k ≥ 3. (8.1)

Here
∫

∂Z ,r
t (x) dwt is identified as the martingale part of a BSDE. While from the property

of BSDEs, we can at most in general estimate such kinds of terms

∫ T

0

d∑
r=1

|∂Z ,r
t (x)|2 dt and

∫ T

0

∫

lRn

d∑
r=1

|∂Z ,r
t (x)|2 dxdt,

which do not imply in general any estimate on the integrals (8.1). This situation suggests
that an example be constructed to disprove the property mentioned in the above.

Due to limitation of space, we have only addressed the classical solutions of BSPDEs. The
generalized solutions in the senses of Sobolev and Schwartz distributions will be discussed
elsewhere.

Finally, we would like to make the two remarks in relevance to the literature.
(1) When the coefficients are deterministic, the system (1.1) becomes a deterministic one

(just letting v ≡ 0)




d

dt
u(t, x) = −L(t, x)u(t, x) + f(t, x, u, ∂uσ), (t, x) ∈ [0, T )×Rn,

u(T, x) = g(x), x ∈ lRn.
(8.2)

The connection between PDEs, SDEs and BSDEs has been addressed from a probabilistic
point of view in the sense of viscosity solutions by Peng [28] and in the senses of classical
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and viscosity solutions by Pardoux and Peng [26], and from an analytical point of view in
the sense of classical solutions by Peng [27, 30] and in the sense of Sobolev solutions by
Barles and Lesigne [3]. They connect BSDE (1.4) together with the diffusion (1.3) to the
deterministic semi-linear parabolic system (8.2) in the following way:

u(t, x) = Yt(t, x). (8.3)

The work [26] is a semi-linear generalization of the classical Feynman-Kac formula. A main
feature of their context is that the coefficients of the SDEs and BSDEs are Markovian. With
the traditional dynamic programming principle (DPP), they study a system of deterministic
partial differential equations (PDEs) with the associated SDEs and BSDEs. Unfortunately,
the traditional DPP method fails to work in our context of non-markovian coefficients. In
the paper, we develop a flow approach instead of the DPP. Since

Yt(0, X−1
t (0, x)) = Yt(t, x), (8.4)

our result coincides with Pardoux and Peng [26].
(2) If further σ = 0, then both SDE (1.3) and BSDE (1.4) reduce to two ordinary

differential equations (ODEs), and PDEs (8.2) is of first-order. In this case, the connection
of ODEs and PDEs has been discussed by Diperna and Lions [12] in some rather general
conditions. However, their goal is to study ODEs driven by Sobolev space valued vector
fields, using the theory of the associated first-order PDEs (the so-called transport equation).
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